mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 12:05:31 +00:00
481 lines
19 KiB
Plaintext
481 lines
19 KiB
Plaintext
|
|
||
|
SN9C10x PC Camera Controllers
|
||
|
Driver for Linux
|
||
|
=============================
|
||
|
|
||
|
- Documentation -
|
||
|
|
||
|
|
||
|
Index
|
||
|
=====
|
||
|
1. Copyright
|
||
|
2. Disclaimer
|
||
|
3. License
|
||
|
4. Overview and features
|
||
|
5. Module dependencies
|
||
|
6. Module loading
|
||
|
7. Module parameters
|
||
|
8. Optional device control through "sysfs"
|
||
|
9. Supported devices
|
||
|
10. How to add plug-in's for new image sensors
|
||
|
11. Notes for V4L2 application developers
|
||
|
12. Video frame formats
|
||
|
13. Contact information
|
||
|
14. Credits
|
||
|
|
||
|
|
||
|
1. Copyright
|
||
|
============
|
||
|
Copyright (C) 2004-2005 by Luca Risolia <luca.risolia@studio.unibo.it>
|
||
|
|
||
|
|
||
|
2. Disclaimer
|
||
|
=============
|
||
|
SONiX is a trademark of SONiX Technology Company Limited, inc.
|
||
|
This software is not sponsored or developed by SONiX.
|
||
|
|
||
|
|
||
|
3. License
|
||
|
==========
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
|
||
|
|
||
|
4. Overview and features
|
||
|
========================
|
||
|
This driver attempts to support the video and audio streaming capabilities of
|
||
|
the devices mounting the SONiX SN9C101, SN9C102 and SN9C103 PC Camera
|
||
|
Controllers.
|
||
|
|
||
|
It's worth to note that SONiX has never collaborated with the author during the
|
||
|
development of this project, despite several requests for enough detailed
|
||
|
specifications of the register tables, compression engine and video data format
|
||
|
of the above chips. Nevertheless, these informations are no longer necessary,
|
||
|
becouse all the aspects related to these chips are known and have been
|
||
|
described in detail in this documentation.
|
||
|
|
||
|
The driver relies on the Video4Linux2 and USB core modules. It has been
|
||
|
designed to run properly on SMP systems as well.
|
||
|
|
||
|
The latest version of the SN9C10x driver can be found at the following URL:
|
||
|
http://www.linux-projects.org/
|
||
|
|
||
|
Some of the features of the driver are:
|
||
|
|
||
|
- full compliance with the Video4Linux2 API (see also "Notes for V4L2
|
||
|
application developers" paragraph);
|
||
|
- available mmap or read/poll methods for video streaming through isochronous
|
||
|
data transfers;
|
||
|
- automatic detection of image sensor;
|
||
|
- support for any window resolutions and optional panning within the maximum
|
||
|
pixel area of image sensor;
|
||
|
- image downscaling with arbitrary scaling factors from 1, 2 and 4 in both
|
||
|
directions (see "Notes for V4L2 application developers" paragraph);
|
||
|
- two different video formats for uncompressed or compressed data in low or
|
||
|
high compression quality (see also "Notes for V4L2 application developers"
|
||
|
and "Video frame formats" paragraphs);
|
||
|
- full support for the capabilities of many of the possible image sensors that
|
||
|
can be connected to the SN9C10x bridges, including, for istance, red, green,
|
||
|
blue and global gain adjustments and exposure (see "Supported devices"
|
||
|
paragraph for details);
|
||
|
- use of default color settings for sunlight conditions;
|
||
|
- dynamic I/O interface for both SN9C10x and image sensor control and
|
||
|
monitoring (see "Optional device control through 'sysfs'" paragraph);
|
||
|
- dynamic driver control thanks to various module parameters (see "Module
|
||
|
parameters" paragraph);
|
||
|
- up to 64 cameras can be handled at the same time; they can be connected and
|
||
|
disconnected from the host many times without turning off the computer, if
|
||
|
your system supports hotplugging;
|
||
|
- no known bugs.
|
||
|
|
||
|
|
||
|
5. Module dependencies
|
||
|
======================
|
||
|
For it to work properly, the driver needs kernel support for Video4Linux and
|
||
|
USB.
