linux/drivers/media/dvb-frontends/cxd2820r_core.c

777 lines
18 KiB
C
Raw Normal View History

/*
* Sony CXD2820R demodulator driver
*
* Copyright (C) 2010 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "cxd2820r_priv.h"
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/af9013.c:77:1: warning: 'af9013_wr_regs_i2c' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:188:1: warning: 'af9033_wr_reg_val_tab' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:68:1: warning: 'af9033_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/cxd2820r_core.c:84:1: warning: 'cxd2820r_rd_regs_i2c.isra.1' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2830.c:56:1: warning: 'rtl2830_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2832.c:187:1: warning: 'rtl2832_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:52:1: warning: 'tda10071_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:84:1: warning: 'tda10071_rd_regs' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Antti Palosaari <crope@iki.fi> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 05:11:47 -03:00
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
/* write multiple registers */
static int cxd2820r_wr_regs_i2c(struct cxd2820r_priv *priv, u8 i2c, u8 reg,
u8 *val, int len)
{
int ret;
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/af9013.c:77:1: warning: 'af9013_wr_regs_i2c' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:188:1: warning: 'af9033_wr_reg_val_tab' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:68:1: warning: 'af9033_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/cxd2820r_core.c:84:1: warning: 'cxd2820r_rd_regs_i2c.isra.1' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2830.c:56:1: warning: 'rtl2830_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2832.c:187:1: warning: 'rtl2832_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:52:1: warning: 'tda10071_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:84:1: warning: 'tda10071_rd_regs' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Antti Palosaari <crope@iki.fi> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 05:11:47 -03:00
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[1] = {
{
.addr = i2c,
.flags = 0,
.len = len + 1,
.buf = buf,
}
};
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/af9013.c:77:1: warning: 'af9013_wr_regs_i2c' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:188:1: warning: 'af9033_wr_reg_val_tab' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:68:1: warning: 'af9033_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/cxd2820r_core.c:84:1: warning: 'cxd2820r_rd_regs_i2c.isra.1' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2830.c:56:1: warning: 'rtl2830_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2832.c:187:1: warning: 'rtl2832_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:52:1: warning: 'tda10071_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:84:1: warning: 'tda10071_rd_regs' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Antti Palosaari <crope@iki.fi> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 05:11:47 -03:00
if (1 + len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], val, len);
ret = i2c_transfer(priv->i2c, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int cxd2820r_rd_regs_i2c(struct cxd2820r_priv *priv, u8 i2c, u8 reg,
u8 *val, int len)
{
int ret;
