linux/drivers/bluetooth/btintel.c

578 lines
13 KiB
C
Raw Normal View History

/*
*
* Bluetooth support for Intel devices
*
* Copyright (C) 2015 Intel Corporation
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/firmware.h>
Bluetooth: btintel: Add iBT register access over HCI support Add regmap ibt to support Intel Bluetooth silicon register access over HCI. Intel BT/FM combo chip allows to read/write some registers (e.g. FM registers) via its HCI interface. Read/Write operations are performed via a HCI transaction composed of a HCI command (host->controller) followed by a HCI command complete event (controller->host). Read/Write Command opcodes can be specified to the regmap init function. We define data formats which are intel/vendor specific. Register Read/Write HCI command payload (Host): Field: | REG ADDR | MODE | DATA_LEN | DATA... | size: | 32b | 8b | 8b | 8b* | Register Read HCI command complete event payload (Controller): Field: | CMD STATUS | REG ADDR | DATA... | size: | 8b | 32b | 8b* | Register Write HCI command complete event payload (Controller): Field: | CMD_STATUS | size: | 8b | Since this payload is HCI encapsulated, Little Endian byte order is used. Write/Read Example: If we write 0x0000002a at address 0x00008c04, with opcode_write 0xfc5d, The resulting transaction is (btmon trace): < HCI Command (0x3f|0x005d) plen 10 [hci0] 04 8c 00 00 02 04 2a 00 00 00 > HCI Event (0x0e) plen 4 Unknown (0x3f|0x005d) ncmd 1 00 Then, if we read the same register with opcode_read 0xfc5e: < HCI Command (0x3f|0x005e) plen 6 [hci0] 04 8c 00 00 02 04 > HCI Event (0x0e) plen 12 [hci0] Unknown (0x3f|0x005e) ncmd 1 00 04 8c 00 00 2a 00 00 00 Signed-off-by: Loic Poulain <loic.poulain@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-10-01 18:16:21 +02:00
#include <linux/regmap.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "btintel.h"
#define VERSION "0.1"
#define BDADDR_INTEL (&(bdaddr_t) {{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
int btintel_check_bdaddr(struct hci_dev *hdev)
{
struct hci_rp_read_bd_addr *bda;
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
BT_ERR("%s: Reading Intel device address failed (%d)",
hdev->name, err);
return err;
}
if (skb->len != sizeof(*bda)) {
BT_ERR("%s: Intel device address length mismatch", hdev->name);
kfree_skb(skb);
return -EIO;
}
bda = (struct hci_rp_read_bd_addr *)skb->data;
/* For some Intel based controllers, the default Bluetooth device
* address 00:03:19:9E:8B:00 can be found. These controllers are
* fully operational, but have the danger of duplicate addresses
* and that in turn can cause problems with Bluetooth operation.
*/
if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
BT_ERR("%s: Found Intel default device address (%pMR)",
hdev->name, &bda->bdaddr);
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
int btintel_enter_mfg(struct hci_dev *hdev)
{
const u8 param[] = { 0x01, 0x00 };
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_enter_mfg);
int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
{
u8 param[] = { 0x00, 0x00 };
struct sk_buff *skb;
/* The 2nd command parameter specifies the manufacturing exit method:
* 0x00: Just disable the manufacturing mode (0x00).
* 0x01: Disable manufacturing mode and reset with patches deactivated.
* 0x02: Disable manufacturing mode and reset with patches activated.
