mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 21:48:49 +00:00
535 lines
15 KiB
C
535 lines
15 KiB
C
|
/*
|
||
|
* Based on arch/arm/mm/fault.c
|
||
|
*
|
||
|
* Copyright (C) 1995 Linus Torvalds
|
||
|
* Copyright (C) 1995-2004 Russell King
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
|
||
|
#include <asm/exception.h>
|
||
|
#include <asm/debug-monitors.h>
|
||
|
#include <asm/system_misc.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
|
||
|
/*
|
||
|
* Dump out the page tables associated with 'addr' in mm 'mm'.
|
||
|
*/
|
||
|
void show_pte(struct mm_struct *mm, unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
|
||
|
if (!mm)
|
||
|
mm = &init_mm;
|
||
|
|
||
|
pr_alert("pgd = %p\n", mm->pgd);
|
||
|
pgd = pgd_offset(mm, addr);
|
||
|
pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
|
||
|
|
||
|
do {
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
pte_t *pte;
|
||
|
|
||
|
if (pgd_none_or_clear_bad(pgd))
|
||
|
break;
|
||
|
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
if (pud_none_or_clear_bad(pud))
|
||
|
break;
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
printk(", *pmd=%016llx", pmd_val(*pmd));
|
||
|
if (pmd_none_or_clear_bad(pmd))
|
||
|
break;
|
||
|
|
||
|
pte = pte_offset_map(pmd, addr);
|
||
|
printk(", *pte=%016llx", pte_val(*pte));
|
||
|
pte_unmap(pte);
|
||
|
} while(0);
|
||
|
|
||
|
printk("\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The kernel tried to access some page that wasn't present.
|
||
|
*/
|
||
|
static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
|
||
|
unsigned int esr, struct pt_regs *regs)
|
||
|
{
|
||
|
/*
|
||
|
* Are we prepared to handle this kernel fault?
|
||
|
*/
|
||
|
if (fixup_exception(regs))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* No handler, we'll have to terminate things with extreme prejudice.
|
||
|
*/
|
||
|
bust_spinlocks(1);
|
||
|
pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
|
||
|
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
|
||
|
"paging request", addr);
|
||
|
|
||
|
show_pte(mm, addr);
|
||
|
die("Oops", regs, esr);
|
||
|
bust_spinlocks(0);
|
||
|
do_exit(SIGKILL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Something tried to access memory that isn't in our memory map. User mode
|
||
|
* accesses just cause a SIGSEGV
|
||
|
*/
|
||
|
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
|
||
|
unsigned int esr, unsigned int sig, int code,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
struct siginfo si;
|
||
|
|
||
|
if (show_unhandled_signals) {
|
||
|
pr_info("%s[%d]: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
|
||
|
tsk->comm, task_pid_nr(tsk), sig, addr, esr);
|
||
|
show_pte(tsk->mm, addr);
|
||
|
show_regs(regs);
|
||
|
}
|
||
|
|
||
|
tsk->thread.fault_address = addr;
|
||
|
si.si_signo = sig;
|
||
|
si.si_errno = 0;
|
||
|
si.si_code = code;
|
||
|
si.si_addr = (void __user *)addr;
|
||
|
force_sig_info(sig, &si, tsk);
|
||
|
}
|
||
|
|
||
|
void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
||
|
{
|
||
|
struct task_struct *tsk = current;
|
||
|
struct mm_struct *mm = tsk->active_mm;
|
||
|
|
||
|
/*
|
||
|
* If we are in kernel mode at this point, we have no context to
|
||
|
* handle this fault with.
|
||
|
*/
|
||
|
if (user_mode(regs))
|
||
|
__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
|
||
|
else
|
||
|
__do_kernel_fault(mm, addr, esr, regs);
|
||
|
}
|
||
|
|
||
|
#define VM_FAULT_BADMAP 0x010000
|
||
|
#define VM_FAULT_BADACCESS 0x020000
|
||
|
|
||
|
#define ESR_WRITE (1 << 6)
|
||
|
#define ESR_LNX_EXEC (1 << 24)
|
||
|
|
||
|
/*
|
||
|
* Check that the permissions on the VMA allow for the fault which occurred.
|
||
|
* If we encountered a write fault, we must have write permission, otherwise
|
||
|
* we allow any permission.
|
||
|
*/
|
||
|
static inline bool access_error(unsigned int esr, struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
|
||
|
|
||
|
if (esr & ESR_WRITE)
|
||
|
mask = VM_WRITE;
|
||
|
if (esr & ESR_LNX_EXEC)
|
||
|
mask = VM_EXEC;
|
||
|
|
||
|
return vma->vm_flags & mask ? false : true;
|
||
|
}
|
||
|
|
||
|
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
||
|
unsigned int esr, unsigned int flags,
|
||
|
struct task_struct *tsk)
|
||
|
{
|
||
|
struct vm_area_struct *vma;
|
||
|
int fault;
|
||
|
|
||
|
vma = find_vma(mm, addr);
|
||
|
fault = VM_FAULT_BADMAP;
|
||
|
if (unlikely(!vma))
|
||
|
goto out;
|
||
|
if (unlikely(vma->vm_start > addr))
|
||
|
goto check_stack;
|
||
|
|
||
|
/*
|
||
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
||
|
* it.
