linux/drivers/i2c/busses/i2c-cros-ec-tunnel.c

322 lines
7.8 KiB
C
Raw Normal View History

i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
/*
* Copyright (C) 2013 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Expose an I2C passthrough to the ChromeOS EC.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/mfd/cros_ec.h>
#include <linux/mfd/cros_ec_commands.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define I2C_MAX_RETRIES 3
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
/**
* struct ec_i2c_device - Driver data for I2C tunnel
*
* @dev: Device node
* @adap: I2C adapter
* @ec: Pointer to EC device
* @remote_bus: The EC bus number we tunnel to on the other side.
* @request_buf: Buffer for transmitting data; we expect most transfers to fit.
* @response_buf: Buffer for receiving data; we expect most transfers to fit.
*/
struct ec_i2c_device {
struct device *dev;
struct i2c_adapter adap;
struct cros_ec_device *ec;
u16 remote_bus;
u8 request_buf[256];
u8 response_buf[256];
};
/**
* ec_i2c_count_message - Count bytes needed for ec_i2c_construct_message
*
* @i2c_msgs: The i2c messages to read
* @num: The number of i2c messages.
*
* Returns the number of bytes the messages will take up.
*/
static int ec_i2c_count_message(const struct i2c_msg i2c_msgs[], int num)
{
int i;
int size;
size = sizeof(struct ec_params_i2c_passthru);
size += num * sizeof(struct ec_params_i2c_passthru_msg);
for (i = 0; i < num; i++)
if (!(i2c_msgs[i].flags & I2C_M_RD))
size += i2c_msgs[i].len;
return size;
}
/**
* ec_i2c_construct_message - construct a message to go to the EC
*
* This function effectively stuffs the standard i2c_msg format of Linux into
* a format that the EC understands.
*
* @buf: The buffer to fill. We assume that the buffer is big enough.
* @i2c_msgs: The i2c messages to read.
* @num: The number of i2c messages.
* @bus_num: The remote bus number we want to talk to.
*
* Returns 0 or a negative error number.
*/
static int ec_i2c_construct_message(u8 *buf, const struct i2c_msg i2c_msgs[],
int num, u16 bus_num)
{
struct ec_params_i2c_passthru *params;
u8 *out_data;
int i;
out_data = buf + sizeof(struct ec_params_i2c_passthru) +
num * sizeof(struct ec_params_i2c_passthru_msg);
params = (struct ec_params_i2c_passthru *)buf;
params->port = bus_num;
params->num_msgs = num;
for (i = 0; i < num; i++) {
const struct i2c_msg *i2c_msg = &i2c_msgs[i];
struct ec_params_i2c_passthru_msg *msg = &params->msg[i];
msg->len = i2c_msg->len;
msg->addr_flags = i2c_msg->addr;
if (i2c_msg->flags & I2C_M_TEN)
return -EINVAL;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
if (i2c_msg->flags & I2C_M_RD) {
msg->addr_flags |= EC_I2C_FLAG_READ;
} else {
memcpy(out_data, i2c_msg->buf, msg->len);
out_data += msg->len;
}
}
return 0;
}
/**
* ec_i2c_count_response - Count bytes needed for ec_i2c_parse_response
*
* @i2c_msgs: The i2c messages to to fill up.
* @num: The number of i2c messages expected.
*
* Returns the number of response bytes expeced.
*/
static int ec_i2c_count_response(struct i2c_msg i2c_msgs[], int num)
{
int size;
int i;
size = sizeof(struct ec_response_i2c_passthru);
for (i = 0; i < num; i++)
if (i2c_msgs[i].flags & I2C_M_RD)
size += i2c_msgs[i].len;
return size;
}
/**
* ec_i2c_parse_response - Parse a response from the EC
*
* We'll take the EC's response and copy it back into msgs.
*
* @buf: The buffer to parse.
* @i2c_msgs: The i2c messages to to fill up.
* @num: The number of i2c messages; will be modified to include the actual
* number received.
*
* Returns 0 or a negative error number.
