linux/arch/x86/kernel/cpu/mcheck/mce_amd.c

789 lines
17 KiB
C
Raw Normal View History

/*
* (c) 2005-2012 Advanced Micro Devices, Inc.
* Your use of this code is subject to the terms and conditions of the
* GNU general public license version 2. See "COPYING" or
* http://www.gnu.org/licenses/gpl.html
*
* Written by Jacob Shin - AMD, Inc.
*
* Maintained by: Borislav Petkov <bp@alien8.de>
*
* April 2006
* - added support for AMD Family 0x10 processors
* May 2012
* - major scrubbing
*
* All MC4_MISCi registers are shared between multi-cores
*/
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/kobject.h>
#include <linux/percpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <asm/amd_nb.h>
#include <asm/apic.h>
#include <asm/idle.h>
#include <asm/mce.h>
#include <asm/msr.h>
#define NR_BLOCKS 9
#define THRESHOLD_MAX 0xFFF
#define INT_TYPE_APIC 0x00020000
#define MASK_VALID_HI 0x80000000
#define MASK_CNTP_HI 0x40000000
#define MASK_LOCKED_HI 0x20000000
#define MASK_LVTOFF_HI 0x00F00000
#define MASK_COUNT_EN_HI 0x00080000
#define MASK_INT_TYPE_HI 0x00060000
#define MASK_OVERFLOW_HI 0x00010000
#define MASK_ERR_COUNT_HI 0x00000FFF
#define MASK_BLKPTR_LO 0xFF000000
#define MCG_XBLK_ADDR 0xC0000400
static const char * const th_names[] = {
"load_store",
"insn_fetch",
"combined_unit",
"",
"northbridge",
"execution_unit",
};
static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
static DEFINE_PER_CPU(unsigned char, bank_map); /* see which banks are on */
static void amd_threshold_interrupt(void);
/*
* CPU Initialization
*/
struct thresh_restart {
struct threshold_block *b;
int reset;
int set_lvt_off;
int lvt_off;
u16 old_limit;
};
static inline bool is_shared_bank(int bank)
{
/* Bank 4 is for northbridge reporting and is thus shared */
return (bank == 4);
}
static const char * const bank4_names(struct threshold_block *b)
{
switch (b->address) {
/* MSR4_MISC0 */
case 0x00000413:
return "dram";
case 0xc0000408:
return "ht_links";
case 0xc0000409:
return "l3_cache";
default:
WARN(1, "Funny MSR: 0x%08x\n", b->address);
return "";
}
};
static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
{
/*
* bank 4 supports APIC LVT interrupts implicitly since forever.
*/
if (bank == 4)
return true;
/*
* IntP: interrupt present; if this bit is set, the thresholding
* bank can generate APIC LVT interrupts
*/
return msr_high_bits & BIT(28);
}
static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
{
int msr = (hi & MASK_LVTOFF_HI) >> 20;
if (apic < 0) {
pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
"for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
b->bank, b->block, b->address, hi, lo);
return 0;
}
if (apic != msr) {
pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
"for bank %d, block %d (MSR%08X=0x%x%08x)\n",
b->cpu, apic, b->bank, b->block, b->address, hi, lo);
return 0;
}
return 1;
};
/*
* Called via smp_call_function_single(), must be called with correct
* cpu affinity.