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/af9013.c:77:1: warning: 'af9013_wr_regs_i2c' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:188:1: warning: 'af9033_wr_reg_val_tab' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:68:1: warning: 'af9033_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/cxd2820r_core.c:84:1: warning: 'cxd2820r_rd_regs_i2c.isra.1' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2830.c:56:1: warning: 'rtl2830_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2832.c:187:1: warning: 'rtl2832_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:52:1: warning: 'tda10071_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:84:1: warning: 'tda10071_rd_regs' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Antti Palosaari <crope@iki.fi> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 05:11:47 -03:00
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[2] = {
{
.addr = i2c,
.flags = 0,
.len = 1,
.buf = &reg,
}, {
.addr = i2c,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/af9013.c:77:1: warning: 'af9013_wr_regs_i2c' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:188:1: warning: 'af9033_wr_reg_val_tab' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/af9033.c:68:1: warning: 'af9033_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/cxd2820r_core.c:84:1: warning: 'cxd2820r_rd_regs_i2c.isra.1' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2830.c:56:1: warning: 'rtl2830_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/rtl2832.c:187:1: warning: 'rtl2832_wr' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:52:1: warning: 'tda10071_wr_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda10071.c:84:1: warning: 'tda10071_rd_regs' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Antti Palosaari <crope@iki.fi> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 05:11:47 -03:00
if (len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret == 2) {
memcpy(val, buf, len);
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write multiple registers */
int cxd2820r_wr_regs(struct cxd2820r_priv *priv, u32 reginfo, u8 *val,
int len)
{
int ret;
u8 i2c_addr;
u8 reg = (reginfo >> 0) & 0xff;
u8 bank = (reginfo >> 8) & 0xff;
u8 i2c = (reginfo >> 16) & 0x01;
/* select I2C */
if (i2c)
i2c_addr = priv->cfg.i2c_address | (1 << 1); /* DVB-C */
else
i2c_addr = priv->cfg.i2c_address; /* DVB-T/T2 */
/* switch bank if needed */
if (bank != priv->bank[i2c]) {
ret = cxd2820r_wr_regs_i2c(priv, i2c_addr, 0x00, &bank, 1);
if (ret)
return ret;
priv->bank[i2c] = bank;
}
return cxd2820r_wr_regs_i2c(priv, i2c_addr, reg, val, len);
}
/* read multiple registers */
int cxd2820r_rd_regs(struct cxd2820r_priv *priv, u32 reginfo, u8 *val,
int len)
{
int ret;
u8 i2c_addr;
u8 reg = (reginfo >> 0) & 0xff;
u8 bank = (reginfo >> 8) & 0xff;
u8 i2c = (reginfo >> 16) & 0x01;
/* select I2C */
if (i2c)
i2c_addr = priv->cfg.i2c_address | (1 << 1); /* DVB-C */
else
i2c_addr = priv->cfg.i2c_address; /* DVB-T/T2 */
/* switch bank if needed */
if (bank != priv->bank[i2c]) {
ret = cxd2820r_wr_regs_i2c(priv, i2c_addr, 0x00, &bank, 1);
if (ret)
return ret;
priv->bank[i2c] = bank;
}
return cxd2820r_rd_regs_i2c(priv, i2c_addr, reg, val, len);
}
/* write single register */
int cxd2820r_wr_reg(struct cxd2820r_priv *priv, u32 reg, u8 val)
{
return cxd2820r_wr_regs(priv, reg, &val, 1);
}
/* read single register */
int cxd2820r_rd_reg(struct cxd2820r_priv *priv, u32 reg, u8 *val)
{
return cxd2820r_rd_regs(priv, reg, val, 1);
}
/* write single register with mask */
int cxd2820r_wr_reg_mask(struct cxd2820r_priv *priv, u32 reg, u8 val,