*/
static int ec_i2c_parse_response(const u8 *buf, struct i2c_msg i2c_msgs[],
int *num)
{
const struct ec_response_i2c_passthru *resp;
const u8 *in_data;
int i;
in_data = buf + sizeof(struct ec_response_i2c_passthru);
resp = (const struct ec_response_i2c_passthru *)buf;
if (resp->i2c_status & EC_I2C_STATUS_TIMEOUT)
return -ETIMEDOUT;
else if (resp->i2c_status & EC_I2C_STATUS_ERROR)
return -EREMOTEIO;
/* Other side could send us back fewer messages, but not more */
if (resp->num_msgs > *num)
return -EPROTO;
*num = resp->num_msgs;
for (i = 0; i < *num; i++) {
struct i2c_msg *i2c_msg = &i2c_msgs[i];
if (i2c_msgs[i].flags & I2C_M_RD) {
memcpy(i2c_msg->buf, in_data, i2c_msg->len);
in_data += i2c_msg->len;
}
}
return 0;
}
static int ec_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg i2c_msgs[],
int num)
{
struct ec_i2c_device *bus = adap->algo_data;
struct device *dev = bus->dev;
const u16 bus_num = bus->remote_bus;
int request_len;
int response_len;
int alloc_size;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
int result;
struct cros_ec_command *msg;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
request_len = ec_i2c_count_message(i2c_msgs, num);
if (request_len < 0) {
dev_warn(dev, "Error constructing message %d\n", request_len);
return request_len;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
}
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
response_len = ec_i2c_count_response(i2c_msgs, num);
if (response_len < 0) {
/* Unexpected; no errors should come when NULL response */
dev_warn(dev, "Error preparing response %d\n", response_len);
return response_len;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
}
alloc_size = max(request_len, response_len);
msg = kmalloc(sizeof(*msg) + alloc_size, GFP_KERNEL);
if (!msg)
return -ENOMEM;
result = ec_i2c_construct_message(msg->data, i2c_msgs, num, bus_num);
if (result) {
dev_err(dev, "Error constructing EC i2c message %d\n", result);
goto exit;
}
msg->version = 0;
msg->command = EC_CMD_I2C_PASSTHRU;
msg->outsize = request_len;
msg->insize = response_len;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
result = cros_ec_cmd_xfer_status(bus->ec, msg);
if (result < 0) {
dev_err(dev, "Error transferring EC i2c message %d\n", result);
goto exit;
}
result = ec_i2c_parse_response(msg->data, i2c_msgs, &num);
if (result < 0) {
dev_err(dev, "Error parsing EC i2c message %d\n", result);
goto exit;
}
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
/* Indicate success by saying how many messages were sent */
result = num;
exit:
kfree(msg);
return result;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
}
static u32 ec_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm ec_i2c_algorithm = {
.master_xfer = ec_i2c_xfer,
.functionality = ec_i2c_functionality,
};
static int ec_i2c_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct cros_ec_device *ec = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct ec_i2c_device *bus = NULL;
u32 remote_bus;
int err;
if (!ec->cmd_xfer) {
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
dev_err(dev, "Missing sendrecv\n");
return -EINVAL;
}
bus = devm_kzalloc(dev, sizeof(*bus), GFP_KERNEL);
if (bus == NULL)
return -ENOMEM;
err = of_property_read_u32(np, "google,remote-bus", &remote_bus);
if (err) {
dev_err(dev, "Couldn't read remote-bus property\n");
return err;
}
bus->remote_bus = remote_bus;
bus->ec = ec;
bus->dev = dev;
bus->adap.owner = THIS_MODULE;
strlcpy(bus->adap.name, "cros-ec-i2c-tunnel", sizeof(bus->adap.name));
bus->adap.algo = &ec_i2c_algorithm;
bus->adap.algo_data = bus;
bus->adap.dev.parent = &pdev->dev;
bus->adap.dev.of_node = np;
bus->adap.retries = I2C_MAX_RETRIES;
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
err = i2c_add_adapter(&bus->adap);
if (err)
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
return err;
platform_set_drvdata(pdev, bus);
return err;
}
static int ec_i2c_remove(struct platform_device *dev)
{
struct ec_i2c_device *bus = platform_get_drvdata(dev);
i2c_del_adapter(&bus->adap);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id cros_ec_i2c_of_match[] = {
{ .compatible = "google,cros-ec-i2c-tunnel" },
{},
};
MODULE_DEVICE_TABLE(of, cros_ec_i2c_of_match);
#endif
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
static struct platform_driver ec_i2c_tunnel_driver = {
.probe = ec_i2c_probe,
.remove = ec_i2c_remove,
.driver = {
.name = "cros-ec-i2c-tunnel",
.of_match_table = of_match_ptr(cros_ec_i2c_of_match),
i2c: ChromeOS EC tunnel driver On ARM Chromebooks we have a few devices that are accessed by both the AP (the main "Application Processor") and the EC (the Embedded Controller). These are: * The battery (sbs-battery). * The power management unit tps65090. On the original Samsung ARM Chromebook these devices were on an I2C bus that was shared between the AP and the EC and arbitrated using some extranal GPIOs (see i2c-arb-gpio-challenge). The original arbitration scheme worked well enough but had some downsides: * It was nonstandard (not using standard I2C multimaster) * It only worked if the EC-AP communication was I2C * It was relatively hard to debug problems (hard to tell if i2c issues were caused by the EC, the AP, or some device on the bus). On the HP Chromebook 11 the design was changed to: * The AP/EC comms were still i2c, but the battery/tps65090 were no longer on the bus used for AP/EC communication. The battery was exposed to the AP through a limited i2c tunnel and tps65090 was exposed to the AP through a custom Linux driver. On the Samsung ARM Chromebook 2 the scheme is changed yet again, now: * The AP/EC comms are now using SPI for faster speeds. * The EC's i2c bus is exposed to the AP through a full i2c tunnel. The upstream "tegra124-venice2" uses the same scheme as the Samsung ARM Chromebook 2, though it has a different set of components on the other side of the bus. This driver supports the scheme used by the Samsung ARM Chromebook 2. Future patches to this driver could add support for the battery tunnel on the HP Chromebook 11 (and perhaps could even be used to access tps65090 on the HP Chromebook 11 instead of using a special driver, but I haven't researched that enough). Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Signed-off-by: Simon Glass <sjg@chromium.org> Signed-off-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
2014-04-30 17:44:09 +00:00
},
};
module_platform_driver(ec_i2c_tunnel_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("EC I2C tunnel driver");
MODULE_ALIAS("platform:cros-ec-i2c-tunnel");