mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 08:15:44 +00:00
1774 lines
48 KiB
C
1774 lines
48 KiB
C
|
/*******************************************************************************
|
||
|
|
||
|
Intel PRO/1000 Linux driver
|
||
|
Copyright(c) 1999 - 2007 Intel Corporation.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify it
|
||
|
under the terms and conditions of the GNU General Public License,
|
||
|
version 2, as published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope it will be useful, but WITHOUT
|
||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License along with
|
||
|
this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
|
||
|
The full GNU General Public License is included in this distribution in
|
||
|
the file called "COPYING".
|
||
|
|
||
|
Contact Information:
|
||
|
Linux NICS <linux.nics@intel.com>
|
||
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
||
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
|
||
|
*******************************************************************************/
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
|
||
|
#include "e1000.h"
|
||
|
|
||
|
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
|
||
|
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
|
||
|
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
|
||
|
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
|
||
|
|
||
|
/* Cable length tables */
|
||
|
static const u16 e1000_m88_cable_length_table[] =
|
||
|
{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
|
||
|
|
||
|
static const u16 e1000_igp_2_cable_length_table[] =
|
||
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
|
||
|
6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
|
||
|
26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
|
||
|
44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
|
||
|
66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
|
||
|
87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
|
||
|
100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
|
||
|
124};
|
||
|
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
|
||
|
(sizeof(e1000_igp_2_cable_length_table) / \
|
||
|
sizeof(e1000_igp_2_cable_length_table[0]))
|
||
|
|
||
|
/**
|
||
|
* e1000e_check_reset_block_generic - Check if PHY reset is blocked
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Read the PHY management control register and check whether a PHY reset
|
||
|
* is blocked. If a reset is not blocked return 0, otherwise
|
||
|
* return E1000_BLK_PHY_RESET (12).
|
||
|
**/
|
||
|
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 manc;
|
||
|
|
||
|
manc = er32(MANC);
|
||
|
|
||
|
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
|
||
|
E1000_BLK_PHY_RESET : 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_phy_id - Retrieve the PHY ID and revision
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Reads the PHY registers and stores the PHY ID and possibly the PHY
|
||
|
* revision in the hardware structure.
|
||
|
**/
|
||
|
s32 e1000e_get_phy_id(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_id;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->id = (u32)(phy_id << 16);
|
||
|
udelay(20);
|
||
|
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
|
||
|
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_reset_dsp - Reset PHY DSP
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Reset the digital signal processor.
|
||
|
**/
|
||
|
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_read_phy_reg_mdic - Read MDI control register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to be read
|
||
|
* @data: pointer to the read data
|
||
|
*
|
||
|
* Reads the MDI control regsiter in the PHY at offset and stores the
|
||
|
* information read to data.
|
||
|
**/
|
||
|
static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
u32 i, mdic = 0;
|
||
|
|
||
|
if (offset > MAX_PHY_REG_ADDRESS) {
|
||
|
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
|
||
|
return -E1000_ERR_PARAM;
|
||
|
}
|
||
|
|
||
|
/* Set up Op-code, Phy Address, and register offset in the MDI
|
||
|
* Control register. The MAC will take care of interfacing with the
|
||
|
* PHY to retrieve the desired data.
|
||
|
*/
|
||
|
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
|
||
|
(phy->addr << E1000_MDIC_PHY_SHIFT) |
|
||
|
(E1000_MDIC_OP_READ));
|
||
|
|
||
|
ew32(MDIC, mdic);
|
||
|
|
||
|
/* Poll the ready bit to see if the MDI read completed */
|
||
|
for (i = 0; i < 64; i++) {
|
||
|
udelay(50);
|
||
|
mdic = er32(MDIC);
|
||
|
if (mdic & E1000_MDIC_READY)
|
||
|
break;
|
||
|
}
|
||
|
if (!(mdic & E1000_MDIC_READY)) {
|
||
|
hw_dbg(hw, "MDI Read did not complete\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
if (mdic & E1000_MDIC_ERROR) {
|
||
|
hw_dbg(hw, "MDI Error\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
*data = (u16) mdic;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_write_phy_reg_mdic - Write MDI control register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to write to
|
||
|
* @data: data to write to register at offset
|
||
|
*
|
||
|
* Writes data to MDI control register in the PHY at offset.
|
||
|
**/
|
||
|
static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
u32 i, mdic = 0;
|
||
|
|
||
|
if (offset > MAX_PHY_REG_ADDRESS) {
|
||
|
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
|
||
|
return -E1000_ERR_PARAM;
|
||
|
}
|
||
|
|
||
|
/* Set up Op-code, Phy Address, and register offset in the MDI
|
||
|
* Control register. The MAC will take care of interfacing with the
|
||
|
* PHY to retrieve the desired data.
