linux/crypto/testmgr.c

2815 lines
59 KiB
C
Raw Normal View History

/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/hash.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <crypto/rng.h>
#include "internal.h"
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 32
#define IDX2 32400
#define IDX3 1
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct tcrypt_result {
struct completion completion;
int err;
};
struct aead_test_suite {
struct {
struct aead_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct cipher_test_suite {
struct {
struct cipher_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct comp_test_suite {
struct {
struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct pcomp_test_suite {
struct {
struct pcomp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
struct cprng_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct pcomp_test_suite pcomp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
} suite;
};
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static void tcrypt_complete(struct crypto_async_request *req, int err)
{
struct tcrypt_result *res = req->data;
if (err == -EINPROGRESS)
return;
res->err = err;
complete(&res->completion);
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (void *)__get_free_page(GFP_KERNEL);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_page((unsigned long)buf[i]);
return -ENOMEM;
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_page((unsigned long)buf[i]);
}
static int do_one_async_hash_op(struct ahash_request *req,
struct tcrypt_result *tr,
int ret)
{
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret = wait_for_completion_interruptible(&tr->completion);
if (!ret)
ret = tr->err;
INIT_COMPLETION(tr->completion);
}
return ret;
}
static int test_hash(struct crypto_ahash *tfm, struct hash_testvec *template,
unsigned int tcount, bool use_digest)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char result[64];
struct ahash_request *req;
struct tcrypt_result tresult;
void *hash_buff;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
init_completion(&tresult.completion);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: hash: Failed to allocate request for "
"%s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &tresult);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
memset(result, 0, 64);
hash_buff = xbuf[0];
memcpy(hash_buff, template[i].plaintext, template[i].psize);
sg_init_one(&sg[0], hash_buff, template[i].psize);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
ret = crypto_ahash_setkey(tfm, template[i].key,
template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey failed on "
"test %d for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
if (use_digest) {
ret = do_one_async_hash_op(req, &tresult,
crypto_ahash_digest(req));
if (ret) {
pr_err("alg: hash: digest failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
} else {
ret = do_one_async_hash_op(req, &tresult,
crypto_ahash_init(req));
if (ret) {
pr_err("alt: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = do_one_async_hash_op(req, &tresult,
crypto_ahash_update(req));
if (ret) {
pr_err("alt: hash: update failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = do_one_async_hash_op(req, &tresult,
crypto_ahash_final(req));
if (ret) {
pr_err("alt: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np) {
j++;
memset(result, 0, 64);
temp = 0;
sg_init_table(sg, template[i].np);
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].plaintext + temp,
template[i].tap[k]),
template[i].tap[k]);
temp += template[i].tap[k];
}
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
ret = crypto_ahash_setkey(tfm, template[i].key,
template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey "
"failed on chunking test %d "
"for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result,
template[i].psize);
ret = crypto_ahash_digest(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
ret = wait_for_completion_interruptible(
&tresult.completion);
if (!ret && !(ret = tresult.err)) {
INIT_COMPLETION(tresult.completion);
break;
}
/* fall through */
default:
printk(KERN_ERR "alg: hash: digest failed "
"on chunking test %d for %s: "
"ret=%d\n", j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Chunking test %d "
"failed for %s\n", j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
}
ret = 0;
out:
ahash_request_free(req);
out_noreq:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_aead(struct crypto_aead *tfm, int enc,
struct aead_testvec *template, unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
unsigned int i, j, k, n, temp;
int ret = -ENOMEM;
char *q;
char *key;
struct aead_request *req;
struct scatterlist sg[8];
struct scatterlist asg[8];
const char *e;
struct tcrypt_result result;
unsigned int authsize;
void *input;
void *assoc;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
char *axbuf[XBUFSIZE];
if (testmgr_alloc_buf(xbuf))
goto out_noxbuf;
if (testmgr_alloc_buf(axbuf))
goto out_noaxbuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: aead: Failed to allocate request for "
"%s\n", algo);
goto out;
}
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
for (i = 0, j = 0; i < tcount; i++) {
if (!template[i].np) {
j++;
/* some tepmplates have no input data but they will
* touch input
*/
input = xbuf[0];
assoc = axbuf[0];
ret = -EINVAL;
if (WARN_ON(template[i].ilen > PAGE_SIZE ||
template[i].alen > PAGE_SIZE))
goto out;
memcpy(input, template[i].input, template[i].ilen);
memcpy(assoc, template[i].assoc, template[i].alen);
if (template[i].iv)
memcpy(iv, template[i].iv, MAX_IVLEN);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(
tfm, CRYPTO_TFM_REQ_WEAK_KEY);
key = template[i].key;
ret = crypto_aead_setkey(tfm, key,
template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: aead: setkey failed on "
"test %d for %s: flags=%x\n", j, algo,
crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
printk(KERN_ERR "alg: aead: Failed to set "
"authsize to %u on test %d for %s\n",
authsize, j, algo);
goto out;
}
sg_init_one(&sg[0], input,
template[i].ilen + (enc ? authsize : 0));
sg_init_one(&asg[0], assoc, template[i].alen);
aead_request_set_crypt(req, sg, sg,
template[i].ilen, iv);
aead_request_set_assoc(req, asg, template[i].alen);
ret = enc ?
