linux/drivers/net/wireless/spectrum_cs.c

1048 lines
28 KiB
C
Raw Normal View History

/*
* Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
* Symbol Wireless Networker LA4100, CompactFlash cards by Socket
* Communications and Intel PRO/Wireless 2011B.
*
* The driver implements Symbol firmware download. The rest is handled
* in hermes.c and orinoco.c.
*
* Utilities for downloading the Symbol firmware are available at
* http://sourceforge.net/projects/orinoco/
*
* Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org>
* Portions based on orinoco_cs.c:
* Copyright (C) David Gibson, Linuxcare Australia
* Portions based on Spectrum24tDnld.c from original spectrum24 driver:
* Copyright (C) Symbol Technologies.
*
* See copyright notice in file orinoco.c.
*/
#define DRIVER_NAME "spectrum_cs"
#define PFX DRIVER_NAME ": "
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>
#include "orinoco.h"
static unsigned char *primsym;
static unsigned char *secsym;
static const char primary_fw_name[] = "symbol_sp24t_prim_fw";
static const char secondary_fw_name[] = "symbol_sp24t_sec_fw";
/********************************************************************/
/* Module stuff */
/********************************************************************/
MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>");
MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader");
MODULE_LICENSE("Dual MPL/GPL");
/* Module parameters */
/* Some D-Link cards have buggy CIS. They do work at 5v properly, but
* don't have any CIS entry for it. This workaround it... */
static int ignore_cis_vcc; /* = 0 */
module_param(ignore_cis_vcc, int, 0);
MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket");
/********************************************************************/
/* Magic constants */
/********************************************************************/
/*
* The dev_info variable is the "key" that is used to match up this
* device driver with appropriate cards, through the card
* configuration database.
*/
static dev_info_t dev_info = DRIVER_NAME;
/********************************************************************/
/* Data structures */
/********************************************************************/
/* PCMCIA specific device information (goes in the card field of
* struct orinoco_private */
struct orinoco_pccard {
dev_link_t link;
dev_node_t node;
};
/********************************************************************/
/* Function prototypes */
/********************************************************************/
static void spectrum_cs_release(dev_link_t *link);
static void spectrum_cs_detach(struct pcmcia_device *p_dev);
/********************************************************************/
/* Firmware downloader */
/********************************************************************/
/* Position of PDA in the adapter memory */
#define EEPROM_ADDR 0x3000
#define EEPROM_LEN 0x200
#define PDA_OFFSET 0x100
#define PDA_ADDR (EEPROM_ADDR + PDA_OFFSET)
#define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2)
/* Constants for the CISREG_CCSR register */
#define HCR_RUN 0x07 /* run firmware after reset */
#define HCR_IDLE 0x0E /* don't run firmware after reset */
#define HCR_MEM16 0x10 /* memory width bit, should be preserved */
/*
* AUX port access. To unlock the AUX port write the access keys to the
* PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL
* register. Then read it and make sure it's HERMES_AUX_ENABLED.
*/
#define HERMES_AUX_ENABLE 0x8000 /* Enable auxiliary port access */
#define HERMES_AUX_DISABLE 0x4000 /* Disable to auxiliary port access */
#define HERMES_AUX_ENABLED 0xC000 /* Auxiliary port is open */
#define HERMES_AUX_PW0 0xFE01
#define HERMES_AUX_PW1 0xDC23
#define HERMES_AUX_PW2 0xBA45
/* End markers */
#define PDI_END 0x00000000 /* End of PDA */
#define BLOCK_END 0xFFFFFFFF /* Last image block */
#define TEXT_END 0x1A /* End of text header */
/*
* The following structures have little-endian fields denoted by
* the leading underscore. Don't access them directly - use inline
* functions defined below.
*/
/*
* The binary image to be downloaded consists of series of data blocks.
* Each block has the following structure.
*/
struct dblock {
__le32 _addr; /* adapter address where to write the block */
__le16 _len; /* length of the data only, in bytes */
char data[0]; /* data to be written */
} __attribute__ ((packed));
/*
* Plug Data References are located in in the image after the last data
* block. They refer to areas in the adapter memory where the plug data
* items with matching ID should be written.