|
||
|
*/
|
||
|
good_area:
|
||
|
if (access_error(esr, vma)) {
|
||
|
fault = VM_FAULT_BADACCESS;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
|
||
|
|
||
|
check_stack:
|
||
|
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
|
||
|
goto good_area;
|
||
|
out:
|
||
|
return fault;
|
||
|
}
|
||
|
|
||
|
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
struct task_struct *tsk;
|
||
|
struct mm_struct *mm;
|
||
|
int fault, sig, code;
|
||
|
int write = esr & ESR_WRITE;
|
||
|
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
|
||
|
(write ? FAULT_FLAG_WRITE : 0);
|
||
|
|
||
|
tsk = current;
|
||
|
mm = tsk->mm;
|
||
|
|
||
|
/* Enable interrupts if they were enabled in the parent context. */
|
||
|
if (interrupts_enabled(regs))
|
||
|
local_irq_enable();
|
||
|
|
||
|
/*
|
||
|
* If we're in an interrupt or have no user context, we must not take
|
||
|
* the fault.
|
||
|
*/
|
||
|
if (in_atomic() || !mm)
|
||
|
goto no_context;
|
||
|
|
||
|
/*
|
||
|
* As per x86, we may deadlock here. However, since the kernel only
|
||
|
* validly references user space from well defined areas of the code,
|
||
|
* we can bug out early if this is from code which shouldn't.
|
||
|
*/
|
||
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
||
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
||
|
goto no_context;
|
||
|
retry:
|
||
|
down_read(&mm->mmap_sem);
|
||
|
} else {
|
||
|
/*
|
||
|
* The above down_read_trylock() might have succeeded in which
|
||
|
* case, we'll have missed the might_sleep() from down_read().
|
||
|
*/
|
||
|
might_sleep();
|
||
|
#ifdef CONFIG_DEBUG_VM
|
||
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
||
|
goto no_context;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
fault = __do_page_fault(mm, addr, esr, flags, tsk);
|
||
|
|
||
|
/*
|
||
|
* If we need to retry but a fatal signal is pending, handle the
|
||
|
* signal first. We do not need to release the mmap_sem because it
|
||
|
* would already be released in __lock_page_or_retry in mm/filemap.c.
|
||
|
*/
|
||
|
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Major/minor page fault accounting is only done on the initial
|
||
|
* attempt. If we go through a retry, it is extremely likely that the
|
||
|
* page will be found in page cache at that point.
|
||
|
*/
|
||
|
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
||
|
if (flags & FAULT_FLAG_ALLOW_RETRY) {
|
||
|
if (fault & VM_FAULT_MAJOR) {
|
||
|
tsk->maj_flt++;
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
|
||
|
addr);
|
||
|
} else {
|
||
|
tsk->min_flt++;
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
|
||
|
addr);
|
||
|
}
|
||
|
if (fault & VM_FAULT_RETRY) {
|
||
|
/*
|
||
|
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
|
||
|
* starvation.
|
||
|
*/
|
||
|
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
||
|
goto retry;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
up_read(&mm->mmap_sem);
|
||
|
|
||
|
/*
|
||
|
* Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
|
||
|
*/
|
||
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
||
|
VM_FAULT_BADACCESS))))
|
||
|
return 0;
|
||
|
|
||
|
if (fault & VM_FAULT_OOM) {
|
||
|
/*
|
||
|
* We ran out of memory, call the OOM killer, and return to
|
||
|
* userspace (which will retry the fault, or kill us if we got
|
||
|
* oom-killed).
|
||
|
*/
|
||
|
pagefault_out_of_memory();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we are in kernel mode at this point, we have no context to
|
||
|
* handle this fault with.
|
||
|
*/
|
||
|
if (!user_mode(regs))
|
||
|
goto no_context;
|
||
|
|
||
|
if (fault & VM_FAULT_SIGBUS) {
|
||
|
/*
|
||
|
* We had some memory, but were unable to successfully fix up
|
||
|
* this page fault.
|
||
|
*/
|
||
|
sig = SIGBUS;
|
||
|
code = BUS_ADRERR;
|
||
|
} else {
|
||
|
/*
|
||
|
* Something tried to access memory that isn't in our memory
|
||
|
* map.
|
||
|
*/
|
||
|
sig = SIGSEGV;
|
||
|
code = fault == VM_FAULT_BADACCESS ?
|
||
|
SEGV_ACCERR : SEGV_MAPERR;
|
||
|
}
|
||
|
|
||
|
__do_user_fault(tsk, addr, esr, sig, code, regs);
|
||
|
return 0;
|
||
|
|
||
|
no_context:
|
||
|
__do_kernel_fault(mm, addr, esr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First Level Translation Fault Handler
|
||
|
*
|
||
|
* We enter here because the first level page table doesn't contain a valid
|
||
|
* entry for the address.
