mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-05 08:48:53 +00:00
387 lines
13 KiB
C
387 lines
13 KiB
C
|
/*****************************************************************************
|
||
|
* *
|
||
|
* File: espi.c *
|
||
|
* $Revision: 1.9 $ *
|
||
|
* $Date: 2005/03/23 07:41:27 $ *
|
||
|
* Description: *
|
||
|
* Ethernet SPI functionality. *
|
||
|
* part of the Chelsio 10Gb Ethernet Driver. *
|
||
|
* *
|
||
|
* This program is free software; you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License, version 2, as *
|
||
|
* published by the Free Software Foundation. *
|
||
|
* *
|
||
|
* You should have received a copy of the GNU General Public License along *
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc., *
|
||
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
||
|
* *
|
||
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
|
||
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
|
||
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
|
||
|
* *
|
||
|
* http://www.chelsio.com *
|
||
|
* *
|
||
|
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
|
||
|
* All rights reserved. *
|
||
|
* *
|
||
|
* Maintainers: maintainers@chelsio.com *
|
||
|
* *
|
||
|
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
|
||
|
* Tina Yang <tainay@chelsio.com> *
|
||
|
* Felix Marti <felix@chelsio.com> *
|
||
|
* Scott Bardone <sbardone@chelsio.com> *
|
||
|
* Kurt Ottaway <kottaway@chelsio.com> *
|
||
|
* Frank DiMambro <frank@chelsio.com> *
|
||
|
* *
|
||
|
* History: *
|
||
|
* *
|
||
|
****************************************************************************/
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "regs.h"
|
||
|
#include "espi.h"
|
||
|
|
||
|
struct peespi {
|
||
|
adapter_t *adapter;
|
||
|
struct espi_intr_counts intr_cnt;
|
||
|
u32 misc_ctrl;
|
||
|
spinlock_t lock;
|
||
|
};
|
||
|
|
||
|
#define ESPI_INTR_MASK (F_DIP4ERR | F_RXDROP | F_TXDROP | F_RXOVERFLOW | \
|
||
|
F_RAMPARITYERR | F_DIP2PARITYERR)
|
||
|
#define MON_MASK (V_MONITORED_PORT_NUM(3) | F_MONITORED_DIRECTION \
|
||
|
| F_MONITORED_INTERFACE)
|
||
|
|
||
|
#define TRICN_CNFG 14
|
||
|
#define TRICN_CMD_READ 0x11
|
||
|
#define TRICN_CMD_WRITE 0x21
|
||
|
#define TRICN_CMD_ATTEMPTS 10
|
||
|
|
||
|
static int tricn_write(adapter_t *adapter, int bundle_addr, int module_addr,
|
||
|
int ch_addr, int reg_offset, u32 wr_data)
|
||
|
{
|
||
|
int busy, attempts = TRICN_CMD_ATTEMPTS;
|
||
|
|
||
|
t1_write_reg_4(adapter, A_ESPI_CMD_ADDR, V_WRITE_DATA(wr_data) |
|
||
|
V_REGISTER_OFFSET(reg_offset) |
|
||
|
V_CHANNEL_ADDR(ch_addr) | V_MODULE_ADDR(module_addr) |
|
||
|
V_BUNDLE_ADDR(bundle_addr) |
|
||
|
V_SPI4_COMMAND(TRICN_CMD_WRITE));
|
||
|
t1_write_reg_4(adapter, A_ESPI_GOSTAT, 0);
|
||
|
|
||
|
do {
|
||
|
busy = t1_read_reg_4(adapter, A_ESPI_GOSTAT) & F_ESPI_CMD_BUSY;
|
||
|
} while (busy && --attempts);
|
||
|
|
||
|
if (busy)
|
||
|
CH_ERR("%s: TRICN write timed out\n", adapter->name);
|
||
|
|
||
|
return busy;
|
||
|
}
|
||
|
|
||
|
/* 1. Deassert rx_reset_core. */
|
||
|
/* 2. Program TRICN_CNFG registers. */
|
||
|
/* 3. Deassert rx_reset_link */
|
||
|
static int tricn_init(adapter_t *adapter)
|
||
|
{
|
||
|
int i = 0;
|
||
|
int sme = 1;
|
||
|
int stat = 0;
|
||
|
int timeout = 0;
|
||
|
int is_ready = 0;
|
||
|
int dynamic_deskew = 0;