crypto_aead_encrypt(req) :
crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
printk(KERN_ERR "alg: aead: %s failed "
"on test %d for %s: ret was 0, "
"expected -EBADMSG\n",
e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
ret = wait_for_completion_interruptible(
&result.completion);
if (!ret && !(ret = result.err)) {
INIT_COMPLETION(result.completion);
break;
}
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
printk(KERN_ERR "alg: aead: %s failed on test "
"%d for %s: ret=%d\n", e, j, algo, -ret);
goto out;
}
q = input;
if (memcmp(q, template[i].result, template[i].rlen)) {
printk(KERN_ERR "alg: aead: Test %d failed on "
"%s for %s\n", j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
}
for (i = 0, j = 0; i < tcount; i++) {
if (template[i].np) {
j++;
if (template[i].iv)
memcpy(iv, template[i].iv, MAX_IVLEN);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(
tfm, CRYPTO_TFM_REQ_WEAK_KEY);
key = template[i].key;
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: aead: setkey failed on "
"chunk test %d for %s: flags=%x\n", j,
algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = -EINVAL;
sg_init_table(sg, template[i].np);
for (k = 0, temp = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp,
template[i].tap[k]);
n = template[i].tap[k];
if (k == template[i].np - 1 && enc)
n += authsize;
if (offset_in_page(q) + n < PAGE_SIZE)
q[n] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
temp += template[i].tap[k];
}
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
printk(KERN_ERR "alg: aead: Failed to set "
"authsize to %u on chunk test %d for "
"%s\n", authsize, j, algo);
goto out;
}
if (enc) {
if (WARN_ON(sg[k - 1].offset +
sg[k - 1].length + authsize >
PAGE_SIZE)) {
ret = -EINVAL;
goto out;
}
sg[k - 1].length += authsize;
}
sg_init_table(asg, template[i].anp);
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].anp; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].atap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&asg[k],
memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].assoc + temp,
template[i].atap[k]),
template[i].atap[k]);
temp += template[i].atap[k];
}
aead_request_set_crypt(req, sg, sg,
template[i].ilen,
iv);
aead_request_set_assoc(req, asg, template[i].alen);
ret = enc ?