|
||
|
*/
|
||
|
mdic = (((u32)data) |
|
||
|
(offset << E1000_MDIC_REG_SHIFT) |
|
||
|
(phy->addr << E1000_MDIC_PHY_SHIFT) |
|
||
|
(E1000_MDIC_OP_WRITE));
|
||
|
|
||
|
ew32(MDIC, mdic);
|
||
|
|
||
|
/* Poll the ready bit to see if the MDI read completed */
|
||
|
for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
|
||
|
udelay(5);
|
||
|
mdic = er32(MDIC);
|
||
|
if (mdic & E1000_MDIC_READY)
|
||
|
break;
|
||
|
}
|
||
|
if (!(mdic & E1000_MDIC_READY)) {
|
||
|
hw_dbg(hw, "MDI Write did not complete\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_read_phy_reg_m88 - Read m88 PHY register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to be read
|
||
|
* @data: pointer to the read data
|
||
|
*
|
||
|
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
||
|
* and storing the retrieved information in data. Release any acquired
|
||
|
* semaphores before exiting.
|
||
|
**/
|
||
|
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
||
|
MAX_PHY_REG_ADDRESS & offset,
|
||
|
data);
|
||
|
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_phy_reg_m88 - Write m88 PHY register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to write to
|
||
|
* @data: data to write at register offset
|
||
|
*
|
||
|
* Acquires semaphore, if necessary, then writes the data to PHY register
|
||
|
* at the offset. Release any acquired semaphores before exiting.
|
||
|
**/
|
||
|
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
||
|
MAX_PHY_REG_ADDRESS & offset,
|
||
|
data);
|
||
|
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_read_phy_reg_igp - Read igp PHY register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to be read
|
||
|
* @data: pointer to the read data
|
||
|
*
|
||
|
* Acquires semaphore, if necessary, then reads the PHY register at offset
|
||
|
* and storing the retrieved information in data. Release any acquired
|
||
|
* semaphores before exiting.
|
||
|
**/
|
||
|
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
||
|
IGP01E1000_PHY_PAGE_SELECT,
|
||
|
(u16)offset);
|
||
|
if (ret_val) {
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_read_phy_reg_mdic(hw,
|
||
|
MAX_PHY_REG_ADDRESS & offset,
|
||
|
data);
|
||
|
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_phy_reg_igp - Write igp PHY register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to write to
|
||
|
* @data: data to write at register offset
|
||
|
*
|
||
|
* Acquires semaphore, if necessary, then writes the data to PHY register
|
||
|
* at the offset. Release any acquired semaphores before exiting.
|
||
|
**/
|
||
|
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (offset > MAX_PHY_MULTI_PAGE_REG) {
|
||
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
||
|
IGP01E1000_PHY_PAGE_SELECT,
|
||
|
(u16)offset);
|
||
|
if (ret_val) {
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_write_phy_reg_mdic(hw,
|
||
|
MAX_PHY_REG_ADDRESS & offset,
|
||
|
data);
|
||
|
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_read_kmrn_reg - Read kumeran register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to be read
|
||
|
* @data: pointer to the read data
|
||
|
*
|
||
|
* Acquires semaphore, if necessary. Then reads the PHY register at offset
|
||
|
* using the kumeran interface. The information retrieved is stored in data.
|
||
|
* Release any acquired semaphores before exiting.
|
||
|
**/
|
||
|
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
|
||
|
{
|
||
|
u32 kmrnctrlsta;
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
||
|
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
|
||
|
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
||
|
|
||
|
udelay(2);
|
||
|
|
||
|
kmrnctrlsta = er32(KMRNCTRLSTA);
|
||
|
*data = (u16)kmrnctrlsta;
|
||
|
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_kmrn_reg - Write kumeran register
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: register offset to write to
|
||
|
* @data: data to write at register offset
|
||
|
*
|
||
|
* Acquires semaphore, if necessary. Then write the data to PHY register
|
||
|
* at the offset using the kumeran interface. Release any acquired semaphores
|
||
|
* before exiting.
|
||
|
**/
|
||
|
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
|
||
|
{
|
||
|
u32 kmrnctrlsta;
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
|
||
|
E1000_KMRNCTRLSTA_OFFSET) | data;
|
||
|
ew32(KMRNCTRLSTA, kmrnctrlsta);
|
||
|
|
||
|
udelay(2);
|
||
|
hw->phy.ops.release_phy(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
|
||
|
* and downshift values are set also.
|
||
|
**/
|
||
|
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data;
|
||
|
|
||
|
/* Enable CRS on TX. This must be set for half-duplex operation. */
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
||
|
|
||
|
/* Options:
|
||
|
* MDI/MDI-X = 0 (default)
|
||
|
* 0 - Auto for all speeds
|
||
|
* 1 - MDI mode
|
||
|
* 2 - MDI-X mode
|
||
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
||
|
*/
|
||
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
||
|
|
||
|
switch (phy->mdix) {
|
||
|
case 1:
|
||
|
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
||
|
break;
|
||
|
case 2:
|
||
|
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
||
|
break;
|
||
|
case 3:
|
||
|
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
||
|
break;
|
||
|
case 0:
|
||
|
default:
|
||
|
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Options:
|
||
|
* disable_polarity_correction = 0 (default)
|
||
|
* Automatic Correction for Reversed Cable Polarity
|
||
|
* 0 - Disabled
|
||
|
* 1 - Enabled
|
||
|
*/
|
||
|
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
||
|
if (phy->disable_polarity_correction == 1)
|
||
|
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (phy->revision < 4) {
|
||
|
/* Force TX_CLK in the Extended PHY Specific Control Register
|
||
|
* to 25MHz clock.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
||
|
|
||
|
if ((phy->revision == 2) &&
|
||
|
(phy->id == M88E1111_I_PHY_ID)) {
|
||
|
/* 82573L PHY - set the downshift counter to 5x. */
|
||
|
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
|
||
|
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
||
|
} else {
|
||
|
/* Configure Master and Slave downshift values */
|
||
|
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
||
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
||
|
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
||
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
||
|
}
|
||
|
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Commit the changes. */
|
||
|
ret_val = e1000e_commit_phy(hw);
|
||
|
if (ret_val)
|
||
|
hw_dbg(hw, "Error committing the PHY changes\n");
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
|
||
|
* igp PHY's.