*/
struct pdr {
__le32 _id; /* record ID */
__le32 _addr; /* adapter address where to write the data */
__le32 _len; /* expected length of the data, in bytes */
char next[0]; /* next PDR starts here */
} __attribute__ ((packed));
/*
* Plug Data Items are located in the EEPROM read from the adapter by
* primary firmware. They refer to the device-specific data that should
* be plugged into the secondary firmware.
*/
struct pdi {
__le16 _len; /* length of ID and data, in words */
__le16 _id; /* record ID */
char data[0]; /* plug data */
} __attribute__ ((packed));;
/* Functions for access to little-endian data */
static inline u32
dblock_addr(const struct dblock *blk)
{
return le32_to_cpu(blk->_addr);
}
static inline u32
dblock_len(const struct dblock *blk)
{
return le16_to_cpu(blk->_len);
}
static inline u32
pdr_id(const struct pdr *pdr)
{
return le32_to_cpu(pdr->_id);
}
static inline u32
pdr_addr(const struct pdr *pdr)
{
return le32_to_cpu(pdr->_addr);
}
static inline u32
pdr_len(const struct pdr *pdr)
{
return le32_to_cpu(pdr->_len);
}
static inline u32
pdi_id(const struct pdi *pdi)
{
return le16_to_cpu(pdi->_id);
}
/* Return length of the data only, in bytes */
static inline u32
pdi_len(const struct pdi *pdi)
{
return 2 * (le16_to_cpu(pdi->_len) - 1);
}
/* Set address of the auxiliary port */
static inline void
spectrum_aux_setaddr(hermes_t *hw, u32 addr)
{
hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7));
hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F));
}
/* Open access to the auxiliary port */
static int
spectrum_aux_open(hermes_t *hw)
{
int i;
/* Already open? */
if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED)
return 0;
hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0);
hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1);
hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2);
hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE);
for (i = 0; i < 20; i++) {
udelay(10);
if (hermes_read_reg(hw, HERMES_CONTROL) ==
HERMES_AUX_ENABLED)
return 0;
}
return -EBUSY;
}
#define CS_CHECK(fn, ret) \
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
/*
* Reset the card using configuration registers COR and CCSR.
* If IDLE is 1, stop the firmware, so that it can be safely rewritten.
*/
static int
spectrum_reset(dev_link_t *link, int idle)
{
int last_ret, last_fn;
conf_reg_t reg;
u_int save_cor;
/* Doing it if hardware is gone is guaranteed crash */
if (!(link->state & DEV_CONFIG))
return -ENODEV;
/* Save original COR value */
reg.Function = 0;
reg.Action = CS_READ;
reg.Offset = CISREG_COR;
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link->handle, &reg));
save_cor = reg.Value;
/* Soft-Reset card */
reg.Action = CS_WRITE;
reg.Offset = CISREG_COR;
reg.Value = (save_cor | COR_SOFT_RESET);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link->handle, &reg));
udelay(1000);
/* Read CCSR */
reg.Action = CS_READ;
reg.Offset = CISREG_CCSR;
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link->handle, &reg));
/*
* Start or stop the firmware. Memory width bit should be
* preserved from the value we've just read.
*/
reg.Action = CS_WRITE;
reg.Offset = CISREG_CCSR;
reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link->handle, &reg));
udelay(1000);
/* Restore original COR configuration index */
reg.Action = CS_WRITE;
reg.Offset = CISREG_COR;
reg.Value = (save_cor & ~COR_SOFT_RESET);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link->handle, &reg));
udelay(1000);
return 0;
cs_failed:
cs_error(link->handle, last_fn, last_ret);
return -ENODEV;
}
/*
* Scan PDR for the record with the specified RECORD_ID.
* If it's not found, return NULL.
*/
static struct pdr *
spectrum_find_pdr(struct pdr *first_pdr, u32 record_id)
{
struct pdr *pdr = first_pdr;
while (pdr_id(pdr) != PDI_END) {
/*
* PDR area is currently not terminated by PDI_END.