crypto_aead_encrypt(req) :
crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
printk(KERN_ERR "alg: aead: %s failed "
"on chunk test %d for %s: ret "
"was 0, expected -EBADMSG\n",
e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
ret = wait_for_completion_interruptible(
&result.completion);
if (!ret && !(ret = result.err)) {
INIT_COMPLETION(result.completion);
break;
}
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
printk(KERN_ERR "alg: aead: %s failed on "
"chunk test %d for %s: ret=%d\n", e, j,
algo, -ret);
goto out;
}
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].np; k++) {
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
n = template[i].tap[k];
if (k == template[i].np - 1)
n += enc ? authsize : -authsize;
if (memcmp(q, template[i].result + temp, n)) {
printk(KERN_ERR "alg: aead: Chunk "
"test %d failed on %s at page "
"%u for %s\n", j, e, k, algo);
hexdump(q, n);
goto out;
}
q += n;
if (k == template[i].np - 1 && !enc) {
if (memcmp(q, template[i].input +
temp + n, authsize))
n = authsize;
else
n = 0;
} else {
for (n = 0; offset_in_page(q + n) &&
q[n]; n++)
;
}
if (n) {
printk(KERN_ERR "alg: aead: Result "
"buffer corruption in chunk "
"test %d on %s at page %u for "
"%s: %u bytes:\n", j, e, k,
algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
}
ret = 0;
out:
aead_request_free(req);
testmgr_free_buf(axbuf);
out_noaxbuf:
testmgr_free_buf(xbuf);
out_noxbuf:
return ret;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, template[i].input, template[i].ilen);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: cipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_cipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
for (k = 0; k < template[i].ilen;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher(struct crypto_ablkcipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_ablkcipher_tfm(tfm));
unsigned int i, j, k, n, temp;
char *q;
struct ablkcipher_request *req;
struct scatterlist sg[8];
const char *e;
struct tcrypt_result result;
void *data;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = ablkcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: skcipher: Failed to allocate request "
"for %s\n", algo);
goto out;
}
ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].iv)
memcpy(iv, template[i].iv, MAX_IVLEN);
else
memset(iv, 0, MAX_IVLEN);
if (!(template[i].np)) {
j++;
ret = -EINVAL;
if (WARN_ON(template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, template[i].input, template[i].ilen);
crypto_ablkcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_ablkcipher_set_flags(
tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_ablkcipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: skcipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_ablkcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
sg_init_one(&sg[0], data, template[i].ilen);
ablkcipher_request_set_crypt(req, sg, sg,
template[i].ilen, iv);
ret = enc ?
crypto_ablkcipher_encrypt(req) :
crypto_ablkcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
ret = wait_for_completion_interruptible(
&result.completion);
if (!ret && !((ret = result.err))) {
INIT_COMPLETION(result.completion);
break;
}
/* fall through */
default:
printk(KERN_ERR "alg: skcipher: %s failed on "
"test %d for %s: ret=%d\n", e, j, algo,
-ret);
goto out;
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
printk(KERN_ERR "alg: skcipher: Test %d "
"failed on %s for %s\n", j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
}
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].iv)
memcpy(iv, template[i].iv, MAX_IVLEN);
else
memset(iv, 0, MAX_IVLEN);
if (template[i].np) {
j++;
crypto_ablkcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_ablkcipher_set_flags(
tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_ablkcipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: skcipher: setkey failed "
"on chunk test %d for %s: flags=%x\n",
j, algo,
crypto_ablkcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
temp = 0;
ret = -EINVAL;
sg_init_table(sg, template[i].np);
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp,
template[i].tap[k]);
if (offset_in_page(q) + template[i].tap[k] <
PAGE_SIZE)
q[template[i].tap[k]] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
temp += template[i].tap[k];
}
ablkcipher_request_set_crypt(req, sg, sg,
template[i].ilen, iv);
ret = enc ?