|
||
|
**/
|
||
|
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
ret_val = e1000_phy_hw_reset(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error resetting the PHY.\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Wait 15ms for MAC to configure PHY from NVM settings. */
|
||
|
msleep(15);
|
||
|
|
||
|
/* disable lplu d0 during driver init */
|
||
|
ret_val = e1000_set_d0_lplu_state(hw, 0);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error Disabling LPLU D0\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
/* Configure mdi-mdix settings */
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
||
|
|
||
|
switch (phy->mdix) {
|
||
|
case 1:
|
||
|
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
||
|
break;
|
||
|
case 2:
|
||
|
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
||
|
break;
|
||
|
case 0:
|
||
|
default:
|
||
|
data |= IGP01E1000_PSCR_AUTO_MDIX;
|
||
|
break;
|
||
|
}
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* set auto-master slave resolution settings */
|
||
|
if (hw->mac.autoneg) {
|
||
|
/* when autonegotiation advertisement is only 1000Mbps then we
|
||
|
* should disable SmartSpeed and enable Auto MasterSlave
|
||
|
* resolution as hardware default. */
|
||
|
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
|
||
|
/* Disable SmartSpeed */
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Set auto Master/Slave resolution process */
|
||
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~CR_1000T_MS_ENABLE;
|
||
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* load defaults for future use */
|
||
|
phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
|
||
|
((data & CR_1000T_MS_VALUE) ?
|
||
|
e1000_ms_force_master :
|
||
|
e1000_ms_force_slave) :
|
||
|
e1000_ms_auto;
|
||
|
|
||
|
switch (phy->ms_type) {
|
||
|
case e1000_ms_force_master:
|
||
|
data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
||
|
break;
|
||
|
case e1000_ms_force_slave:
|
||
|
data |= CR_1000T_MS_ENABLE;
|
||
|
data &= ~(CR_1000T_MS_VALUE);
|
||
|
break;
|
||
|
case e1000_ms_auto:
|
||
|
data &= ~CR_1000T_MS_ENABLE;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Reads the MII auto-neg advertisement register and/or the 1000T control
|
||
|
* register and if the PHY is already setup for auto-negotiation, then
|
||
|
* return successful. Otherwise, setup advertisement and flow control to
|
||
|
* the appropriate values for the wanted auto-negotiation.
|
||
|
**/
|
||
|
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 mii_autoneg_adv_reg;
|
||
|
u16 mii_1000t_ctrl_reg = 0;
|
||
|
|
||
|
phy->autoneg_advertised &= phy->autoneg_mask;
|
||
|
|
||
|
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
||
|
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
|
||
|
/* Read the MII 1000Base-T Control Register (Address 9). */
|
||
|
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Need to parse both autoneg_advertised and fc and set up
|
||
|
* the appropriate PHY registers. First we will parse for
|
||
|
* autoneg_advertised software override. Since we can advertise
|
||
|
* a plethora of combinations, we need to check each bit
|
||
|
* individually.
|
||
|
*/
|
||
|
|
||
|
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
||
|
* Advertisement Register (Address 4) and the 1000 mb speed bits in
|
||
|
* the 1000Base-T Control Register (Address 9).
|
||
|
*/
|
||
|
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
|
||
|
NWAY_AR_100TX_HD_CAPS |
|
||
|
NWAY_AR_10T_FD_CAPS |
|
||
|
NWAY_AR_10T_HD_CAPS);
|
||
|
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
|
||
|
|
||
|
hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
|
||
|
|
||
|
/* Do we want to advertise 10 Mb Half Duplex? */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
|
||
|
hw_dbg(hw, "Advertise 10mb Half duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 10 Mb Full Duplex? */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
|
||
|
hw_dbg(hw, "Advertise 10mb Full duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 100 Mb Half Duplex? */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
|
||
|
hw_dbg(hw, "Advertise 100mb Half duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 100 Mb Full Duplex? */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
|
||
|
hw_dbg(hw, "Advertise 100mb Full duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
|
||
|
hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
|
||
|
|
||
|
/* Do we want to advertise 1000 Mb Full Duplex? */
|
||
|
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
|
||
|
hw_dbg(hw, "Advertise 1000mb Full duplex\n");
|
||
|
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Check for a software override of the flow control settings, and
|
||
|
* setup the PHY advertisement registers accordingly. If
|
||
|
* auto-negotiation is enabled, then software will have to set the
|
||
|
* "PAUSE" bits to the correct value in the Auto-Negotiation
|
||
|
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
|
||
|
* negotiation.
