linux/kernel/time/clockevents.c

275 lines
6.5 KiB
C
Raw Normal View History

/*
* linux/kernel/time/clockevents.c
*
* This file contains functions which manage clock event devices.
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
*
* This code is licenced under the GPL version 2. For details see
* kernel-base/COPYING.
*/
#include <linux/clockchips.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysdev.h>
#include <linux/tick.h>
#include "tick-internal.h"
/* The registered clock event devices */
static LIST_HEAD(clockevent_devices);
static LIST_HEAD(clockevents_released);
/* Notification for clock events */
static RAW_NOTIFIER_HEAD(clockevents_chain);
/* Protection for the above */
static DEFINE_RAW_SPINLOCK(clockevents_lock);
/**
* clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
* @latch: value to convert
* @evt: pointer to clock event device descriptor
*
* Math helper, returns latch value converted to nanoseconds (bound checked)
*/
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds In the dynamic tick code, "max_delta_ns" (member of the "clock_event_device" structure) represents the maximum sleep time that can occur between timer events in nanoseconds. The variable, "max_delta_ns", is defined as an unsigned long which is a 32-bit integer for 32-bit machines and a 64-bit integer for 64-bit machines (if -m64 option is used for gcc). The value of max_delta_ns is set by calling the function "clockevent_delta2ns()" which returns a maximum value of LONG_MAX. For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in nanoseconds this equates to ~2.15 seconds. Hence, the maximum sleep time for a 32-bit machine is ~2.15 seconds, where as for a 64-bit machine it will be many years. This patch changes the type of max_delta_ns to be "u64" instead of "unsigned long" so that this variable is a 64-bit type for both 32-bit and 64-bit machines. It also changes the maximum value returned by clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit machine to sleep for longer than ~2.15 seconds. Please note that this patch also changes "min_delta_ns" to be "u64" too and although this is unnecessary, it makes the patch simpler as it avoids to fixup all callers of clockevent_delta2ns(). [ tglx: changed "unsigned long long" to u64 as we use this data type through out the time code ] Signed-off-by: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2009-08-18 17:45:11 +00:00
u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
{
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds In the dynamic tick code, "max_delta_ns" (member of the "clock_event_device" structure) represents the maximum sleep time that can occur between timer events in nanoseconds. The variable, "max_delta_ns", is defined as an unsigned long which is a 32-bit integer for 32-bit machines and a 64-bit integer for 64-bit machines (if -m64 option is used for gcc). The value of max_delta_ns is set by calling the function "clockevent_delta2ns()" which returns a maximum value of LONG_MAX. For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in nanoseconds this equates to ~2.15 seconds. Hence, the maximum sleep time for a 32-bit machine is ~2.15 seconds, where as for a 64-bit machine it will be many years. This patch changes the type of max_delta_ns to be "u64" instead of "unsigned long" so that this variable is a 64-bit type for both 32-bit and 64-bit machines. It also changes the maximum value returned by clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit machine to sleep for longer than ~2.15 seconds. Please note that this patch also changes "min_delta_ns" to be "u64" too and although this is unnecessary, it makes the patch simpler as it avoids to fixup all callers of clockevent_delta2ns(). [ tglx: changed "unsigned long long" to u64 as we use this data type through out the time code ] Signed-off-by: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2009-08-18 17:45:11 +00:00
u64 clc = (u64) latch << evt->shift;
if (unlikely(!evt->mult)) {
evt->mult = 1;
WARN_ON(1);
}
do_div(clc, evt->mult);
if (clc < 1000)
clc = 1000;
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds In the dynamic tick code, "max_delta_ns" (member of the "clock_event_device" structure) represents the maximum sleep time that can occur between timer events in nanoseconds. The variable, "max_delta_ns", is defined as an unsigned long which is a 32-bit integer for 32-bit machines and a 64-bit integer for 64-bit machines (if -m64 option is used for gcc). The value of max_delta_ns is set by calling the function "clockevent_delta2ns()" which returns a maximum value of LONG_MAX. For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in nanoseconds this equates to ~2.15 seconds. Hence, the maximum sleep time for a 32-bit machine is ~2.15 seconds, where as for a 64-bit machine it will be many years. This patch changes the type of max_delta_ns to be "u64" instead of "unsigned long" so that this variable is a 64-bit type for both 32-bit and 64-bit machines. It also changes the maximum value returned by clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit machine to sleep for longer than ~2.15 seconds. Please note that this patch also changes "min_delta_ns" to be "u64" too and although this is unnecessary, it makes the patch simpler as it avoids to fixup all callers of clockevent_delta2ns(). [ tglx: changed "unsigned long long" to u64 as we use this data type through out the time code ] Signed-off-by: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2009-08-18 17:45:11 +00:00
if (clc > KTIME_MAX)
clc = KTIME_MAX;
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds In the dynamic tick code, "max_delta_ns" (member of the "clock_event_device" structure) represents the maximum sleep time that can occur between timer events in nanoseconds. The variable, "max_delta_ns", is defined as an unsigned long which is a 32-bit integer for 32-bit machines and a 64-bit integer for 64-bit machines (if -m64 option is used for gcc). The value of max_delta_ns is set by calling the function "clockevent_delta2ns()" which returns a maximum value of LONG_MAX. For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in nanoseconds this equates to ~2.15 seconds. Hence, the maximum sleep time for a 32-bit machine is ~2.15 seconds, where as for a 64-bit machine it will be many years. This patch changes the type of max_delta_ns to be "u64" instead of "unsigned long" so that this variable is a 64-bit type for both 32-bit and 64-bit machines. It also changes the maximum value returned by clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit machine to sleep for longer than ~2.15 seconds. Please note that this patch also changes "min_delta_ns" to be "u64" too and although this is unnecessary, it makes the patch simpler as it avoids to fixup all callers of clockevent_delta2ns(). [ tglx: changed "unsigned long long" to u64 as we use this data type through out the time code ] Signed-off-by: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2009-08-18 17:45:11 +00:00
return clc;
}
EXPORT_SYMBOL_GPL(clockevent_delta2ns);
/**
* clockevents_set_mode - set the operating mode of a clock event device
* @dev: device to modify
* @mode: new mode
*
* Must be called with interrupts disabled !