crypto_ablkcipher_encrypt(req) :
crypto_ablkcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
ret = wait_for_completion_interruptible(
&result.completion);
if (!ret && !((ret = result.err))) {
INIT_COMPLETION(result.completion);
break;
}
/* fall through */
default:
printk(KERN_ERR "alg: skcipher: %s failed on "
"chunk test %d for %s: ret=%d\n", e, j,
algo, -ret);
goto out;
}
temp = 0;
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
if (memcmp(q, template[i].result + temp,
template[i].tap[k])) {
printk(KERN_ERR "alg: skcipher: Chunk "
"test %d failed on %s at page "
"%u for %s\n", j, e, k, algo);
hexdump(q, template[i].tap[k]);
goto out;
}
q += template[i].tap[k];
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
if (n) {
printk(KERN_ERR "alg: skcipher: "
"Result buffer corruption in "
"chunk test %d on %s at page "
"%u for %s: %u bytes:\n", j, e,
k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
}
ret = 0;
out:
ablkcipher_request_free(req);
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_comp(struct crypto_comp *tfm, struct comp_testvec *ctemplate,
struct comp_testvec *dtemplate, int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
unsigned int i;
char result[COMP_BUF_SIZE];
int ret;
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != ctemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, ctemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
return ret;
}
static int test_pcomp(struct crypto_pcomp *tfm,
struct pcomp_testvec *ctemplate,
struct pcomp_testvec *dtemplate, int ctcount,
int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_pcomp_tfm(tfm));
unsigned int i;
char result[COMP_BUF_SIZE];
int res;
for (i = 0; i < ctcount; i++) {
struct comp_request req;
unsigned int produced = 0;
res = crypto_compress_setup(tfm, ctemplate[i].params,
ctemplate[i].paramsize);
if (res) {
pr_err("alg: pcomp: compression setup failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
res = crypto_compress_init(tfm);
if (res) {
pr_err("alg: pcomp: compression init failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
memset(result, 0, sizeof(result));
req.next_in = ctemplate[i].input;
req.avail_in = ctemplate[i].inlen / 2;
req.next_out = result;
req.avail_out = ctemplate[i].outlen / 2;
res = crypto_compress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: compression update failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Add remaining input data */
req.avail_in += (ctemplate[i].inlen + 1) / 2;
res = crypto_compress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: compression update failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Provide remaining output space */
req.avail_out += COMP_BUF_SIZE - ctemplate[i].outlen / 2;
res = crypto_compress_final(tfm, &req);
if (res < 0) {
pr_err("alg: pcomp: compression final failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
produced += res;
if (COMP_BUF_SIZE - req.avail_out != ctemplate[i].outlen) {
pr_err("alg: comp: Compression test %d failed for %s: "
"output len = %d (expected %d)\n", i + 1, algo,
COMP_BUF_SIZE - req.avail_out,
ctemplate[i].outlen);
return -EINVAL;
}
if (produced != ctemplate[i].outlen) {
pr_err("alg: comp: Compression test %d failed for %s: "
"returned len = %u (expected %d)\n", i + 1,
algo, produced, ctemplate[i].outlen);
return -EINVAL;
}
if (memcmp(result, ctemplate[i].output, ctemplate[i].outlen)) {
pr_err("alg: pcomp: Compression test %d failed for "
"%s\n", i + 1, algo);
hexdump(result, ctemplate[i].outlen);
return -EINVAL;
}
}
for (i = 0; i < dtcount; i++) {
struct comp_request req;
unsigned int produced = 0;
res = crypto_decompress_setup(tfm, dtemplate[i].params,
dtemplate[i].paramsize);
if (res) {
pr_err("alg: pcomp: decompression setup failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
res = crypto_decompress_init(tfm);
if (res) {
pr_err("alg: pcomp: decompression init failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
memset(result, 0, sizeof(result));
req.next_in = dtemplate[i].input;
req.avail_in = dtemplate[i].inlen / 2;
req.next_out = result;
req.avail_out = dtemplate[i].outlen / 2;
res = crypto_decompress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression update failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Add remaining input data */
req.avail_in += (dtemplate[i].inlen + 1) / 2;
res = crypto_decompress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression update failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Provide remaining output space */
req.avail_out += COMP_BUF_SIZE - dtemplate[i].outlen / 2;
res = crypto_decompress_final(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression final failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
if (COMP_BUF_SIZE - req.avail_out != dtemplate[i].outlen) {
pr_err("alg: comp: Decompression test %d failed for "
"%s: output len = %d (expected %d)\n", i + 1,
algo, COMP_BUF_SIZE - req.avail_out,
dtemplate[i].outlen);
return -EINVAL;
}
if (produced != dtemplate[i].outlen) {
pr_err("alg: comp: Decompression test %d failed for "
"%s: returned len = %u (expected %d)\n", i + 1,
algo, produced, dtemplate[i].outlen);
return -EINVAL;
}
if (memcmp(result, dtemplate[i].output, dtemplate[i].outlen)) {
pr_err("alg: pcomp: Decompression test %d failed for "
"%s\n", i + 1, algo);
hexdump(result, dtemplate[i].outlen);
return -EINVAL;
}
}
return 0;
}
static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err != template[i].rlen) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d, got %d)\n", algo,
template[i].rlen, err);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_aead *tfm;