|
||
|
*
|
||
|
* The possible values of the "fc" parameter are:
|
||
|
* 0: Flow control is completely disabled
|
||
|
* 1: Rx flow control is enabled (we can receive pause frames
|
||
|
* but not send pause frames).
|
||
|
* 2: Tx flow control is enabled (we can send pause frames
|
||
|
* but we do not support receiving pause frames).
|
||
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
||
|
* other: No software override. The flow control configuration
|
||
|
* in the EEPROM is used.
|
||
|
*/
|
||
|
switch (hw->mac.fc) {
|
||
|
case e1000_fc_none:
|
||
|
/* Flow control (RX & TX) is completely disabled by a
|
||
|
* software over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
case e1000_fc_rx_pause:
|
||
|
/* RX Flow control is enabled, and TX Flow control is
|
||
|
* disabled, by a software over-ride.
|
||
|
*/
|
||
|
/* Since there really isn't a way to advertise that we are
|
||
|
* capable of RX Pause ONLY, we will advertise that we
|
||
|
* support both symmetric and asymmetric RX PAUSE. Later
|
||
|
* (in e1000e_config_fc_after_link_up) we will disable the
|
||
|
* hw's ability to send PAUSE frames.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
case e1000_fc_tx_pause:
|
||
|
/* TX Flow control is enabled, and RX Flow control is
|
||
|
* disabled, by a software over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
||
|
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
||
|
break;
|
||
|
case e1000_fc_full:
|
||
|
/* Flow control (both RX and TX) is enabled by a software
|
||
|
* over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
default:
|
||
|
hw_dbg(hw, "Flow control param set incorrectly\n");
|
||
|
ret_val = -E1000_ERR_CONFIG;
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
||
|
|
||
|
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
|
||
|
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Performs initial bounds checking on autoneg advertisement parameter, then
|
||
|
* configure to advertise the full capability. Setup the PHY to autoneg
|
||
|
* and restart the negotiation process between the link partner. If
|
||
|
* wait_for_link, then wait for autoneg to complete before exiting.
|
||
|
**/
|
||
|
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_ctrl;
|
||
|
|
||
|
/* Perform some bounds checking on the autoneg advertisement
|
||
|
* parameter.
|
||
|
*/
|
||
|
phy->autoneg_advertised &= phy->autoneg_mask;
|
||
|
|
||
|
/* If autoneg_advertised is zero, we assume it was not defaulted
|
||
|
* by the calling code so we set to advertise full capability.
|
||
|
*/
|
||
|
if (phy->autoneg_advertised == 0)
|
||
|
phy->autoneg_advertised = phy->autoneg_mask;
|
||
|
|
||
|
hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
|
||
|
ret_val = e1000_phy_setup_autoneg(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
hw_dbg(hw, "Restarting Auto-Neg\n");
|
||
|
|
||
|
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
||
|
* the Auto Neg Restart bit in the PHY control register.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
||
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Does the user want to wait for Auto-Neg to complete here, or
|
||
|
* check at a later time (for example, callback routine).
|
||
|
*/
|
||
|
if (phy->wait_for_link) {
|
||
|
ret_val = e1000_wait_autoneg(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error while waiting for "
|
||
|
"autoneg to complete\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
hw->mac.get_link_status = 1;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_setup_copper_link - Configure copper link settings
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Calls the appropriate function to configure the link for auto-neg or forced
|
||
|
* speed and duplex. Then we check for link, once link is established calls
|
||
|
* to configure collision distance and flow control are called. If link is
|
||
|
* not established, we return -E1000_ERR_PHY (-2).
|
||
|
**/
|
||
|
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
bool link;
|
||
|
|
||
|
if (hw->mac.autoneg) {
|
||
|
/* Setup autoneg and flow control advertisement and perform
|
||
|
* autonegotiation. */
|
||
|
ret_val = e1000_copper_link_autoneg(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else {
|
||
|
/* PHY will be set to 10H, 10F, 100H or 100F
|
||
|
* depending on user settings. */
|
||
|
hw_dbg(hw, "Forcing Speed and Duplex\n");
|
||
|
ret_val = e1000_phy_force_speed_duplex(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error Forcing Speed and Duplex\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check link status. Wait up to 100 microseconds for link to become
|
||
|
* valid.
|
||
|
*/
|
||
|
ret_val = e1000e_phy_has_link_generic(hw,
|
||
|
COPPER_LINK_UP_LIMIT,
|
||
|
10,
|
||
|
&link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (link) {
|
||
|
hw_dbg(hw, "Valid link established!!!\n");
|
||
|
e1000e_config_collision_dist(hw);
|
||
|
ret_val = e1000e_config_fc_after_link_up(hw);
|
||
|
} else {
|
||
|
hw_dbg(hw, "Unable to establish link!!!\n");
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Calls the PHY setup function to force speed and duplex. Clears the
|
||
|
* auto-crossover to force MDI manually. Waits for link and returns
|
||
|
* successful if link up is successful, else -E1000_ERR_PHY (-2).