|
||
|
|
||
|
if (dynamic_deskew)
|
||
|
sme = 0;
|
||
|
|
||
|
|
||
|
/* 1 */
|
||
|
timeout=1000;
|
||
|
do {
|
||
|
stat = t1_read_reg_4(adapter, A_ESPI_RX_RESET);
|
||
|
is_ready = (stat & 0x4);
|
||
|
timeout--;
|
||
|
udelay(5);
|
||
|
} while (!is_ready || (timeout==0));
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_RESET, 0x2);
|
||
|
if (timeout==0)
|
||
|
{
|
||
|
CH_ERR("ESPI : ERROR : Timeout tricn_init() \n");
|
||
|
t1_fatal_err(adapter);
|
||
|
}
|
||
|
|
||
|
/* 2 */
|
||
|
if (sme) {
|
||
|
tricn_write(adapter, 0, 0, 0, TRICN_CNFG, 0x81);
|
||
|
tricn_write(adapter, 0, 1, 0, TRICN_CNFG, 0x81);
|
||
|
tricn_write(adapter, 0, 2, 0, TRICN_CNFG, 0x81);
|
||
|
}
|
||
|
for (i=1; i<= 8; i++) tricn_write(adapter, 0, 0, i, TRICN_CNFG, 0xf1);
|
||
|
for (i=1; i<= 2; i++) tricn_write(adapter, 0, 1, i, TRICN_CNFG, 0xf1);
|
||
|
for (i=1; i<= 3; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1);
|
||
|
for (i=4; i<= 4; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
|
||
|
for (i=5; i<= 5; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1);
|
||
|
for (i=6; i<= 6; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
|
||
|
for (i=7; i<= 7; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0x80);
|
||
|
for (i=8; i<= 8; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
|
||
|
|
||
|
/* 3 */
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_RESET, 0x3);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void t1_espi_intr_enable(struct peespi *espi)
|
||
|
{
|
||
|
u32 enable, pl_intr = t1_read_reg_4(espi->adapter, A_PL_ENABLE);
|
||
|
|
||
|
/*
|
||
|
* Cannot enable ESPI interrupts on T1B because HW asserts the
|
||
|
* interrupt incorrectly, namely the driver gets ESPI interrupts
|
||
|
* but no data is actually dropped (can verify this reading the ESPI
|
||
|
* drop registers). Also, once the ESPI interrupt is asserted it
|
||
|
* cannot be cleared (HW bug).
|
||
|
*/
|
||
|
enable = t1_is_T1B(espi->adapter) ? 0 : ESPI_INTR_MASK;
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, enable);
|
||
|
t1_write_reg_4(espi->adapter, A_PL_ENABLE, pl_intr | F_PL_INTR_ESPI);
|
||
|
}
|
||
|
|
||
|
void t1_espi_intr_clear(struct peespi *espi)
|
||
|
{
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, 0xffffffff);
|
||
|
t1_write_reg_4(espi->adapter, A_PL_CAUSE, F_PL_INTR_ESPI);
|
||
|
}
|
||
|
|
||
|
void t1_espi_intr_disable(struct peespi *espi)
|
||
|
{
|
||
|
u32 pl_intr = t1_read_reg_4(espi->adapter, A_PL_ENABLE);
|
||
|
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, 0);
|
||
|
t1_write_reg_4(espi->adapter, A_PL_ENABLE, pl_intr & ~F_PL_INTR_ESPI);
|
||
|
}
|
||
|
|
||
|
int t1_espi_intr_handler(struct peespi *espi)
|
||
|
{
|
||
|
u32 cnt;
|
||
|
u32 status = t1_read_reg_4(espi->adapter, A_ESPI_INTR_STATUS);
|
||
|
|
||
|
if (status & F_DIP4ERR)
|
||
|
espi->intr_cnt.DIP4_err++;
|
||
|
if (status & F_RXDROP)
|
||
|
espi->intr_cnt.rx_drops++;
|
||
|
if (status & F_TXDROP)
|
||
|
espi->intr_cnt.tx_drops++;
|
||
|
if (status & F_RXOVERFLOW)
|
||
|
espi->intr_cnt.rx_ovflw++;
|
||
|
if (status & F_RAMPARITYERR)
|
||
|
espi->intr_cnt.parity_err++;
|
||
|
if (status & F_DIP2PARITYERR) {
|
||
|
espi->intr_cnt.DIP2_parity_err++;
|
||
|
|
||
|
/*
|
||
|
* Must read the error count to clear the interrupt
|
||
|
* that it causes.