* It's followed by CRC records, which have the type
* field where PDR has length. The type can be 0 or 1.
*/
if (pdr_len(pdr) < 2)
return NULL;
/* If the record ID matches, we are done */
if (pdr_id(pdr) == record_id)
return pdr;
pdr = (struct pdr *) pdr->next;
}
return NULL;
}
/* Process one Plug Data Item - find corresponding PDR and plug it */
static int
spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
{
struct pdr *pdr;
/* Find the PDI corresponding to this PDR */
pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi));
/* No match is found, safe to ignore */
if (!pdr)
return 0;
/* Lengths of the data in PDI and PDR must match */
if (pdi_len(pdi) != pdr_len(pdr))
return -EINVAL;
/* do the actual plugging */
spectrum_aux_setaddr(hw, pdr_addr(pdr));
hermes_write_words(hw, HERMES_AUXDATA, pdi->data,
pdi_len(pdi) / 2);
return 0;
}
/* Read PDA from the adapter */
static int
spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len)
{
int ret;
int pda_size;
/* Issue command to read EEPROM */
ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL);
if (ret)
return ret;
/* Open auxiliary port */
ret = spectrum_aux_open(hw);
if (ret)
return ret;
/* read PDA from EEPROM */
spectrum_aux_setaddr(hw, PDA_ADDR);
hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2);
/* Check PDA length */
pda_size = le16_to_cpu(pda[0]);
if (pda_size > pda_len)
return -EINVAL;
return 0;
}
/* Parse PDA and write the records into the adapter */
static int
spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block,
__le16 *pda)
{
int ret;
struct pdi *pdi;
struct pdr *first_pdr;
const struct dblock *blk = first_block;
/* Skip all blocks to locate Plug Data References */
while (dblock_addr(blk) != BLOCK_END)
blk = (struct dblock *) &blk->data[dblock_len(blk)];
first_pdr = (struct pdr *) blk;
/* Go through every PDI and plug them into the adapter */
pdi = (struct pdi *) (pda + 2);
while (pdi_id(pdi) != PDI_END) {
ret = spectrum_plug_pdi(hw, first_pdr, pdi);
if (ret)
return ret;
/* Increment to the next PDI */
pdi = (struct pdi *) &pdi->data[pdi_len(pdi)];
}
return 0;
}
/* Load firmware blocks into the adapter */
static int
spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
{
const struct dblock *blk;
u32 blkaddr;
u32 blklen;
blk = first_block;
blkaddr = dblock_addr(blk);
blklen = dblock_len(blk);
while (dblock_addr(blk) != BLOCK_END) {
spectrum_aux_setaddr(hw, blkaddr);
hermes_write_words(hw, HERMES_AUXDATA, blk->data,
blklen / 2);
blk = (struct dblock *) &blk->data[blklen];
blkaddr = dblock_addr(blk);
blklen = dblock_len(blk);
}
return 0;
}
/*
* Process a firmware image - stop the card, load the firmware, reset
* the card and make sure it responds. For the secondary firmware take
* care of the PDA - read it and then write it on top of the firmware.
*/
static int
spectrum_dl_image(hermes_t *hw, dev_link_t *link,
const unsigned char *image)
{
int ret;
const unsigned char *ptr;
const struct dblock *first_block;
/* Plug Data Area (PDA) */
__le16 pda[PDA_WORDS];
/* Binary block begins after the 0x1A marker */
ptr = image;
while (*ptr++ != TEXT_END);
first_block = (const struct dblock *) ptr;
/* Read the PDA */
if (image != primsym) {
ret = spectrum_read_pda(hw, pda, sizeof(pda));
if (ret)
return ret;
}
/* Stop the firmware, so that it can be safely rewritten */
ret = spectrum_reset(link, 1);
if (ret)
return ret;
/* Program the adapter with new firmware */
ret = spectrum_load_blocks(hw, first_block);
if (ret)
return ret;
/* Write the PDA to the adapter */
if (image != primsym) {
ret = spectrum_apply_pda(hw, first_block, pda);
if (ret)
return ret;
}
/* Run the firmware */
ret = spectrum_reset(link, 0);
if (ret)
return ret;
/* Reset hermes chip and make sure it responds */
ret = hermes_init(hw);
/* hermes_reset() should return 0 with the secondary firmware */
if (image != primsym && ret != 0)
return -ENODEV;
/* And this should work with any firmware */
if (!hermes_present(hw))
return -ENODEV;
return 0;
}
/*
* Download the firmware into the card, this also does a PCMCIA soft
* reset on the card, to make sure it's in a sane state.