|
||
|
**/
|
||
|
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data;
|
||
|
bool link;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
|
||
|
|
||
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
||
|
* forced whenever speed and duplex are forced.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
||
|
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
|
||
|
|
||
|
udelay(1);
|
||
|
|
||
|
if (phy->wait_for_link) {
|
||
|
hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw,
|
||
|
PHY_FORCE_LIMIT,
|
||
|
100000,
|
||
|
&link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link)
|
||
|
hw_dbg(hw, "Link taking longer than expected.\n");
|
||
|
|
||
|
/* Try once more */
|
||
|
ret_val = e1000e_phy_has_link_generic(hw,
|
||
|
PHY_FORCE_LIMIT,
|
||
|
100000,
|
||
|
&link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Calls the PHY setup function to force speed and duplex. Clears the
|
||
|
* auto-crossover to force MDI manually. Resets the PHY to commit the
|
||
|
* changes. If time expires while waiting for link up, we reset the DSP.
|
||
|
* After reset, TX_CLK and CRS on TX must be set. Return successful upon
|
||
|
* successful completion, else return corresponding error code.
|
||
|
**/
|
||
|
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data;
|
||
|
bool link;
|
||
|
|
||
|
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
||
|
* forced whenever speed and duplex are forced.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
||
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
|
||
|
|
||
|
/* Reset the phy to commit changes. */
|
||
|
phy_data |= MII_CR_RESET;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
udelay(1);
|
||
|
|
||
|
if (phy->wait_for_link) {
|
||
|
hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
||
|
100000, &link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link) {
|
||
|
/* We didn't get link.
|
||
|
* Reset the DSP and cross our fingers.
|
||
|
*/
|
||
|
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
ret_val = e1000e_phy_reset_dsp(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Try once more */
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
|
||
|
100000, &link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Resetting the phy means we need to re-force TX_CLK in the
|
||
|
* Extended PHY Specific Control Register to 25MHz clock from
|
||
|
* the reset value of 2.5MHz.
|
||
|
*/
|
||
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
||
|
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* In addition, we must re-enable CRS on Tx for both half and full
|
||
|
* duplex.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
||
|
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @phy_ctrl: pointer to current value of PHY_CONTROL
|
||
|
*
|
||
|
* Forces speed and duplex on the PHY by doing the following: disable flow
|
||
|
* control, force speed/duplex on the MAC, disable auto speed detection,
|
||
|
* disable auto-negotiation, configure duplex, configure speed, configure
|
||
|
* the collision distance, write configuration to CTRL register. The
|
||
|
* caller must write to the PHY_CONTROL register for these settings to
|
||
|
* take affect.
|
||
|
**/
|
||
|
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
|
||
|
{
|
||
|
struct e1000_mac_info *mac = &hw->mac;
|
||
|
u32 ctrl;
|
||
|
|
||
|
/* Turn off flow control when forcing speed/duplex */
|
||
|
mac->fc = e1000_fc_none;
|
||
|
|
||
|
/* Force speed/duplex on the mac */
|
||
|
ctrl = er32(CTRL);
|
||
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||
|
ctrl &= ~E1000_CTRL_SPD_SEL;
|
||
|
|
||
|
/* Disable Auto Speed Detection */
|
||
|
ctrl &= ~E1000_CTRL_ASDE;
|
||
|
|
||
|
/* Disable autoneg on the phy */
|
||
|
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
|
||
|
|
||
|
/* Forcing Full or Half Duplex? */
|
||
|
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
|
||
|
ctrl &= ~E1000_CTRL_FD;
|
||
|
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
|
||
|
hw_dbg(hw, "Half Duplex\n");
|
||
|
} else {
|
||
|
ctrl |= E1000_CTRL_FD;
|
||
|
*phy_ctrl |= MII_CR_FULL_DUPLEX;
|
||
|
hw_dbg(hw, "Full Duplex\n");
|
||
|
}
|
||
|
|
||
|
/* Forcing 10mb or 100mb? */
|
||
|
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
|
||
|
ctrl |= E1000_CTRL_SPD_100;
|
||
|
*phy_ctrl |= MII_CR_SPEED_100;
|
||
|
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
|
||
|
hw_dbg(hw, "Forcing 100mb\n");
|
||
|
} else {
|
||
|
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
|
||
|
*phy_ctrl |= MII_CR_SPEED_10;
|
||
|
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
|
||
|
hw_dbg(hw, "Forcing 10mb\n");
|
||
|
}
|
||
|
|
||
|
e1000e_config_collision_dist(hw);
|
||
|
|
||
|
ew32(CTRL, ctrl);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_set_d3_lplu_state - Sets low power link up state for D3
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @active: boolean used to enable/disable lplu
|
||
|
*
|
||
|
* Success returns 0, Failure returns 1
|
||
|
*
|
||
|
* The low power link up (lplu) state is set to the power management level D3
|
||
|
* and SmartSpeed is disabled when active is true, else clear lplu for D3
|
||
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
||
|
* is used during Dx states where the power conservation is most important.
|
||
|
* During driver activity, SmartSpeed should be enabled so performance is
|
||
|
* maintained.