*/
if (reset)
param[1] |= patched ? 0x02 : 0x01;
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_exit_mfg);
int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
{
struct sk_buff *skb;
int err;
skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
BT_ERR("%s: Changing Intel device address failed (%d)",
hdev->name, err);
return err;
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
int btintel_set_diag(struct hci_dev *hdev, bool enable)
{
struct sk_buff *skb;
u8 param[3];
int err;
if (enable) {
param[0] = 0x03;
param[1] = 0x03;
param[2] = 0x03;
} else {
param[0] = 0x00;
param[1] = 0x00;
param[2] = 0x00;
}
skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
if (err == -ENODATA)
goto done;
BT_ERR("%s: Changing Intel diagnostic mode failed (%d)",
hdev->name, err);
return err;
}
kfree_skb(skb);
done:
btintel_set_event_mask(hdev, enable);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_diag);
int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_diag(hdev, enable);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
EXPORT_SYMBOL_GPL(btintel_set_diag_mfg);
void btintel_hw_error(struct hci_dev *hdev, u8 code)
{
struct sk_buff *skb;
u8 type = 0x00;
BT_ERR("%s: Hardware error 0x%2.2x", hdev->name, code);
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s: Reset after hardware error failed (%ld)",
hdev->name, PTR_ERR(skb));
return;
}
kfree_skb(skb);
skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("%s: Retrieving Intel exception info failed (%ld)",
hdev->name, PTR_ERR(skb));
return;
}
if (skb->len != 13) {
BT_ERR("%s: Exception info size mismatch", hdev->name);
kfree_skb(skb);
return;
}
BT_ERR("%s: Exception info %s", hdev->name, (char *)(skb->data + 1));
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(btintel_hw_error);
void btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
{
const char *variant;
switch (ver->fw_variant) {
case 0x06:
variant = "Bootloader";
break;
case 0x23:
variant = "Firmware";
break;
default:
return;
}
BT_INFO("%s: %s revision %u.%u build %u week %u %u", hdev->name,
variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
ver->fw_build_num, ver->fw_build_ww, 2000 + ver->fw_build_yy);
}
EXPORT_SYMBOL_GPL(btintel_version_info);
int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
const void *param)
{
while (plen > 0) {
struct sk_buff *skb;
u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
cmd_param[0] = fragment_type;
memcpy(cmd_param + 1, param, fragment_len);
skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
cmd_param, HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
plen -= fragment_len;
param += fragment_len;
}
return 0;
}
EXPORT_SYMBOL_GPL(btintel_secure_send);
int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
{
const struct firmware *fw;
struct sk_buff *skb;
const u8 *fw_ptr;
int err;
err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
ddc_name, err);
return err;
}
bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
fw_ptr = fw->data;
/* DDC file contains one or more DDC structure which has
* Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
*/
while (fw->size > fw_ptr - fw->data) {
u8 cmd_plen = fw_ptr[0] + sizeof(u8);
skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
PTR_ERR(skb));
release_firmware(fw);
return PTR_ERR(skb);
}
fw_ptr += cmd_plen;
kfree_skb(skb);
}
release_firmware(fw);
bt_dev_info(hdev, "Applying Intel DDC parameters completed");
return 0;
}
EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
{
u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
struct sk_buff *skb;
int err;
if (debug)
mask[1] |= 0x62;
skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
BT_ERR("%s: Setting Intel event mask failed (%d)",
hdev->name, err);
return err;
}
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_set_event_mask);
int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
{
int err, ret;
err = btintel_enter_mfg(hdev);
if (err)
return err;
ret = btintel_set_event_mask(hdev, debug);
err = btintel_exit_mfg(hdev, false, false);
if (err)
return err;
return ret;
}
EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*ver)) {
bt_dev_err(hdev, "Intel version event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
memcpy(ver, skb->data, sizeof(*ver));
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(btintel_read_version);