u8 mask)
{
int ret;
u8 tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = cxd2820r_rd_reg(priv, reg, &tmp);
if (ret)
return ret;
val &= mask;
tmp &= ~mask;
val |= tmp;
}
return cxd2820r_wr_reg(priv, reg, val);
}
int cxd2820r_gpio(struct dvb_frontend *fe, u8 *gpio)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret, i;
u8 tmp0, tmp1;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
/* update GPIOs only when needed */
if (!memcmp(gpio, priv->gpio, sizeof(priv->gpio)))
return 0;
tmp0 = 0x00;
tmp1 = 0x00;
for (i = 0; i < sizeof(priv->gpio); i++) {
/* enable / disable */
if (gpio[i] & CXD2820R_GPIO_E)
tmp0 |= (2 << 6) >> (2 * i);
else
tmp0 |= (1 << 6) >> (2 * i);
/* input / output */
if (gpio[i] & CXD2820R_GPIO_I)
tmp1 |= (1 << (3 + i));
else
tmp1 |= (0 << (3 + i));
/* high / low */
if (gpio[i] & CXD2820R_GPIO_H)
tmp1 |= (1 << (0 + i));
else
tmp1 |= (0 << (0 + i));
dev_dbg(&priv->i2c->dev, "%s: gpio i=%d %02x %02x\n", __func__,
i, tmp0, tmp1);
}
dev_dbg(&priv->i2c->dev, "%s: wr gpio=%02x %02x\n", __func__, tmp0,
tmp1);
/* write bits [7:2] */
ret = cxd2820r_wr_reg_mask(priv, 0x00089, tmp0, 0xfc);
if (ret)
goto error;
/* write bits [5:0] */
ret = cxd2820r_wr_reg_mask(priv, 0x0008e, tmp1, 0x3f);
if (ret)
goto error;
memcpy(priv->gpio, gpio, sizeof(priv->gpio));
return ret;
error:
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
/* 64 bit div with round closest, like DIV_ROUND_CLOSEST but 64 bit */
u32 cxd2820r_div_u64_round_closest(u64 dividend, u32 divisor)
{
return div_u64(dividend + (divisor / 2), divisor);
}
static int cxd2820r_set_frontend(struct dvb_frontend *fe)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (c->delivery_system) {
case SYS_DVBT:
ret = cxd2820r_init_t(fe);
if (ret < 0)
goto err;
ret = cxd2820r_set_frontend_t(fe);
if (ret < 0)
goto err;
break;
case SYS_DVBT2:
ret = cxd2820r_init_t(fe);
if (ret < 0)
goto err;
ret = cxd2820r_set_frontend_t2(fe);
if (ret < 0)
goto err;
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_init_c(fe);
if (ret < 0)
goto err;
ret = cxd2820r_set_frontend_c(fe);
if (ret < 0)
goto err;
break;
default:
dev_dbg(&priv->i2c->dev, "%s: error state=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
ret = -EINVAL;
break;
}
err:
return ret;
}
static int cxd2820r_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_read_status_t(fe, status);
break;
case SYS_DVBT2:
ret = cxd2820r_read_status_t2(fe, status);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_read_status_c(fe, status);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_get_frontend(struct dvb_frontend *fe)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
if (priv->delivery_system == SYS_UNDEFINED)
return 0;
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_get_frontend_t(fe);
break;
case SYS_DVBT2:
ret = cxd2820r_get_frontend_t2(fe);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_get_frontend_c(fe);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_read_ber_t(fe, ber);
break;
case SYS_DVBT2:
ret = cxd2820r_read_ber_t2(fe, ber);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_read_ber_c(fe, ber);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_read_signal_strength_t(fe, strength);
break;
case SYS_DVBT2:
ret = cxd2820r_read_signal_strength_t2(fe, strength);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_read_signal_strength_c(fe, strength);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_read_snr_t(fe, snr);
break;
case SYS_DVBT2:
ret = cxd2820r_read_snr_t2(fe, snr);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_read_snr_c(fe, snr);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_read_ucblocks_t(fe, ucblocks);
break;
case SYS_DVBT2:
ret = cxd2820r_read_ucblocks_t2(fe, ucblocks);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_read_ucblocks_c(fe, ucblocks);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_init(struct dvb_frontend *fe)
{
return 0;
}
static int cxd2820r_sleep(struct dvb_frontend *fe)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_sleep_t(fe);
break;
case SYS_DVBT2:
ret = cxd2820r_sleep_t2(fe);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_sleep_c(fe);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int cxd2820r_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *s)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBT:
ret = cxd2820r_get_tune_settings_t(fe, s);
break;
case SYS_DVBT2:
ret = cxd2820r_get_tune_settings_t2(fe, s);
break;
case SYS_DVBC_ANNEX_A:
ret = cxd2820r_get_tune_settings_c(fe, s);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static enum dvbfe_search cxd2820r_search(struct dvb_frontend *fe)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i;
fe_status_t status = 0;
dev_dbg(&priv->i2c->dev, "%s: delsys=%d\n", __func__,
fe->dtv_property_cache.delivery_system);
/* switch between DVB-T and DVB-T2 when tune fails */
if (priv->last_tune_failed) {
if (priv->delivery_system == SYS_DVBT) {
ret = cxd2820r_sleep_t(fe);
if (ret)
goto error;
c->delivery_system = SYS_DVBT2;
} else if (priv->delivery_system == SYS_DVBT2) {
ret = cxd2820r_sleep_t2(fe);
if (ret)
goto error;
c->delivery_system = SYS_DVBT;
}
}
/* set frontend */
ret = cxd2820r_set_frontend(fe);
if (ret)
goto error;
/* frontend lock wait loop count */
switch (priv->delivery_system) {
case SYS_DVBT:
case SYS_DVBC_ANNEX_A:
i = 20;
break;
case SYS_DVBT2:
i = 40;
break;
case SYS_UNDEFINED:
default:
i = 0;
break;
}
/* wait frontend lock */
for (; i > 0; i--) {
dev_dbg(&priv->i2c->dev, "%s: loop=%d\n", __func__, i);
msleep(50);
ret = cxd2820r_read_status(fe, &status);
if (ret)
goto error;
if (status & FE_HAS_LOCK)
break;
}
/* check if we have a valid signal */
if (status & FE_HAS_LOCK) {
priv->last_tune_failed = false;
return DVBFE_ALGO_SEARCH_SUCCESS;
} else {
priv->last_tune_failed = true;
return DVBFE_ALGO_SEARCH_AGAIN;
}
error:
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return DVBFE_ALGO_SEARCH_ERROR;
}
static int cxd2820r_get_frontend_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_CUSTOM;
}
static void cxd2820r_release(struct dvb_frontend *fe)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
int uninitialized_var(ret); /* silence compiler warning */
dev_dbg(&priv->i2c->dev, "%s\n", __func__);
#ifdef CONFIG_GPIOLIB
/* remove GPIOs */
if (priv->gpio_chip.label) {
ret = gpiochip_remove(&priv->gpio_chip);
if (ret)
dev_err(&priv->i2c->dev, "%s: gpiochip_remove() " \
"failed=%d\n", KBUILD_MODNAME, ret);
}
#endif
kfree(priv);
return;
}
static int cxd2820r_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct cxd2820r_priv *priv = fe->demodulator_priv;
dev_dbg(&priv->i2c->dev, "%s: %d\n", __func__, enable);
/* Bit 0 of reg 0xdb in bank 0x00 controls I2C repeater */
return cxd2820r_wr_reg_mask(priv, 0xdb, enable ? 1 : 0, 0x1);
}
#ifdef CONFIG_GPIOLIB
static int cxd2820r_gpio_direction_output(struct gpio_chip *chip, unsigned nr,
int val)
{
struct cxd2820r_priv *priv =
container_of(chip, struct cxd2820r_priv, gpio_chip);
u8 gpio[GPIO_COUNT];
dev_dbg(&priv->i2c->dev, "%s: nr=%d val=%d\n", __func__, nr, val);