|
||
|
**/
|
||
|
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!active) {
|
||
|
data &= ~IGP02E1000_PM_D3_LPLU;
|
||
|
ret_val = e1e_wphy(hw,
|
||
|
IGP02E1000_PHY_POWER_MGMT,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||
|
* during Dx states where the power conservation is most
|
||
|
* important. During driver activity we should enable
|
||
|
* SmartSpeed, so performance is maintained. */
|
||
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
||
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
||
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
||
|
data |= IGP02E1000_PM_D3_LPLU;
|
||
|
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_check_downshift - Checks whether a downshift in speed occured
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Success returns 0, Failure returns 1
|
||
|
*
|
||
|
* A downshift is detected by querying the PHY link health.
|
||
|
**/
|
||
|
s32 e1000e_check_downshift(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data, offset, mask;
|
||
|
|
||
|
switch (phy->type) {
|
||
|
case e1000_phy_m88:
|
||
|
case e1000_phy_gg82563:
|
||
|
offset = M88E1000_PHY_SPEC_STATUS;
|
||
|
mask = M88E1000_PSSR_DOWNSHIFT;
|
||
|
break;
|
||
|
case e1000_phy_igp_2:
|
||
|
case e1000_phy_igp_3:
|
||
|
offset = IGP01E1000_PHY_LINK_HEALTH;
|
||
|
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
|
||
|
break;
|
||
|
default:
|
||
|
/* speed downshift not supported */
|
||
|
phy->speed_downgraded = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, offset, &phy_data);
|
||
|
|
||
|
if (!ret_val)
|
||
|
phy->speed_downgraded = (phy_data & mask);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_check_polarity_m88 - Checks the polarity.
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
|
||
|
*
|
||
|
* Polarity is determined based on the PHY specific status register.
|
||
|
**/
|
||
|
static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
|
||
|
|
||
|
if (!ret_val)
|
||
|
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
|
||
|
? e1000_rev_polarity_reversed
|
||
|
: e1000_rev_polarity_normal;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_check_polarity_igp - Checks the polarity.
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
|
||
|
*
|
||
|
* Polarity is determined based on the PHY port status register, and the
|
||
|
* current speed (since there is no polarity at 100Mbps).
|
||
|
**/
|
||
|
static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data, offset, mask;
|
||
|
|
||
|
/* Polarity is determined based on the speed of
|
||
|
* our connection. */
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
|
||
|
IGP01E1000_PSSR_SPEED_1000MBPS) {
|
||
|
offset = IGP01E1000_PHY_PCS_INIT_REG;
|
||
|
mask = IGP01E1000_PHY_POLARITY_MASK;
|
||
|
} else {
|
||
|
/* This really only applies to 10Mbps since
|
||
|
* there is no polarity for 100Mbps (always 0).
|
||
|
*/
|
||
|
offset = IGP01E1000_PHY_PORT_STATUS;
|
||
|
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, offset, &data);
|
||
|
|
||
|
if (!ret_val)
|
||
|
phy->cable_polarity = (data & mask)
|
||
|
? e1000_rev_polarity_reversed
|
||
|
: e1000_rev_polarity_normal;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_wait_autoneg - Wait for auto-neg compeletion
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Waits for auto-negotiation to complete or for the auto-negotiation time
|
||
|
* limit to expire, which ever happens first.
|
||
|
**/
|
||
|
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val = 0;
|
||
|
u16 i, phy_status;
|
||
|
|
||
|
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
|
||
|
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
|
||
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
if (phy_status & MII_SR_AUTONEG_COMPLETE)
|
||
|
break;
|
||
|
msleep(100);
|
||
|
}
|
||
|
|
||
|
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
|
||
|
* has completed.
|
||
|
*/
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_has_link_generic - Polls PHY for link
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @iterations: number of times to poll for link
|
||
|
* @usec_interval: delay between polling attempts
|
||
|
* @success: pointer to whether polling was successful or not
|
||
|
*
|
||
|
* Polls the PHY status register for link, 'iterations' number of times.
|
||
|
**/
|
||
|
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
|
||
|
u32 usec_interval, bool *success)
|
||
|
{
|
||
|
s32 ret_val = 0;
|
||
|
u16 i, phy_status;
|
||
|
|
||
|
for (i = 0; i < iterations; i++) {
|
||
|
/* Some PHYs require the PHY_STATUS register to be read
|
||
|
* twice due to the link bit being sticky. No harm doing
|
||
|
* it across the board.
|
||
|
*/
|
||
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
if (phy_status & MII_SR_LINK_STATUS)
|
||
|
break;
|
||
|
if (usec_interval >= 1000)
|
||
|
mdelay(usec_interval/1000);
|
||
|
else
|
||
|
udelay(usec_interval);
|
||
|
}
|
||
|
|
||
|
*success = (i < iterations);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Reads the PHY specific status register to retrieve the cable length
|
||
|
* information. The cable length is determined by averaging the minimum and
|
||
|
* maximum values to get the "average" cable length. The m88 PHY has four
|
||
|
* possible cable length values, which are:
|
||
|
* Register Value Cable Length
|
||
|
* 0 < 50 meters
|
||
|
* 1 50 - 80 meters
|
||
|
* 2 80 - 110 meters
|
||
|
* 3 110 - 140 meters
|
||
|
* 4 > 140 meters
|
||
|
**/
|
||
|
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data, index;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
|
||
|
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
|
||
|
phy->min_cable_length = e1000_m88_cable_length_table[index];
|
||
|
phy->max_cable_length = e1000_m88_cable_length_table[index+1];
|
||
|
|
||
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* The automatic gain control (agc) normalizes the amplitude of the
|
||
|
* received signal, adjusting for the attenuation produced by the
|
||
|
* cable. By reading the AGC registers, which reperesent the
|
||
|
* cobination of course and fine gain value, the value can be put
|
||
|
* into a lookup table to obtain the approximate cable length
|
||
|
* for each channel.