|
||
|
|
||
|
The following options of the kernel configuration file must be enabled and
|
||
|
corresponding modules must be compiled:
|
||
|
|
||
|
# Multimedia devices
|
||
|
#
|
||
|
CONFIG_VIDEO_DEV=m
|
||
|
|
||
|
# USB support
|
||
|
#
|
||
|
CONFIG_USB=m
|
||
|
|
||
|
In addition, depending on the hardware being used, the modules below are
|
||
|
necessary:
|
||
|
|
||
|
# USB Host Controller Drivers
|
||
|
#
|
||
|
CONFIG_USB_EHCI_HCD=m
|
||
|
CONFIG_USB_UHCI_HCD=m
|
||
|
CONFIG_USB_OHCI_HCD=m
|
||
|
|
||
|
And finally:
|
||
|
|
||
|
# USB Multimedia devices
|
||
|
#
|
||
|
CONFIG_USB_SN9C102=m
|
||
|
|
||
|
|
||
|
6. Module loading
|
||
|
=================
|
||
|
To use the driver, it is necessary to load the "sn9c102" module into memory
|
||
|
after every other module required: "videodev", "usbcore" and, depending on
|
||
|
the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
|
||
|
|
||
|
Loading can be done as shown below:
|
||
|
|
||
|
[root@localhost home]# modprobe sn9c102
|
||
|
|
||
|
At this point the devices should be recognized. You can invoke "dmesg" to
|
||
|
analyze kernel messages and verify that the loading process has gone well:
|
||
|
|
||
|
[user@localhost home]$ dmesg
|
||
|
|
||
|
|
||
|
7. Module parameters
|
||
|
====================
|
||
|
Module parameters are listed below:
|
||
|
-------------------------------------------------------------------------------
|
||
|
Name: video_nr
|
||
|
Type: int array (min = 0, max = 64)
|
||
|
Syntax: <-1|n[,...]>
|
||
|
Description: Specify V4L2 minor mode number:
|
||
|
-1 = use next available
|
||
|
n = use minor number n
|
||
|
You can specify up to 64 cameras this way.
|
||
|
For example:
|
||
|
video_nr=-1,2,-1 would assign minor number 2 to the second
|
||
|
recognized camera and use auto for the first one and for every
|
||
|
other camera.
|
||
|
Default: -1
|
||
|
-------------------------------------------------------------------------------
|
||
|
Name: force_munmap;
|
||
|
Type: bool array (min = 0, max = 64)
|
||
|
Syntax: <0|1[,...]>
|
||
|
Description: Force the application to unmap previously mapped buffer memory
|
||
|
before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
|
||
|
all the applications support this feature. This parameter is
|
||
|
specific for each detected camera.
|
||
|
0 = do not force memory unmapping"
|
||
|
1 = force memory unmapping (save memory)"
|
||
|
Default: 0
|
||
|
-------------------------------------------------------------------------------
|
||
|
Name: debug
|
||
|
Type: int
|
||
|
Syntax: <n>
|
||
|
Description: Debugging information level, from 0 to 3:
|
||
|
0 = none (use carefully)
|
||
|
1 = critical errors
|
||
|
2 = significant informations
|
||
|
3 = more verbose messages
|
||
|
Level 3 is useful for testing only, when only one device
|
||
|
is used. It also shows some more informations about the
|
||
|
hardware being detected. This parameter can be changed at
|
||
|
runtime thanks to the /sys filesystem.
|
||
|
Default: 2
|
||
|
-------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
8. Optional device control through "sysfs" [1]
|
||
|
==========================================
|
||
|
It is possible to read and write both the SN9C10x and the image sensor
|
||
|
registers by using the "sysfs" filesystem interface.
|
||
|
|
||
|
Every time a supported device is recognized, a write-only file named "green" is
|
||
|
created in the /sys/class/video4linux/videoX directory. You can set the green
|
||
|
channel's gain by writing the desired value to it. The value may range from 0
|
||
|
to 15 for SN9C101 or SN9C102 bridges, from 0 to 127 for SN9C103 bridges.
|
||
|
Similarly, only for SN9C103 controllers, blue and red gain control files are
|
||
|
available in the same directory, for which accepted values may range from 0 to
|
||
|
127.
|
||
|
|
||
|
There are other four entries in the directory above for each registered camera:
|
||
|
"reg", "val", "i2c_reg" and "i2c_val". The first two files control the
|
||
|
SN9C10x bridge, while the other two control the sensor chip. "reg" and
|
||
|
"i2c_reg" hold the values of the current register index where the following
|
||
|
reading/writing operations are addressed at through "val" and "i2c_val". Their
|
||
|
use is not intended for end-users. Note that "i2c_reg" and "i2c_val" will not
|
||
|
be created if the sensor does not actually support the standard I2C protocol or
|
||
|
its registers are not 8-bit long. Also, remember that you must be logged in as
|
||
|
root before writing to them.