|
||
|
*/
|
||
|
cnt = t1_read_reg_4(espi->adapter, A_ESPI_DIP2_ERR_COUNT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For T1B we need to write 1 to clear ESPI interrupts. For T2+ we
|
||
|
* write the status as is.
|
||
|
*/
|
||
|
if (status && t1_is_T1B(espi->adapter))
|
||
|
status = 1;
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, status);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void espi_setup_for_pm3393(adapter_t *adapter)
|
||
|
{
|
||
|
u32 wmark = t1_is_T1B(adapter) ? 0x4000 : 0x3200;
|
||
|
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN0, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN1, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN2, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN3, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, 0x100);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, wmark);
|
||
|
t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 3);
|
||
|
t1_write_reg_4(adapter, A_ESPI_TRAIN, 0x08000008);
|
||
|
t1_write_reg_4(adapter, A_PORT_CONFIG,
|
||
|
V_RX_NPORTS(1) | V_TX_NPORTS(1));
|
||
|
}
|
||
|
|
||
|
static void espi_setup_for_vsc7321(adapter_t *adapter)
|
||
|
{
|
||
|
u32 wmark = t1_is_T1B(adapter) ? 0x4000 : 0x3200;
|
||
|
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN0, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN1, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN2, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN3, 0x1f4);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, 0x100);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, wmark);
|
||
|
t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 3);
|
||
|
t1_write_reg_4(adapter, A_ESPI_TRAIN, 0x08000008);
|
||
|
t1_write_reg_4(adapter, A_PORT_CONFIG,
|
||
|
V_RX_NPORTS(1) | V_TX_NPORTS(1));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that T1B requires at least 2 ports for IXF1010 due to a HW bug.
|
||
|
*/
|
||
|
static void espi_setup_for_ixf1010(adapter_t *adapter, int nports)
|
||
|
{
|
||
|
t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 1);
|
||
|
if (nports == 4) {
|
||
|
if (is_T2(adapter)) {
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK,
|
||
|
0xf00);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK,
|
||
|
0x3c0);
|
||
|
} else {
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK,
|
||
|
0x7ff);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK,
|
||
|
0x1ff);
|
||
|
}
|
||
|
} else {
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK,
|
||
|
0x1fff);
|
||
|
t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK,
|
||
|
0x7ff);
|
||
|
}
|
||
|
t1_write_reg_4(adapter, A_PORT_CONFIG,
|
||
|
V_RX_NPORTS(nports) | V_TX_NPORTS(nports));
|
||
|
}
|
||
|
|
||
|
/* T2 Init part -- */
|
||
|
/* 1. Set T_ESPI_MISCCTRL_ADDR */
|
||
|
/* 2. Init ESPI registers. */
|
||
|
/* 3. Init TriCN Hard Macro */
|
||
|
int t1_espi_init(struct peespi *espi, int mac_type, int nports)
|
||
|
{
|
||
|
u32 status_enable_extra = 0;
|
||
|
adapter_t *adapter = espi->adapter;
|
||
|
u32 cnt;
|
||
|
u32 status, burstval = 0x800100;
|
||
|
|
||
|
/* Disable ESPI training. MACs that can handle it enable it below. */
|
||
|
t1_write_reg_4(adapter, A_ESPI_TRAIN, 0);
|
||
|
|
||
|
if (is_T2(adapter)) {
|
||
|
t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL,
|
||
|
V_OUT_OF_SYNC_COUNT(4) |
|
||
|
V_DIP2_PARITY_ERR_THRES(3) | V_DIP4_THRES(1));
|
||
|
if (nports == 4) {
|
||
|
/* T204: maxburst1 = 0x40, maxburst2 = 0x20 */
|
||
|
burstval = 0x200040;
|
||
|
}
|
||
|
}
|
||
|
t1_write_reg_4(adapter, A_ESPI_MAXBURST1_MAXBURST2, burstval);
|
||
|
|
||
|
if (mac_type == CHBT_MAC_PM3393)
|
||
|
espi_setup_for_pm3393(adapter);
|
||
|
else if (mac_type == CHBT_MAC_VSC7321)
|
||
|
espi_setup_for_vsc7321(adapter);
|
||
|
else if (mac_type == CHBT_MAC_IXF1010) {
|
||
|
status_enable_extra = F_INTEL1010MODE;
|
||
|
espi_setup_for_ixf1010(adapter, nports);
|
||
|
} else
|
||
|
return -1;
|
||
|
|
||
|
/*
|
||
|
* Make sure any pending interrupts from the SPI are
|
||
|
* Cleared before enabling the interrupt.