int err = 0;
tfm = crypto_alloc_aead(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.aead.enc.vecs) {
err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
desc->suite.aead.enc.count);
if (err)
goto out;
}
if (!err && desc->suite.aead.dec.vecs)
err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
desc->suite.aead.dec.count);
out:
crypto_free_aead(tfm);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_cipher *tfm;
int err = 0;
tfm = crypto_alloc_cipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_cipher(tfm);
return err;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_ablkcipher *tfm;
int err = 0;
tfm = crypto_alloc_ablkcipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: skcipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_ablkcipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *tfm;
int err;
tfm = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: comp: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_comp(tfm, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(tfm);
return err;
}
static int alg_test_pcomp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_pcomp *tfm;
int err;
tfm = crypto_alloc_pcomp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: pcomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_pcomp(tfm, desc->suite.pcomp.comp.vecs,
desc->suite.pcomp.decomp.vecs,
desc->suite.pcomp.comp.count,
desc->suite.pcomp.decomp.count);
crypto_free_pcomp(tfm);
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_ahash *tfm;
int err;
tfm = crypto_alloc_ahash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, true);
if (!err)
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, false);
crypto_free_ahash(tfm);
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
u32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
goto out;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
err = PTR_ERR(tfm);
goto out;
}
do {
struct {
struct shash_desc shash;
char ctx[crypto_shash_descsize(tfm)];
} sdesc;
sdesc.shash.tfm = tfm;
sdesc.shash.flags = 0;
*(u32 *)sdesc.ctx = le32_to_cpu(420553207);
err = crypto_shash_final(&sdesc.shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != ~420553207) {
printk(KERN_ERR "alg: crc32c: Test failed for %s: "
"%d\n", driver, val);
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
out:
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 16:26:25 +02:00
.alg = "__cbc-serpent-sse2",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
}, {
.alg = "__driver-cbc-aes-aesni",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 16:26:25 +02:00
}, {
.alg = "__driver-cbc-serpent-sse2",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
}, {
.alg = "__driver-ecb-aes-aesni",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 16:26:25 +02:00
}, {
.alg = "__driver-ecb-serpent-sse2",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
}, {
.alg = "__ghash-pclmulqdqni",
.test = alg_test_null,
.suite = {
.hash = {
.vecs = NULL,
.count = 0
}
}
}, {
.alg = "ansi_cprng",
.test = alg_test_cprng,
.fips_allowed = 1,
.suite = {
.cprng = {
.vecs = ansi_cprng_aes_tv_template,
.count = ANSI_CPRNG_AES_TEST_VECTORS
}
}
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_cbc_enc_tv_template,
.count = AES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_cbc_dec_tv_template,
.count = AES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_cbc_enc_tv_template,
.count = ANUBIS_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_cbc_dec_tv_template,
.count = ANUBIS_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_cbc_enc_tv_template,
.count = BF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_cbc_dec_tv_template,
.count = BF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_cbc_enc_tv_template,
.count = CAMELLIA_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_cbc_dec_tv_template,
.count = CAMELLIA_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_cbc_enc_tv_template,
.count = DES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_cbc_dec_tv_template,
.count = DES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_cbc_enc_tv_template,
.count = DES3_EDE_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_cbc_dec_tv_template,
.count = DES3_EDE_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_cbc_enc_tv_template,
.count = SERPENT_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_cbc_dec_tv_template,
.count = SERPENT_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_cbc_enc_tv_template,
.count = TF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_cbc_dec_tv_template,
.count = TF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ccm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_enc_tv_template,
.count = AES_CCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_dec_tv_template,
.count = AES_CCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crc32c_tv_template,
.count = CRC32C_TEST_VECTORS
}
}
}, {
.alg = "cryptd(__driver-ecb-aes-aesni)",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 16:26:25 +02:00
}, {
.alg = "cryptd(__driver-ecb-serpent-sse2)",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
}, {
.alg = "cryptd(__ghash-pclmulqdqni)",
.test = alg_test_null,
.suite = {
.hash = {
.vecs = NULL,
.count = 0
}
}
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_enc_tv_template,
.count = AES_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_dec_tv_template,
.count = AES_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_ctr_enc_tv_template,
.count = BF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_ctr_dec_tv_template,