|
||
|
|
||
|
As an example, suppose we were to want to read the value contained in the
|
||
|
register number 1 of the sensor register table - which is usually the product
|
||
|
identifier - of the camera registered as "/dev/video0":
|
||
|
|
||
|
[root@localhost #] cd /sys/class/video4linux/video0
|
||
|
[root@localhost #] echo 1 > i2c_reg
|
||
|
[root@localhost #] cat i2c_val
|
||
|
|
||
|
Note that "cat" will fail if sensor registers cannot be read.
|
||
|
|
||
|
Now let's set the green gain's register of the SN9C101 or SN9C102 chips to 2:
|
||
|
|
||
|
[root@localhost #] echo 0x11 > reg
|
||
|
[root@localhost #] echo 2 > val
|
||
|
|
||
|
Note that the SN9C10x always returns 0 when some of its registers are read.
|
||
|
To avoid race conditions, all the I/O accesses to the above files are
|
||
|
serialized.
|
||
|
|
||
|
The sysfs interface also provides the "frame_header" entry, which exports the
|
||
|
frame header of the most recent requested and captured video frame. The header
|
||
|
is 12-bytes long and is appended to every video frame by the SN9C10x
|
||
|
controllers. As an example, this additional information can be used by the user
|
||
|
application for implementing auto-exposure features via software.
|
||
|
|
||
|
The following table describes the frame header:
|
||
|
|
||
|
Byte # Value Description
|
||
|
------ ----- -----------
|
||
|
0x00 0xFF Frame synchronisation pattern.
|
||
|
0x01 0xFF Frame synchronisation pattern.
|
||
|
0x02 0x00 Frame synchronisation pattern.
|
||
|
0x03 0xC4 Frame synchronisation pattern.
|
||
|
0x04 0xC4 Frame synchronisation pattern.
|
||
|
0x05 0x96 Frame synchronisation pattern.
|
||
|
0x06 0x00 or 0x01 Unknown meaning. The exact value depends on the chip.
|
||
|
0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a
|
||
|
frame counter, u is unknown, zz is a size indicator
|
||
|
(00 = VGA, 01 = SIF, 10 = QSIF) and c stands for
|
||
|
"compression enabled" (1 = yes, 0 = no).
|
||
|
0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte).
|
||
|
0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte).
|
||
|
For a pure white image, this number will be equal to 500
|
||
|
times the area of the specified AE area. For images
|
||
|
that are not pure white, the value scales down according
|
||
|
to relative whiteness.
|
||
|
0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte).
|
||
|
0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte).
|
||
|
For a pure white image, this number will be equal to 125
|
||
|
times the area outside of the specified AE area. For
|
||
|
images that are not pure white, the value scales down
|
||
|
according to relative whiteness.
|
||
|
|
||
|
The AE area (sx, sy, ex, ey) in the active window can be set by programming the
|
||
|
registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C10x controllers, where one unit
|
||
|
corresponds to 32 pixels.
|
||
|
|
||
|
[1] The frame header has been documented by Bertrik Sikken.
|
||
|
|
||
|
|
||
|
9. Supported devices
|
||
|
====================
|
||
|
None of the names of the companies as well as their products will be mentioned
|
||
|
here. They have never collaborated with the author, so no advertising.