memcpy(gpio, priv->gpio, sizeof(gpio));
gpio[nr] = CXD2820R_GPIO_E | CXD2820R_GPIO_O | (val << 2);
return cxd2820r_gpio(&priv->fe, gpio);
}
static void cxd2820r_gpio_set(struct gpio_chip *chip, unsigned nr, int val)
{
struct cxd2820r_priv *priv =
container_of(chip, struct cxd2820r_priv, gpio_chip);
u8 gpio[GPIO_COUNT];
dev_dbg(&priv->i2c->dev, "%s: nr=%d val=%d\n", __func__, nr, val);
memcpy(gpio, priv->gpio, sizeof(gpio));
gpio[nr] = CXD2820R_GPIO_E | CXD2820R_GPIO_O | (val << 2);
(void) cxd2820r_gpio(&priv->fe, gpio);
return;
}
static int cxd2820r_gpio_get(struct gpio_chip *chip, unsigned nr)
{
struct cxd2820r_priv *priv =
container_of(chip, struct cxd2820r_priv, gpio_chip);
dev_dbg(&priv->i2c->dev, "%s: nr=%d\n", __func__, nr);
return (priv->gpio[nr] >> 2) & 0x01;
}
#endif
static const struct dvb_frontend_ops cxd2820r_ops = {
.delsys = { SYS_DVBT, SYS_DVBT2, SYS_DVBC_ANNEX_A },
/* default: DVB-T/T2 */
.info = {
.name = "Sony CXD2820R",
.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_32 |
FE_CAN_QAM_64 |
FE_CAN_QAM_128 |
FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_MUTE_TS |
FE_CAN_2G_MODULATION |
FE_CAN_MULTISTREAM
},
.release = cxd2820r_release,
.init = cxd2820r_init,
.sleep = cxd2820r_sleep,
.get_tune_settings = cxd2820r_get_tune_settings,
.i2c_gate_ctrl = cxd2820r_i2c_gate_ctrl,
.get_frontend = cxd2820r_get_frontend,
.get_frontend_algo = cxd2820r_get_frontend_algo,
.search = cxd2820r_search,
.read_status = cxd2820r_read_status,
.read_snr = cxd2820r_read_snr,
.read_ber = cxd2820r_read_ber,
.read_ucblocks = cxd2820r_read_ucblocks,
.read_signal_strength = cxd2820r_read_signal_strength,
};
struct dvb_frontend *cxd2820r_attach(const struct cxd2820r_config *cfg,
struct i2c_adapter *i2c, int *gpio_chip_base
)
{
struct cxd2820r_priv *priv;
int ret;
u8 tmp;
priv = kzalloc(sizeof(struct cxd2820r_priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
dev_err(&i2c->dev, "%s: kzalloc() failed\n",
KBUILD_MODNAME);
goto error;
}
priv->i2c = i2c;
memcpy(&priv->cfg, cfg, sizeof(struct cxd2820r_config));
memcpy(&priv->fe.ops, &cxd2820r_ops, sizeof(struct dvb_frontend_ops));
priv->fe.demodulator_priv = priv;
priv->bank[0] = priv->bank[1] = 0xff;
ret = cxd2820r_rd_reg(priv, 0x000fd, &tmp);
dev_dbg(&priv->i2c->dev, "%s: chip id=%02x\n", __func__, tmp);
if (ret || tmp != 0xe1)
goto error;
if (gpio_chip_base) {
#ifdef CONFIG_GPIOLIB
/* add GPIOs */
priv->gpio_chip.label = KBUILD_MODNAME;
priv->gpio_chip.dev = &priv->i2c->dev;
priv->gpio_chip.owner = THIS_MODULE;
priv->gpio_chip.direction_output =
cxd2820r_gpio_direction_output;
priv->gpio_chip.set = cxd2820r_gpio_set;
priv->gpio_chip.get = cxd2820r_gpio_get;
priv->gpio_chip.base = -1; /* dynamic allocation */
priv->gpio_chip.ngpio = GPIO_COUNT;
priv->gpio_chip.can_sleep = 1;
ret = gpiochip_add(&priv->gpio_chip);
if (ret)
goto error;
dev_dbg(&priv->i2c->dev, "%s: gpio_chip.base=%d\n", __func__,
priv->gpio_chip.base);
*gpio_chip_base = priv->gpio_chip.base;
#else
/*
* Use static GPIO configuration if GPIOLIB is undefined.
* This is fallback condition.
*/
u8 gpio[GPIO_COUNT];
gpio[0] = (*gpio_chip_base >> 0) & 0x07;
gpio[1] = (*gpio_chip_base >> 3) & 0x07;
gpio[2] = 0;
ret = cxd2820r_gpio(&priv->fe, gpio);
if (ret)
goto error;
#endif
}
return &priv->fe;
error:
dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
kfree(priv);
return NULL;
}
EXPORT_SYMBOL(cxd2820r_attach);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Sony CXD2820R demodulator driver");
MODULE_LICENSE("GPL");