.count = BF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_ctr_enc_tv_template,
.count = CAMELLIA_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_ctr_dec_tv_template,
.count = CAMELLIA_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_ctr_enc_tv_template,
.count = SERPENT_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_ctr_dec_tv_template,
.count = SERPENT_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_ctr_enc_tv_template,
.count = TF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_ctr_dec_tv_template,
.count = TF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cts_mode_enc_tv_template,
.count = CTS_MODE_ENC_TEST_VECTORS
},
.dec = {
.vecs = cts_mode_dec_tv_template,
.count = CTS_MODE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.suite = {
.comp = {
.comp = {
.vecs = deflate_comp_tv_template,
.count = DEFLATE_COMP_TEST_VECTORS
},
.decomp = {
.vecs = deflate_decomp_tv_template,
.count = DEFLATE_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(__aes-aesni)",
.test = alg_test_null,
.suite = {
.cipher = {
.enc = {
.vecs = NULL,
.count = 0
},
.dec = {
.vecs = NULL,
.count = 0
}
}
}
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_enc_tv_template,
.count = AES_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_dec_tv_template,
.count = AES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_enc_tv_template,
.count = ANUBIS_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_dec_tv_template,
.count = ANUBIS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(arc4)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = arc4_enc_tv_template,
.count = ARC4_ENC_TEST_VECTORS
},
.dec = {
.vecs = arc4_dec_tv_template,
.count = ARC4_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_enc_tv_template,
.count = BF_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_dec_tv_template,
.count = BF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_enc_tv_template,
.count = CAMELLIA_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_dec_tv_template,
.count = CAMELLIA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_enc_tv_template,
.count = CAST5_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_dec_tv_template,
.count = CAST5_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_enc_tv_template,
.count = CAST6_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_dec_tv_template,
.count = CAST6_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des_enc_tv_template,
.count = DES_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_dec_tv_template,
.count = DES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_enc_tv_template,
.count = DES3_EDE_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_dec_tv_template,
.count = DES3_EDE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = khazad_enc_tv_template,
.count = KHAZAD_ENC_TEST_VECTORS
},
.dec = {
.vecs = khazad_dec_tv_template,
.count = KHAZAD_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = seed_enc_tv_template,
.count = SEED_ENC_TEST_VECTORS
},
.dec = {
.vecs = seed_dec_tv_template,
.count = SEED_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_enc_tv_template,
.count = SERPENT_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_dec_tv_template,
.count = SERPENT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tea_enc_tv_template,
.count = TEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = tea_dec_tv_template,
.count = TEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tnepres)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tnepres_enc_tv_template,
.count = TNEPRES_ENC_TEST_VECTORS
},
.dec = {
.vecs = tnepres_dec_tv_template,
.count = TNEPRES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_enc_tv_template,
.count = TF_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_dec_tv_template,
.count = TF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xeta_enc_tv_template,
.count = XETA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xeta_dec_tv_template,
.count = XETA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xtea_enc_tv_template,
.count = XTEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xtea_dec_tv_template,
.count = XTEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "gcm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_enc_tv_template,
.count = AES_GCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_dec_tv_template,
.count = AES_GCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = ghash_tv_template,
.count = GHASH_TEST_VECTORS
}
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_md5_tv_template,
.count = HMAC_MD5_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd128)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd128_tv_template,
.count = HMAC_RMD128_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd160_tv_template,
.count = HMAC_RMD160_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha1_tv_template,
.count = HMAC_SHA1_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha224_tv_template,
.count = HMAC_SHA224_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha256_tv_template,
.count = HMAC_SHA256_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha384_tv_template,
.count = HMAC_SHA384_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha512_tv_template,
.count = HMAC_SHA512_TEST_VECTORS
}
}
}, {
.alg = "lrw(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = aes_lrw_enc_tv_template,
.count = AES_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_lrw_dec_tv_template,
.count = AES_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_lrw_enc_tv_template,