Bluetooth: btintel: Add iBT register access over HCI support Add regmap ibt to support Intel Bluetooth silicon register access over HCI. Intel BT/FM combo chip allows to read/write some registers (e.g. FM registers) via its HCI interface. Read/Write operations are performed via a HCI transaction composed of a HCI command (host->controller) followed by a HCI command complete event (controller->host). Read/Write Command opcodes can be specified to the regmap init function. We define data formats which are intel/vendor specific. Register Read/Write HCI command payload (Host): Field: | REG ADDR | MODE | DATA_LEN | DATA... | size: | 32b | 8b | 8b | 8b* | Register Read HCI command complete event payload (Controller): Field: | CMD STATUS | REG ADDR | DATA... | size: | 8b | 32b | 8b* | Register Write HCI command complete event payload (Controller): Field: | CMD_STATUS | size: | 8b | Since this payload is HCI encapsulated, Little Endian byte order is used. Write/Read Example: If we write 0x0000002a at address 0x00008c04, with opcode_write 0xfc5d, The resulting transaction is (btmon trace): < HCI Command (0x3f|0x005d) plen 10 [hci0] 04 8c 00 00 02 04 2a 00 00 00 > HCI Event (0x0e) plen 4 Unknown (0x3f|0x005d) ncmd 1 00 Then, if we read the same register with opcode_read 0xfc5e: < HCI Command (0x3f|0x005e) plen 6 [hci0] 04 8c 00 00 02 04 > HCI Event (0x0e) plen 12 [hci0] Unknown (0x3f|0x005e) ncmd 1 00 04 8c 00 00 2a 00 00 00 Signed-off-by: Loic Poulain <loic.poulain@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-10-01 18:16:21 +02:00
/* ------- REGMAP IBT SUPPORT ------- */
#define IBT_REG_MODE_8BIT 0x00
#define IBT_REG_MODE_16BIT 0x01
#define IBT_REG_MODE_32BIT 0x02
struct regmap_ibt_context {
struct hci_dev *hdev;
__u16 op_write;
__u16 op_read;
};
struct ibt_cp_reg_access {
__le32 addr;
__u8 mode;
__u8 len;
__u8 data[0];
} __packed;
struct ibt_rp_reg_access {
__u8 status;
__le32 addr;
__u8 data[0];
} __packed;
static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access cp;
struct ibt_rp_reg_access *rp;
struct sk_buff *skb;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
cp.mode = IBT_REG_MODE_8BIT;
break;
case 2:
cp.mode = IBT_REG_MODE_16BIT;
break;
case 4:
cp.mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
/* regmap provides a little-endian formatted addr */
cp.addr = *(__le32 *)addr;
cp.len = val_size;
bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
le32_to_cpu(cp.addr), err);
return err;
}
if (skb->len != sizeof(*rp) + val_size) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
le32_to_cpu(cp.addr));
err = -EINVAL;
goto done;
}
rp = (struct ibt_rp_reg_access *)skb->data;
if (rp->addr != cp.addr) {
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
le32_to_cpu(rp->addr));
err = -EINVAL;
goto done;
}
memcpy(val, rp->data, val_size);
done:
kfree_skb(skb);
return err;
}
static int regmap_ibt_gather_write(void *context,
const void *addr, size_t reg_size,
const void *val, size_t val_size)
{
struct regmap_ibt_context *ctx = context;
struct ibt_cp_reg_access *cp;
struct sk_buff *skb;
int plen = sizeof(*cp) + val_size;
u8 mode;
int err = 0;
if (reg_size != sizeof(__le32))
return -EINVAL;
switch (val_size) {
case 1:
mode = IBT_REG_MODE_8BIT;
break;
case 2:
mode = IBT_REG_MODE_16BIT;
break;
case 4:
mode = IBT_REG_MODE_32BIT;
break;
default:
return -EINVAL;
}
cp = kmalloc(plen, GFP_KERNEL);
if (!cp)
return -ENOMEM;
/* regmap provides a little-endian formatted addr/value */
cp->addr = *(__le32 *)addr;
cp->mode = mode;
cp->len = val_size;
memcpy(&cp->data, val, val_size);
bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
le32_to_cpu(cp->addr), err);
goto done;
}
kfree_skb(skb);
done:
kfree(cp);
return err;
}
static int regmap_ibt_write(void *context, const void *data, size_t count)
{
/* data contains register+value, since we only support 32bit addr,
* minimum data size is 4 bytes.
*/
if (WARN_ONCE(count < 4, "Invalid register access"))
return -EINVAL;
return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
}
static void regmap_ibt_free_context(void *context)
{
kfree(context);
}
static struct regmap_bus regmap_ibt = {
.read = regmap_ibt_read,
.write = regmap_ibt_write,
.gather_write = regmap_ibt_gather_write,
.free_context = regmap_ibt_free_context,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
};
/* Config is the same for all register regions */
static const struct regmap_config regmap_ibt_cfg = {
.name = "btintel_regmap",
.reg_bits = 32,
.val_bits = 32,
};
struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
u16 opcode_write)
{
struct regmap_ibt_context *ctx;
bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
opcode_write);
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ctx->op_read = opcode_read;
ctx->op_write = opcode_write;
ctx->hdev = hdev;
return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
}
EXPORT_SYMBOL_GPL(btintel_regmap_init);
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("intel/ibt-11-5.sfi");
MODULE_FIRMWARE("intel/ibt-11-5.ddc");