*/
static void threshold_restart_bank(void *_tr)
{
struct thresh_restart *tr = _tr;
u32 hi, lo;
rdmsr(tr->b->address, lo, hi);
if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
tr->reset = 1; /* limit cannot be lower than err count */
if (tr->reset) { /* reset err count and overflow bit */
hi =
(hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
(THRESHOLD_MAX - tr->b->threshold_limit);
} else if (tr->old_limit) { /* change limit w/o reset */
int new_count = (hi & THRESHOLD_MAX) +
(tr->old_limit - tr->b->threshold_limit);
hi = (hi & ~MASK_ERR_COUNT_HI) |
(new_count & THRESHOLD_MAX);
}
/* clear IntType */
hi &= ~MASK_INT_TYPE_HI;
if (!tr->b->interrupt_capable)
goto done;
if (tr->set_lvt_off) {
if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
/* set new lvt offset */
hi &= ~MASK_LVTOFF_HI;
hi |= tr->lvt_off << 20;
}
}
if (tr->b->interrupt_enable)
hi |= INT_TYPE_APIC;
done:
hi |= MASK_COUNT_EN_HI;
wrmsr(tr->b->address, lo, hi);
}
static void mce_threshold_block_init(struct threshold_block *b, int offset)
{
struct thresh_restart tr = {
.b = b,
.set_lvt_off = 1,
.lvt_off = offset,
};
b->threshold_limit = THRESHOLD_MAX;
threshold_restart_bank(&tr);
};
static int setup_APIC_mce(int reserved, int new)
{
if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
APIC_EILVT_MSG_FIX, 0))
return new;
return reserved;
}
/* cpu init entry point, called from mce.c with preempt off */
void mce_amd_feature_init(struct cpuinfo_x86 *c)
{
struct threshold_block b;
unsigned int cpu = smp_processor_id();
u32 low = 0, high = 0, address = 0;
unsigned int bank, block;
int offset = -1;
for (bank = 0; bank < mca_cfg.banks; ++bank) {
for (block = 0; block < NR_BLOCKS; ++block) {
if (block == 0)
address = MSR_IA32_MCx_MISC(bank);
else if (block == 1) {
address = (low & MASK_BLKPTR_LO) >> 21;
if (!address)
break;
address += MCG_XBLK_ADDR;
} else
++address;
if (rdmsr_safe(address, &low, &high))
break;
if (!(high & MASK_VALID_HI))
continue;
if (!(high & MASK_CNTP_HI) ||
(high & MASK_LOCKED_HI))
continue;
if (!block)
per_cpu(bank_map, cpu) |= (1 << bank);
memset(&b, 0, sizeof(b));
b.cpu = cpu;
b.bank = bank;
b.block = block;
b.address = address;
b.interrupt_capable = lvt_interrupt_supported(bank, high);
if (b.interrupt_capable) {
int new = (high & MASK_LVTOFF_HI) >> 20;
offset = setup_APIC_mce(offset, new);
}
mce_threshold_block_init(&b, offset);
if (mce_threshold_vector != amd_threshold_interrupt)
mce_threshold_vector = amd_threshold_interrupt;
}
}
}
/*
* APIC Interrupt Handler
*/
/*
* threshold interrupt handler will service THRESHOLD_APIC_VECTOR.
* the interrupt goes off when error_count reaches threshold_limit.
* the handler will simply log mcelog w/ software defined bank number.
*/
static void amd_threshold_interrupt(void)
{
u32 low = 0, high = 0, address = 0;
int cpu = smp_processor_id();
unsigned int bank, block;
struct mce m;
/* assume first bank caused it */
for (bank = 0; bank < mca_cfg.banks; ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
for (block = 0; block < NR_BLOCKS; ++block) {
if (block == 0) {
address = MSR_IA32_MCx_MISC(bank);
} else if (block == 1) {
address = (low & MASK_BLKPTR_LO) >> 21;
if (!address)
break;
address += MCG_XBLK_ADDR;
} else {
++address;
}
if (rdmsr_safe(address, &low, &high))
break;
if (!(high & MASK_VALID_HI)) {
if (block)
continue;
else
break;
}
if (!(high & MASK_CNTP_HI) ||
(high & MASK_LOCKED_HI))
continue;
/*
* Log the machine check that caused the threshold
* event.