|
||
|
**/
|
||
|
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data, i, agc_value = 0;
|
||
|
u16 cur_agc_index, max_agc_index = 0;
|
||
|
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
|
||
|
u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
|
||
|
{IGP02E1000_PHY_AGC_A,
|
||
|
IGP02E1000_PHY_AGC_B,
|
||
|
IGP02E1000_PHY_AGC_C,
|
||
|
IGP02E1000_PHY_AGC_D};
|
||
|
|
||
|
/* Read the AGC registers for all channels */
|
||
|
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
|
||
|
ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Getting bits 15:9, which represent the combination of
|
||
|
* course and fine gain values. The result is a number
|
||
|
* that can be put into the lookup table to obtain the
|
||
|
* approximate cable length. */
|
||
|
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
|
||
|
IGP02E1000_AGC_LENGTH_MASK;
|
||
|
|
||
|
/* Array index bound check. */
|
||
|
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
|
||
|
(cur_agc_index == 0))
|
||
|
return -E1000_ERR_PHY;
|
||
|
|
||
|
/* Remove min & max AGC values from calculation. */
|
||
|
if (e1000_igp_2_cable_length_table[min_agc_index] >
|
||
|
e1000_igp_2_cable_length_table[cur_agc_index])
|
||
|
min_agc_index = cur_agc_index;
|
||
|
if (e1000_igp_2_cable_length_table[max_agc_index] <
|
||
|
e1000_igp_2_cable_length_table[cur_agc_index])
|
||
|
max_agc_index = cur_agc_index;
|
||
|
|
||
|
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
|
||
|
}
|
||
|
|
||
|
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
|
||
|
e1000_igp_2_cable_length_table[max_agc_index]);
|
||
|
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
|
||
|
|
||
|
/* Calculate cable length with the error range of +/- 10 meters. */
|
||
|
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
|
||
|
(agc_value - IGP02E1000_AGC_RANGE) : 0;
|
||
|
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
|
||
|
|
||
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_phy_info_m88 - Retrieve PHY information
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Valid for only copper links. Read the PHY status register (sticky read)
|
||
|
* to verify that link is up. Read the PHY special control register to
|
||
|
* determine the polarity and 10base-T extended distance. Read the PHY
|
||
|
* special status register to determine MDI/MDIx and current speed. If
|
||
|
* speed is 1000, then determine cable length, local and remote receiver.
|
||
|
**/
|
||
|
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data;
|
||
|
bool link;
|
||
|
|
||
|
if (hw->media_type != e1000_media_type_copper) {
|
||
|
hw_dbg(hw, "Phy info is only valid for copper media\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link) {
|
||
|
hw_dbg(hw, "Phy info is only valid if link is up\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->polarity_correction = (phy_data &
|
||
|
M88E1000_PSCR_POLARITY_REVERSAL);
|
||
|
|
||
|
ret_val = e1000_check_polarity_m88(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
|
||
|
|
||
|
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
|
||
|
ret_val = e1000_get_cable_length(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
|
||
|
? e1000_1000t_rx_status_ok
|
||
|
: e1000_1000t_rx_status_not_ok;
|
||
|
|
||
|
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
|
||
|
? e1000_1000t_rx_status_ok
|
||
|
: e1000_1000t_rx_status_not_ok;
|
||
|
} else {
|
||
|
/* Set values to "undefined" */
|
||
|
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
|
||
|
phy->local_rx = e1000_1000t_rx_status_undefined;
|
||
|
phy->remote_rx = e1000_1000t_rx_status_undefined;
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_phy_info_igp - Retrieve igp PHY information
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Read PHY status to determine if link is up. If link is up, then
|
||
|
* set/determine 10base-T extended distance and polarity correction. Read
|
||
|
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
|
||
|
* determine on the cable length, local and remote receiver.
|
||
|
**/
|
||
|
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
bool link;
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link) {
|
||
|
hw_dbg(hw, "Phy info is only valid if link is up\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
phy->polarity_correction = 1;
|
||
|
|
||
|
ret_val = e1000_check_polarity_igp(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
|
||
|
|
||
|
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
|
||
|
IGP01E1000_PSSR_SPEED_1000MBPS) {
|
||
|
ret_val = e1000_get_cable_length(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
|
||
|
? e1000_1000t_rx_status_ok
|
||
|
: e1000_1000t_rx_status_not_ok;
|
||
|
|
||
|
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
|
||
|
? e1000_1000t_rx_status_ok
|
||
|
: e1000_1000t_rx_status_not_ok;
|
||
|
} else {
|
||
|
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
|
||
|
phy->local_rx = e1000_1000t_rx_status_undefined;
|
||
|
phy->remote_rx = e1000_1000t_rx_status_undefined;
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_sw_reset - PHY software reset
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Does a software reset of the PHY by reading the PHY control register and
|
||
|
* setting/write the control register reset bit to the PHY.