|
||
|
*/
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, ESPI_INTR_MASK);
|
||
|
status = t1_read_reg_4(espi->adapter, A_ESPI_INTR_STATUS);
|
||
|
if (status & F_DIP2PARITYERR) {
|
||
|
cnt = t1_read_reg_4(espi->adapter, A_ESPI_DIP2_ERR_COUNT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For T1B we need to write 1 to clear ESPI interrupts. For T2+ we
|
||
|
* write the status as is.
|
||
|
*/
|
||
|
if (status && t1_is_T1B(espi->adapter))
|
||
|
status = 1;
|
||
|
t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, status);
|
||
|
|
||
|
t1_write_reg_4(adapter, A_ESPI_FIFO_STATUS_ENABLE,
|
||
|
status_enable_extra | F_RXSTATUSENABLE);
|
||
|
|
||
|
if (is_T2(adapter)) {
|
||
|
tricn_init(adapter);
|
||
|
/*
|
||
|
* Always position the control at the 1st port egress IN
|
||
|
* (sop,eop) counter to reduce PIOs for T/N210 workaround.
|
||
|
*/
|
||
|
espi->misc_ctrl = (t1_read_reg_4(adapter, A_ESPI_MISC_CONTROL)
|
||
|
& ~MON_MASK) | (F_MONITORED_DIRECTION
|
||
|
| F_MONITORED_INTERFACE);
|
||
|
t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, espi->misc_ctrl);
|
||
|
spin_lock_init(&espi->lock);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void t1_espi_destroy(struct peespi *espi)
|
||
|
{
|
||
|
kfree(espi);
|
||
|
}
|
||
|
|
||
|
struct peespi *t1_espi_create(adapter_t *adapter)
|
||
|
{
|
||
|
struct peespi *espi = kmalloc(sizeof(*espi), GFP_KERNEL);
|
||
|
|
||
|
memset(espi, 0, sizeof(*espi));
|
||
|
|
||
|
if (espi)
|
||
|
espi->adapter = adapter;
|
||
|
return espi;
|
||
|
}
|
||
|
|
||
|
void t1_espi_set_misc_ctrl(adapter_t *adapter, u32 val)
|
||
|
{
|
||
|
struct peespi *espi = adapter->espi;
|
||
|
|
||
|
if (!is_T2(adapter))
|
||
|
return;
|
||
|
spin_lock(&espi->lock);
|
||
|
espi->misc_ctrl = (val & ~MON_MASK) |
|
||
|
(espi->misc_ctrl & MON_MASK);
|
||
|
t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, espi->misc_ctrl);
|
||
|
spin_unlock(&espi->lock);
|
||
|
}
|
||
|
|
||
|
u32 t1_espi_get_mon(adapter_t *adapter, u32 addr, u8 wait)
|
||
|
{
|
||
|
struct peespi *espi = adapter->espi;
|
||
|
u32 sel;
|
||
|
|
||
|
if (!is_T2(adapter))
|
||
|
return 0;
|
||
|
sel = V_MONITORED_PORT_NUM((addr & 0x3c) >> 2);
|
||
|
if (!wait) {
|
||
|
if (!spin_trylock(&espi->lock))
|
||
|
return 0;
|
||
|
}
|
||
|
else
|
||
|
spin_lock(&espi->lock);
|
||
|
if ((sel != (espi->misc_ctrl & MON_MASK))) {
|
||
|
t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL,
|
||
|
((espi->misc_ctrl & ~MON_MASK) | sel));
|
||
|
sel = t1_read_reg_4(adapter, A_ESPI_SCH_TOKEN3);
|
||
|
t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL,
|
||
|
espi->misc_ctrl);
|
||
|
}
|
||
|
else
|
||
|
sel = t1_read_reg_4(adapter, A_ESPI_SCH_TOKEN3);
|
||
|
spin_unlock(&espi->lock);
|
||
|
return sel;
|
||
|
}
|