*/
void clockevents_set_mode(struct clock_event_device *dev,
enum clock_event_mode mode)
{
if (dev->mode != mode) {
dev->set_mode(mode, dev);
dev->mode = mode;
/*
* A nsec2cyc multiplicator of 0 is invalid and we'd crash
* on it, so fix it up and emit a warning:
*/
if (mode == CLOCK_EVT_MODE_ONESHOT) {
if (unlikely(!dev->mult)) {
dev->mult = 1;
WARN_ON(1);
}
}
}
}
/**
* clockevents_shutdown - shutdown the device and clear next_event
* @dev: device to shutdown
*/
void clockevents_shutdown(struct clock_event_device *dev)
{
clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
dev->next_event.tv64 = KTIME_MAX;
}
/**
* clockevents_program_event - Reprogram the clock event device.
* @expires: absolute expiry time (monotonic clock)
*
* Returns 0 on success, -ETIME when the event is in the past.
*/
int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
ktime_t now)
{
unsigned long long clc;
int64_t delta;
if (unlikely(expires.tv64 < 0)) {
WARN_ON_ONCE(1);
return -ETIME;
}
delta = ktime_to_ns(ktime_sub(expires, now));
if (delta <= 0)
return -ETIME;
dev->next_event = expires;
if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
return 0;
if (delta > dev->max_delta_ns)
delta = dev->max_delta_ns;
if (delta < dev->min_delta_ns)
delta = dev->min_delta_ns;
clc = delta * dev->mult;
clc >>= dev->shift;
return dev->set_next_event((unsigned long) clc, dev);
}
/**
* clockevents_register_notifier - register a clock events change listener
*/
int clockevents_register_notifier(struct notifier_block *nb)
{
2009-08-17 21:34:59 +00:00
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&clockevents_lock, flags);
ret = raw_notifier_chain_register(&clockevents_chain, nb);
raw_spin_unlock_irqrestore(&clockevents_lock, flags);
return ret;
}
/*
* Notify about a clock event change. Called with clockevents_lock
* held.
*/
static void clockevents_do_notify(unsigned long reason, void *dev)
{
raw_notifier_call_chain(&clockevents_chain, reason, dev);
}
/*
* Called after a notify add to make devices available which were
* released from the notifier call.
*/
static void clockevents_notify_released(void)
{
struct clock_event_device *dev;
while (!list_empty(&clockevents_released)) {
dev = list_entry(clockevents_released.next,
struct clock_event_device, list);
list_del(&dev->list);
list_add(&dev->list, &clockevent_devices);
clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev);
}
}
/**
* clockevents_register_device - register a clock event device
* @dev: device to register
*/
void clockevents_register_device(struct clock_event_device *dev)
{
2009-08-17 21:34:59 +00:00
unsigned long flags;
BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
BUG_ON(!dev->cpumask);
raw_spin_lock_irqsave(&clockevents_lock, flags);
list_add(&dev->list, &clockevent_devices);
clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev);
clockevents_notify_released();
raw_spin_unlock_irqrestore(&clockevents_lock, flags);
}
EXPORT_SYMBOL_GPL(clockevents_register_device);
/*
* Noop handler when we shut down an event device
*/
void clockevents_handle_noop(struct clock_event_device *dev)
{
}
/**
* clockevents_exchange_device - release and request clock devices
* @old: device to release (can be NULL)
* @new: device to request (can be NULL)
*
* Called from the notifier chain. clockevents_lock is held already
*/
void clockevents_exchange_device(struct clock_event_device *old,
struct clock_event_device *new)
{
unsigned long flags;
local_irq_save(flags);
/*
* Caller releases a clock event device. We queue it into the
* released list and do a notify add later.
*/
if (old) {
clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
list_del(&old->list);
list_add(&old->list, &clockevents_released);
}
if (new) {
BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
clockevents_shutdown(new);
}
local_irq_restore(flags);
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS
/**
* clockevents_notify - notification about relevant events
*/
void clockevents_notify(unsigned long reason, void *arg)
{
struct clock_event_device *dev, *tmp;
2009-08-17 21:34:59 +00:00
unsigned long flags;
int cpu;
raw_spin_lock_irqsave(&clockevents_lock, flags);
clockevents_do_notify(reason, arg);
switch (reason) {
case CLOCK_EVT_NOTIFY_CPU_DEAD:
/*
* Unregister the clock event devices which were
* released from the users in the notify chain.
*/
list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
list_del(&dev->list);
/*
* Now check whether the CPU has left unused per cpu devices
*/
cpu = *((int *)arg);
list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
if (cpumask_test_cpu(cpu, dev->cpumask) &&
cpumask_weight(dev->cpumask) == 1) {
BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
list_del(&dev->list);
}
}
break;
default:
break;
}
raw_spin_unlock_irqrestore(&clockevents_lock, flags);
}
EXPORT_SYMBOL_GPL(clockevents_notify);
#endif