|
||
|
|
||
|
From the point of view of a driver, what unambiguously identify a device are
|
||
|
its vendor and product USB identifiers. Below is a list of known identifiers of
|
||
|
devices mounting the SN9C10x PC camera controllers:
|
||
|
|
||
|
Vendor ID Product ID
|
||
|
--------- ----------
|
||
|
0x0c45 0x6001
|
||
|
0x0c45 0x6005
|
||
|
0x0c45 0x6009
|
||
|
0x0c45 0x600d
|
||
|
0x0c45 0x6024
|
||
|
0x0c45 0x6025
|
||
|
0x0c45 0x6028
|
||
|
0x0c45 0x6029
|
||
|
0x0c45 0x602a
|
||
|
0x0c45 0x602b
|
||
|
0x0c45 0x602c
|
||
|
0x0c45 0x6030
|
||
|
0x0c45 0x6080
|
||
|
0x0c45 0x6082
|
||
|
0x0c45 0x6083
|
||
|
0x0c45 0x6088
|
||
|
0x0c45 0x608a
|
||
|
0x0c45 0x608b
|
||
|
0x0c45 0x608c
|
||
|
0x0c45 0x608e
|
||
|
0x0c45 0x608f
|
||
|
0x0c45 0x60a0
|
||
|
0x0c45 0x60a2
|
||
|
0x0c45 0x60a3
|
||
|
0x0c45 0x60a8
|
||
|
0x0c45 0x60aa
|
||
|
0x0c45 0x60ab
|
||
|
0x0c45 0x60ac
|
||
|
0x0c45 0x60ae
|
||
|
0x0c45 0x60af
|
||
|
0x0c45 0x60b0
|
||
|
0x0c45 0x60b2
|
||
|
0x0c45 0x60b3
|
||
|
0x0c45 0x60b8
|
||
|
0x0c45 0x60ba
|
||
|
0x0c45 0x60bb
|
||
|
0x0c45 0x60bc
|
||
|
0x0c45 0x60be
|
||
|
|
||
|
The list above does not imply that all those devices work with this driver: up
|
||
|
until now only the ones that mount the following image sensors are supported;
|
||
|
kernel messages will always tell you whether this is the case:
|
||
|
|
||
|
Model Manufacturer
|
||
|
----- ------------
|
||
|
HV7131D Hynix Semiconductor, Inc.
|
||
|
MI-0343 Micron Technology, Inc.
|
||
|
PAS106B PixArt Imaging, Inc.
|
||
|
PAS202BCB PixArt Imaging, Inc.
|
||
|
TAS5110C1B Taiwan Advanced Sensor Corporation
|
||
|
TAS5130D1B Taiwan Advanced Sensor Corporation
|
||
|
|
||
|
All the available control settings of each image sensor are supported through
|
||
|
the V4L2 interface.
|
||
|
|
||
|
Donations of new models for further testing and support would be much
|
||
|
appreciated. Non-available hardware will not be supported by the author of this
|
||
|
driver.
|
||
|
|
||
|
|
||
|
10. How to add plug-in's for new image sensors
|
||
|
==============================================
|
||
|
It should be easy to write plug-in's for new sensors by using the small API
|
||
|
that has been created for this purpose, which is present in "sn9c102_sensor.h"
|
||
|
(documentation is included there). As an example, have a look at the code in
|
||
|
"sn9c102_pas106b.c", which uses the mentioned interface.
|
||
|
|
||
|
At the moment, possible unsupported image sensors are: CIS-VF10 (VGA),
|
||
|
OV7620 (VGA), OV7630 (VGA).
|
||
|
|
||
|
|
||
|
11. Notes for V4L2 application developers
|
||
|
=========================================
|
||
|
This driver follows the V4L2 API specifications. In particular, it enforces two
|
||
|
rules:
|
||
|
|
||
|
- exactly one I/O method, either "mmap" or "read", is associated with each
|
||
|
file descriptor. Once it is selected, the application must close and reopen the
|
||
|
device to switch to the other I/O method;
|
||
|
|
||
|
- although it is not mandatory, previously mapped buffer memory should always
|
||
|
be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's.
|
||
|
The same number of buffers as before will be allocated again to match the size
|
||
|
of the new video frames, so you have to map the buffers again before any I/O
|
||
|
attempts on them.
|
||
|
|
||
|
Consistently with the hardware limits, this driver also supports image
|
||
|
downscaling with arbitrary scaling factors from 1, 2 and 4 in both directions.
|
||
|
However, the V4L2 API specifications don't correctly define how the scaling
|
||
|
factor can be chosen arbitrarily by the "negotiation" of the "source" and
|
||
|
"target" rectangles. To work around this flaw, we have added the convention
|
||
|
that, during the negotiation, whenever the "VIDIOC_S_CROP" ioctl is issued, the
|
||
|
scaling factor is restored to 1.
|
||
|
|
||
|
This driver supports two different video formats: the first one is the "8-bit
|
||
|
Sequential Bayer" format and can be used to obtain uncompressed video data
|
||
|
from the device through the current I/O method, while the second one provides
|
||
|
"raw" compressed video data (without frame headers not related to the
|
||
|
compressed data). The compression quality may vary from 0 to 1 and can be
|
||
|
selected or queried thanks to the VIDIOC_S_JPEGCOMP and VIDIOC_G_JPEGCOMP V4L2
|
||
|
ioctl's. For maximum flexibility, both the default active video format and the
|
||
|
default compression quality depend on how the image sensor being used is
|
||
|
initialized (as described in the documentation of the API for the image sensors
|
||
|
supplied by this driver).