*/
if (high & MASK_OVERFLOW_HI)
goto log;
}
}
return;
log:
mce_setup(&m);
rdmsrl(MSR_IA32_MCx_STATUS(bank), m.status);
m.misc = ((u64)high << 32) | low;
m.bank = bank;
mce_log(&m);
wrmsrl(MSR_IA32_MCx_STATUS(bank), 0);
}
/*
* Sysfs Interface
*/
struct threshold_attr {
struct attribute attr;
ssize_t (*show) (struct threshold_block *, char *);
ssize_t (*store) (struct threshold_block *, const char *, size_t count);
};
#define SHOW_FIELDS(name) \
static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
{ \
return sprintf(buf, "%lu\n", (unsigned long) b->name); \
}
SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)
static ssize_t
store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
{
struct thresh_restart tr;
unsigned long new;
if (!b->interrupt_capable)
return -EINVAL;
if (kstrtoul(buf, 0, &new) < 0)
return -EINVAL;
b->interrupt_enable = !!new;
memset(&tr, 0, sizeof(tr));
tr.b = b;
smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
return size;
}
static ssize_t
store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
{
struct thresh_restart tr;
unsigned long new;
if (kstrtoul(buf, 0, &new) < 0)
return -EINVAL;
if (new > THRESHOLD_MAX)
new = THRESHOLD_MAX;
if (new < 1)
new = 1;
memset(&tr, 0, sizeof(tr));
tr.old_limit = b->threshold_limit;
b->threshold_limit = new;
tr.b = b;
smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
return size;
}
static ssize_t show_error_count(struct threshold_block *b, char *buf)
{
u32 lo, hi;
rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
(THRESHOLD_MAX - b->threshold_limit)));
}
static struct threshold_attr error_count = {
.attr = {.name = __stringify(error_count), .mode = 0444 },
.show = show_error_count,
};
#define RW_ATTR(val) \
static struct threshold_attr val = { \
.attr = {.name = __stringify(val), .mode = 0644 }, \
.show = show_## val, \
.store = store_## val, \
};
RW_ATTR(interrupt_enable);
RW_ATTR(threshold_limit);
static struct attribute *default_attrs[] = {
&threshold_limit.attr,
&error_count.attr,
NULL, /* possibly interrupt_enable if supported, see below */
NULL,
};
#define to_block(k) container_of(k, struct threshold_block, kobj)
#define to_attr(a) container_of(a, struct threshold_attr, attr)
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct threshold_block *b = to_block(kobj);
struct threshold_attr *a = to_attr(attr);
ssize_t ret;
ret = a->show ? a->show(b, buf) : -EIO;
return ret;
}
static ssize_t store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct threshold_block *b = to_block(kobj);
struct threshold_attr *a = to_attr(attr);
ssize_t ret;
ret = a->store ? a->store(b, buf, count) : -EIO;
return ret;
}
static const struct sysfs_ops threshold_ops = {
.show = show,
.store = store,
};
static struct kobj_type threshold_ktype = {
.sysfs_ops = &threshold_ops,
.default_attrs = default_attrs,
};
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
unsigned int block, u32 address)
{
struct threshold_block *b = NULL;
u32 low, high;
int err;
if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
return 0;
if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
return 0;
if (!(high & MASK_VALID_HI)) {
if (block)
goto recurse;
else
return 0;
}
if (!(high & MASK_CNTP_HI) ||
(high & MASK_LOCKED_HI))
goto recurse;
b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
if (!b)
return -ENOMEM;
b->block = block;
b->bank = bank;
b->cpu = cpu;
b->address = address;
b->interrupt_enable = 0;
b->interrupt_capable = lvt_interrupt_supported(bank, high);
b->threshold_limit = THRESHOLD_MAX;
if (b->interrupt_capable)
threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
else
threshold_ktype.default_attrs[2] = NULL;
INIT_LIST_HEAD(&b->miscj);
if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
list_add(&b->miscj,
&per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
} else {
per_cpu(threshold_banks, cpu)[bank]->blocks = b;
}
err = kobject_init_and_add(&b->kobj, &threshold_ktype,
per_cpu(threshold_banks, cpu)[bank]->kobj,
(bank == 4 ? bank4_names(b) : th_names[bank]));
if (err)
goto out_free;
recurse:
if (!block) {
address = (low & MASK_BLKPTR_LO) >> 21;
if (!address)
return 0;
address += MCG_XBLK_ADDR;
} else {
++address;
}
err = allocate_threshold_blocks(cpu, bank, ++block, address);
if (err)
goto out_free;
if (b)
kobject_uevent(&b->kobj, KOBJ_ADD);
return err;
out_free:
if (b) {
kobject_put(&b->kobj);
list_del(&b->miscj);
kfree(b);
}
return err;
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
static int __threshold_add_blocks(struct threshold_bank *b)
{
struct list_head *head = &b->blocks->miscj;
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
int err = 0;
err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
if (err)
return err;
list_for_each_entry_safe(pos, tmp, head, miscj) {