.count = CAMELLIA_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_lrw_dec_tv_template,
.count = CAMELLIA_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_lrw_enc_tv_template,
.count = SERPENT_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_lrw_dec_tv_template,
.count = SERPENT_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_lrw_enc_tv_template,
.count = TF_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_lrw_dec_tv_template,
.count = TF_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.suite = {
.comp = {
.comp = {
.vecs = lzo_comp_tv_template,
.count = LZO_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lzo_decomp_tv_template,
.count = LZO_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md4_tv_template,
.count = MD4_TEST_VECTORS
}
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md5_tv_template,
.count = MD5_TEST_VECTORS
}
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = michael_mic_tv_template,
.count = MICHAEL_MIC_TEST_VECTORS
}
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ofb_enc_tv_template,
.count = AES_OFB_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ofb_dec_tv_template,
.count = AES_OFB_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = fcrypt_pcbc_enc_tv_template,
.count = FCRYPT_ENC_TEST_VECTORS
},
.dec = {
.vecs = fcrypt_pcbc_dec_tv_template,
.count = FCRYPT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_rfc3686_enc_tv_template,
.count = AES_CTR_3686_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_rfc3686_dec_tv_template,
.count = AES_CTR_3686_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4106(gcm(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_rfc4106_enc_tv_template,
.count = AES_GCM_4106_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_rfc4106_dec_tv_template,
.count = AES_GCM_4106_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_rfc4309_enc_tv_template,
.count = AES_CCM_4309_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_rfc4309_dec_tv_template,
.count = AES_CCM_4309_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rmd128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd128_tv_template,
.count = RMD128_TEST_VECTORS
}
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd160_tv_template,
.count = RMD160_TEST_VECTORS
}
}
}, {
.alg = "rmd256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd256_tv_template,
.count = RMD256_TEST_VECTORS
}
}
}, {
.alg = "rmd320",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd320_tv_template,
.count = RMD320_TEST_VECTORS
}
}
}, {
.alg = "salsa20",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = salsa20_stream_enc_tv_template,
.count = SALSA20_STREAM_ENC_TEST_VECTORS
}
}
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha1_tv_template,
.count = SHA1_TEST_VECTORS
}
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha224_tv_template,
.count = SHA224_TEST_VECTORS
}
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha256_tv_template,
.count = SHA256_TEST_VECTORS
}
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha384_tv_template,
.count = SHA384_TEST_VECTORS
}
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha512_tv_template,
.count = SHA512_TEST_VECTORS
}
}
}, {
.alg = "tgr128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr128_tv_template,
.count = TGR128_TEST_VECTORS
}
}
}, {
.alg = "tgr160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr160_tv_template,
.count = TGR160_TEST_VECTORS
}
}
}, {
.alg = "tgr192",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr192_tv_template,
.count = TGR192_TEST_VECTORS
}
}
}, {
.alg = "vmac(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_vmac128_tv_template,
.count = VMAC_AES_TEST_VECTORS
}
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp256_tv_template,
.count = WP256_TEST_VECTORS
}
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp384_tv_template,
.count = WP384_TEST_VECTORS
}
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp512_tv_template,
.count = WP512_TEST_VECTORS
}
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_xcbc128_tv_template,
.count = XCBC_AES_TEST_VECTORS
}
}
}, {
.alg = "xts(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_xts_enc_tv_template,
.count = AES_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_xts_dec_tv_template,
.count = AES_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_xts_enc_tv_template,
.count = CAMELLIA_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_xts_dec_tv_template,
.count = CAMELLIA_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_xts_enc_tv_template,
.count = SERPENT_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_xts_dec_tv_template,
.count = SERPENT_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_xts_enc_tv_template,
.count = TF_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_xts_dec_tv_template,
.count = TF_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "zlib",
.test = alg_test_pcomp,
.suite = {
.pcomp = {
.comp = {
.vecs = zlib_comp_tv_template,
.count = ZLIB_COMP_TEST_VECTORS
},
.decomp = {
.vecs = zlib_decomp_tv_template,
.count = ZLIB_DECOMP_TEST_VECTORS
}
}
}
}
};
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
(j >= 0 && !alg_test_descs[j].fips_allowed)))
goto non_fips_alg;
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (fips_enabled && rc)
panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
if (fips_enabled && !rc)
printk(KERN_INFO "alg: self-tests for %s (%s) passed\n",
driver, alg);
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
return 0;
non_fips_alg:
return -EINVAL;
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);