|
||
|
*
|
||
|
* If the address is in kernel space (>= TASK_SIZE), then we are probably
|
||
|
* faulting in the vmalloc() area.
|
||
|
*
|
||
|
* If the init_task's first level page tables contains the relevant entry, we
|
||
|
* copy the it to this task. If not, we send the process a signal, fixup the
|
||
|
* exception, or oops the kernel.
|
||
|
*
|
||
|
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
|
||
|
* or a critical region, and should only copy the information from the master
|
||
|
* page table, nothing more.
|
||
|
*/
|
||
|
static int __kprobes do_translation_fault(unsigned long addr,
|
||
|
unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
if (addr < TASK_SIZE)
|
||
|
return do_page_fault(addr, esr, regs);
|
||
|
|
||
|
do_bad_area(addr, esr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some section permission faults need to be handled gracefully. They can
|
||
|
* happen due to a __{get,put}_user during an oops.
|
||
|
*/
|
||
|
static int do_sect_fault(unsigned long addr, unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
do_bad_area(addr, esr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This abort handler always returns "fault".
|
||
|
*/
|
||
|
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static struct fault_info {
|
||
|
int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
|
||
|
int sig;
|
||
|
int code;
|
||
|
const char *name;
|
||
|
} fault_info[] = {
|
||
|
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
|
||
|
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
|
||
|
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
|
||
|
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
|
||
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "input address range fault" },
|
||
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
||
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
||
|
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
||
|
{ do_bad, SIGBUS, 0, "reserved access flag fault" },
|
||
|
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
||
|
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
||
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
||
|
{ do_bad, SIGBUS, 0, "reserved permission fault" },
|
||
|
{ do_bad, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
||
|
{ do_sect_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
||
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous external abort" },
|
||
|
{ do_bad, SIGBUS, 0, "asynchronous external abort" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 18" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 19" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous parity error" },
|
||
|
{ do_bad, SIGBUS, 0, "asynchronous parity error" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 26" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 27" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
|
||
|
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 32" },
|
||
|
{ do_bad, SIGBUS, BUS_ADRALN, "alignment fault" },
|
||
|
{ do_bad, SIGBUS, 0, "debug event" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 35" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 36" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 37" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 38" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 39" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 40" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 41" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 42" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 43" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 44" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 45" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 46" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 47" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 48" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 49" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 50" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 51" },
|
||
|
{ do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 53" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 54" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 55" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 56" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 57" },
|
||
|
{ do_bad, SIGBUS, 0, "implementation fault (coprocessor abort)" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 59" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 60" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 61" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 62" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 63" },
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Dispatch a data abort to the relevant handler.
|
||
|
*/
|
||
|
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
const struct fault_info *inf = fault_info + (esr & 63);
|
||
|
struct siginfo info;
|
||
|
|
||
|
if (!inf->fn(addr, esr, regs))
|
||
|
return;
|
||
|
|
||
|
pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
|
||
|
inf->name, esr, addr);
|
||
|
|
||
|
info.si_signo = inf->sig;
|
||
|
info.si_errno = 0;
|
||
|
info.si_code = inf->code;
|
||
|
info.si_addr = (void __user *)addr;
|
||
|
arm64_notify_die("", regs, &info, esr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle stack alignment exceptions.
|
||
|
*/
|
||
|
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
|
||
|
unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
struct siginfo info;
|
||
|
|
||
|
info.si_signo = SIGBUS;
|
||
|
info.si_errno = 0;
|
||
|
info.si_code = BUS_ADRALN;
|
||
|
info.si_addr = (void __user *)addr;
|
||
|
arm64_notify_die("", regs, &info, esr);
|
||
|
}
|
||
|
|
||
|
static struct fault_info debug_fault_info[] = {
|
||
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
||
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
||
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 3" },
|
||
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
||
|
{ do_bad, SIGTRAP, 0, "aarch32 vector catch" },
|
||
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
||
|
{ do_bad, SIGBUS, 0, "unknown 7" },
|
||
|
};
|
||
|
|
||
|
void __init hook_debug_fault_code(int nr,
|
||
|
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
||
|
int sig, int code, const char *name)
|
||
|
{
|
||
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
||
|
|
||
|
debug_fault_info[nr].fn = fn;
|
||
|
debug_fault_info[nr].sig = sig;
|
||
|
debug_fault_info[nr].code = code;
|
||
|
debug_fault_info[nr].name = name;
|
||
|
}
|
||
|
|
||
|
asmlinkage int __exception do_debug_exception(unsigned long addr,
|
||
|
unsigned int esr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
|
||
|
struct siginfo info;
|
||
|
|
||
|
if (!inf->fn(addr, esr, regs))
|
||
|
return 1;
|
||
|
|
||
|
pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
|
||
|
inf->name, esr, addr);
|
||
|
|
||
|
info.si_signo = inf->sig;
|
||
|
info.si_errno = 0;
|
||
|
info.si_code = inf->code;
|
||
|
info.si_addr = (void __user *)addr;
|
||
|
arm64_notify_die("", regs, &info, esr);
|
||
|
|
||
|
return 0;
|
||
|
}
|