err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
if (err) {
list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
kobject_del(&pos->kobj);
return err;
}
}
return err;
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
static int threshold_create_bank(unsigned int cpu, unsigned int bank)
{
struct device *dev = per_cpu(mce_device, cpu);
struct amd_northbridge *nb = NULL;
struct threshold_bank *b = NULL;
const char *name = th_names[bank];
int err = 0;
if (is_shared_bank(bank)) {
nb = node_to_amd_nb(amd_get_nb_id(cpu));
/* threshold descriptor already initialized on this node? */
if (nb && nb->bank4) {
/* yes, use it */
b = nb->bank4;
err = kobject_add(b->kobj, &dev->kobj, name);
if (err)
goto out;
per_cpu(threshold_banks, cpu)[bank] = b;
atomic_inc(&b->cpus);
err = __threshold_add_blocks(b);
goto out;
}
}
b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
if (!b) {
err = -ENOMEM;
goto out;
}
b->kobj = kobject_create_and_add(name, &dev->kobj);
if (!b->kobj) {
err = -EINVAL;
goto out_free;
}
per_cpu(threshold_banks, cpu)[bank] = b;
if (is_shared_bank(bank)) {
atomic_set(&b->cpus, 1);
/* nb is already initialized, see above */
if (nb) {
WARN_ON(nb->bank4);
nb->bank4 = b;
}
}
err = allocate_threshold_blocks(cpu, bank, 0, MSR_IA32_MCx_MISC(bank));
if (!err)
goto out;
out_free:
kfree(b);
out:
return err;
}
/* create dir/files for all valid threshold banks */
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
static int threshold_create_device(unsigned int cpu)
{
unsigned int bank;
struct threshold_bank **bp;
int err = 0;
bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
GFP_KERNEL);
if (!bp)
return -ENOMEM;
per_cpu(threshold_banks, cpu) = bp;
for (bank = 0; bank < mca_cfg.banks; ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
err = threshold_create_bank(cpu, bank);
if (err)
return err;
}
return err;
}
static void deallocate_threshold_block(unsigned int cpu,
unsigned int bank)
{
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
if (!head)
return;
list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
kobject_put(&pos->kobj);
list_del(&pos->miscj);
kfree(pos);
}
kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
}
static void __threshold_remove_blocks(struct threshold_bank *b)
{
struct threshold_block *pos = NULL;
struct threshold_block *tmp = NULL;
kobject_del(b->kobj);
list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
kobject_del(&pos->kobj);
}
static void threshold_remove_bank(unsigned int cpu, int bank)
{
struct amd_northbridge *nb;
struct threshold_bank *b;
b = per_cpu(threshold_banks, cpu)[bank];
if (!b)
return;
if (!b->blocks)
goto free_out;
if (is_shared_bank(bank)) {
if (!atomic_dec_and_test(&b->cpus)) {
__threshold_remove_blocks(b);
per_cpu(threshold_banks, cpu)[bank] = NULL;
return;
} else {
/*
* the last CPU on this node using the shared bank is
* going away, remove that bank now.
*/
nb = node_to_amd_nb(amd_get_nb_id(cpu));
nb->bank4 = NULL;
}
}
deallocate_threshold_block(cpu, bank);
free_out:
kobject_del(b->kobj);
kobject_put(b->kobj);
kfree(b);
per_cpu(threshold_banks, cpu)[bank] = NULL;
}
static void threshold_remove_device(unsigned int cpu)
{
unsigned int bank;
for (bank = 0; bank < mca_cfg.banks; ++bank) {
if (!(per_cpu(bank_map, cpu) & (1 << bank)))
continue;
threshold_remove_bank(cpu, bank);
}
kfree(per_cpu(threshold_banks, cpu));
}
/* get notified when a cpu comes on/off */
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
static void
amd_64_threshold_cpu_callback(unsigned long action, unsigned int cpu)
{
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
threshold_create_device(cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
threshold_remove_device(cpu);
break;
default:
break;
}
}
static __init int threshold_init_device(void)
{
unsigned lcpu = 0;
/* to hit CPUs online before the notifier is up */
for_each_online_cpu(lcpu) {
int err = threshold_create_device(lcpu);
if (err)
return err;
}
threshold_cpu_callback = amd_64_threshold_cpu_callback;
return 0;
}
/*
* there are 3 funcs which need to be _initcalled in a logic sequence:
* 1. xen_late_init_mcelog
* 2. mcheck_init_device
* 3. threshold_init_device
*
* xen_late_init_mcelog must register xen_mce_chrdev_device before
* native mce_chrdev_device registration if running under xen platform;
*
* mcheck_init_device should be inited before threshold_init_device to
* initialize mce_device, otherwise a NULL ptr dereference will cause panic.
*
* so we use following _initcalls
* 1. device_initcall(xen_late_init_mcelog);
* 2. device_initcall_sync(mcheck_init_device);
* 3. late_initcall(threshold_init_device);
*
* when running under xen, the initcall order is 1,2,3;
* on baremetal, we skip 1 and we do only 2 and 3.
*/
late_initcall(threshold_init_device);