|
||
|
**/
|
||
|
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
u16 phy_ctrl;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_ctrl |= MII_CR_RESET;
|
||
|
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
udelay(1);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_phy_hw_reset_generic - PHY hardware reset
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Verify the reset block is not blocking us from resetting. Acquire
|
||
|
* semaphore (if necessary) and read/set/write the device control reset
|
||
|
* bit in the PHY. Wait the appropriate delay time for the device to
|
||
|
* reset and relase the semaphore (if necessary).
|
||
|
**/
|
||
|
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u32 ctrl;
|
||
|
|
||
|
ret_val = e1000_check_reset_block(hw);
|
||
|
if (ret_val)
|
||
|
return 0;
|
||
|
|
||
|
ret_val = phy->ops.acquire_phy(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ctrl = er32(CTRL);
|
||
|
ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
|
||
|
e1e_flush();
|
||
|
|
||
|
udelay(phy->reset_delay_us);
|
||
|
|
||
|
ew32(CTRL, ctrl);
|
||
|
e1e_flush();
|
||
|
|
||
|
udelay(150);
|
||
|
|
||
|
phy->ops.release_phy(hw);
|
||
|
|
||
|
return e1000_get_phy_cfg_done(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_cfg_done - Generic configuration done
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Generic function to wait 10 milli-seconds for configuration to complete
|
||
|
* and return success.
|
||
|
**/
|
||
|
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
|
||
|
{
|
||
|
mdelay(10);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Internal function pointers */
|
||
|
|
||
|
/**
|
||
|
* e1000_get_phy_cfg_done - Generic PHY configuration done
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Return success if silicon family did not implement a family specific
|
||
|
* get_cfg_done function.
|
||
|
**/
|
||
|
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.ops.get_cfg_done)
|
||
|
return hw->phy.ops.get_cfg_done(hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* When the silicon family has not implemented a forced speed/duplex
|
||
|
* function for the PHY, simply return 0.
|
||
|
**/
|
||
|
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.ops.force_speed_duplex)
|
||
|
return hw->phy.ops.force_speed_duplex(hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_phy_type_from_id - Get PHY type from id
|
||
|
* @phy_id: phy_id read from the phy
|
||
|
*
|
||
|
* Returns the phy type from the id.
|
||
|
**/
|
||
|
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
|
||
|
{
|
||
|
enum e1000_phy_type phy_type = e1000_phy_unknown;
|
||
|
|
||
|
switch (phy_id) {
|
||
|
case M88E1000_I_PHY_ID:
|
||
|
case M88E1000_E_PHY_ID:
|
||
|
case M88E1111_I_PHY_ID:
|
||
|
case M88E1011_I_PHY_ID:
|
||
|
phy_type = e1000_phy_m88;
|
||
|
break;
|
||
|
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
|
||
|
phy_type = e1000_phy_igp_2;
|
||
|
break;
|
||
|
case GG82563_E_PHY_ID:
|
||
|
phy_type = e1000_phy_gg82563;
|
||
|
break;
|
||
|
case IGP03E1000_E_PHY_ID:
|
||
|
phy_type = e1000_phy_igp_3;
|
||
|
break;
|
||
|
case IFE_E_PHY_ID:
|
||
|
case IFE_PLUS_E_PHY_ID:
|
||
|
case IFE_C_E_PHY_ID:
|
||
|
phy_type = e1000_phy_ife;
|
||
|
break;
|
||
|
default:
|
||
|
phy_type = e1000_phy_unknown;
|
||
|
break;
|
||
|
}
|
||
|
return phy_type;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_commit_phy - Soft PHY reset
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Performs a soft PHY reset on those that apply. This is a function pointer
|
||
|
* entry point called by drivers.
|
||
|
**/
|
||
|
s32 e1000e_commit_phy(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.ops.commit_phy)
|
||
|
return hw->phy.ops.commit_phy(hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_set_d0_lplu_state - Sets low power link up state for D0
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @active: boolean used to enable/disable lplu
|
||
|
*
|
||
|
* Success returns 0, Failure returns 1
|
||
|
*
|
||
|
* The low power link up (lplu) state is set to the power management level D0
|
||
|
* and SmartSpeed is disabled when active is true, else clear lplu for D0
|
||
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
||
|
* is used during Dx states where the power conservation is most important.
|
||
|
* During driver activity, SmartSpeed should be enabled so performance is
|
||
|
* maintained. This is a function pointer entry point called by drivers.
|
||
|
**/
|
||
|
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
|
||
|
{
|
||
|
if (hw->phy.ops.set_d0_lplu_state)
|
||
|
return hw->phy.ops.set_d0_lplu_state(hw, active);
|
||
|
|
||
|
return 0;
|
||
|
}
|