|
||
|
|
||
|
|
||
|
12. Video frame formats [1]
|
||
|
=======================
|
||
|
The SN9C10x PC Camera Controllers can send images in two possible video
|
||
|
formats over the USB: either native "Sequential RGB Bayer" or Huffman
|
||
|
compressed. The latter is used to achieve high frame rates. The current video
|
||
|
format may be selected or queried from the user application by calling the
|
||
|
VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2 API
|
||
|
specifications.
|
||
|
|
||
|
The name "Sequential Bayer" indicates the organization of the red, green and
|
||
|
blue pixels in one video frame. Each pixel is associated with a 8-bit long
|
||
|
value and is disposed in memory according to the pattern shown below:
|
||
|
|
||
|
B[0] G[1] B[2] G[3] ... B[m-2] G[m-1]
|
||
|
G[m] R[m+1] G[m+2] R[m+2] ... G[2m-2] R[2m-1]
|
||
|
...
|
||
|
... B[(n-1)(m-2)] G[(n-1)(m-1)]
|
||
|
... G[n(m-2)] R[n(m-1)]
|
||
|
|
||
|
The above matrix also represents the sequential or progressive read-out mode of
|
||
|
the (n, m) Bayer color filter array used in many CCD/CMOS image sensors.
|
||
|
|
||
|
One compressed video frame consists of a bitstream that encodes for every R, G,
|
||
|
or B pixel the difference between the value of the pixel itself and some
|
||
|
reference pixel value. Pixels are organised in the Bayer pattern and the Bayer
|
||
|
sub-pixels are tracked individually and alternatingly. For example, in the
|
||
|
first line values for the B and G1 pixels are alternatingly encoded, while in
|
||
|
the second line values for the G2 and R pixels are alternatingly encoded.
|
||
|
|
||
|
The pixel reference value is calculated as follows:
|
||
|
- the 4 top left pixels are encoded in raw uncompressed 8-bit format;
|
||
|
- the value in the top two rows is the value of the pixel left of the current
|
||
|
pixel;
|
||
|
- the value in the left column is the value of the pixel above the current
|
||
|
pixel;
|
||
|
- for all other pixels, the reference value is the average of the value of the
|
||
|
pixel on the left and the value of the pixel above the current pixel;
|
||
|
- there is one code in the bitstream that specifies the value of a pixel
|
||
|
directly (in 4-bit resolution);
|
||
|
- pixel values need to be clamped inside the range [0..255] for proper
|
||
|
decoding.
|
||
|
|
||
|
The algorithm purely describes the conversion from compressed Bayer code used
|
||
|
in the SN9C10x chips to uncompressed Bayer. Additional steps are required to
|
||
|
convert this to a color image (i.e. a color interpolation algorithm).
|
||
|
|
||
|
The following Huffman codes have been found:
|
||
|
0: +0 (relative to reference pixel value)
|
||
|
100: +4
|
||
|
101: -4?
|
||
|
1110xxxx: set absolute value to xxxx.0000
|
||
|
1101: +11
|
||
|
1111: -11
|
||
|
11001: +20
|
||
|
110000: -20
|
||
|
110001: ??? - these codes are apparently not used
|
||
|
|
||
|
[1] The Huffman compression algorithm has been reverse-engineered and
|
||
|
documented by Bertrik Sikken.
|
||
|
|
||
|
|
||
|
13. Contact information
|
||
|
=======================
|
||
|
The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
|
||
|
|
||
|
GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is
|
||
|
'FCE635A4'; the public 1024-bit key should be available at any keyserver;
|
||
|
the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
|
||
|
|
||
|
|
||
|
14. Credits
|
||
|
===========
|
||
|
Many thanks to following persons for their contribute (listed in alphabetical
|
||
|
order):
|
||
|
|
||
|
- Luca Capello for the donation of a webcam;
|
||
|
- Joao Rodrigo Fuzaro, Joao Limirio, Claudio Filho and Caio Begotti for the
|
||
|
donation of a webcam;
|
||
|
- Carlos Eduardo Medaglia Dyonisio, who added the support for the PAS202BCB
|
||
|
image sensor;
|
||
|
- Stefano Mozzi, who donated 45 EU;
|
||
|
- Bertrik Sikken, who reverse-engineered and documented the Huffman compression
|
||
|
algorithm used in the SN9C10x controllers and implemented the first decoder;
|
||
|
- Mizuno Takafumi for the donation of a webcam;
|
||
|
- An "anonymous" donator (who didn't want his name to be revealed) for the
|
||
|
donation of a webcam.
|