*/
static int
spectrum_dl_firmware(hermes_t *hw, dev_link_t *link)
{
int ret;
client_handle_t handle = link->handle;
const struct firmware *fw_entry;
if (request_firmware(&fw_entry, primary_fw_name,
&handle_to_dev(handle)) == 0) {
primsym = fw_entry->data;
} else {
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
primary_fw_name);
return -ENOENT;
}
if (request_firmware(&fw_entry, secondary_fw_name,
&handle_to_dev(handle)) == 0) {
secsym = fw_entry->data;
} else {
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
secondary_fw_name);
return -ENOENT;
}
/* Load primary firmware */
ret = spectrum_dl_image(hw, link, primsym);
if (ret) {
printk(KERN_ERR PFX "Primary firmware download failed\n");
return ret;
}
/* Load secondary firmware */
ret = spectrum_dl_image(hw, link, secsym);
if (ret) {
printk(KERN_ERR PFX "Secondary firmware download failed\n");
}
return ret;
}
/********************************************************************/
/* Device methods */
/********************************************************************/
static int
spectrum_cs_hard_reset(struct orinoco_private *priv)
{
struct orinoco_pccard *card = priv->card;
dev_link_t *link = &card->link;
int err;
if (!hermes_present(&priv->hw)) {
/* The firmware needs to be reloaded */
if (spectrum_dl_firmware(&priv->hw, &card->link) != 0) {
printk(KERN_ERR PFX "Firmware download failed\n");
err = -ENODEV;
}
} else {
/* Soft reset using COR and HCR */
spectrum_reset(link, 0);
}
return 0;
}
/********************************************************************/
/* PCMCIA stuff */
/********************************************************************/
/*
* This creates an "instance" of the driver, allocating local data
* structures for one device. The device is registered with Card
* Services.
*
* The dev_link structure is initialized, but we don't actually
* configure the card at this point -- we wait until we receive a card
* insertion event. */
static dev_link_t *
spectrum_cs_attach(void)
{
struct net_device *dev;
struct orinoco_private *priv;
struct orinoco_pccard *card;
dev_link_t *link;
client_reg_t client_reg;
int ret;
dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset);
if (! dev)
return NULL;
priv = netdev_priv(dev);
card = priv->card;
/* Link both structures together */
link = &card->link;
link->priv = dev;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = orinoco_interrupt;
link->irq.Instance = dev;
/* General socket configuration defaults can go here. In this
* client, we assume very little, and rely on the CIS for
* almost everything. In most clients, many details (i.e.,
* number, sizes, and attributes of IO windows) are fixed by
* the nature of the device, and can be hard-wired here. */
link->conf.Attributes = 0;
link->conf.IntType = INT_MEMORY_AND_IO;
/* Register with Card Services */
/* FIXME: need a lock? */
link->next = NULL; /* not needed */
client_reg.dev_info = &dev_info;
client_reg.Version = 0x0210; /* FIXME: what does this mean? */
client_reg.event_callback_args.client_data = link;
ret = pcmcia_register_client(&link->handle, &client_reg);
if (ret != CS_SUCCESS) {
cs_error(link->handle, RegisterClient, ret);
spectrum_cs_detach(link->handle);
return NULL;
}
return link;
} /* spectrum_cs_attach */
/*
* This deletes a driver "instance". The device is de-registered with
* Card Services. If it has been released, all local data structures
* are freed. Otherwise, the structures will be freed when the device
* is released.
*/
static void spectrum_cs_detach(struct pcmcia_device *p_dev)
{
dev_link_t *link = dev_to_instance(p_dev);
struct net_device *dev = link->priv;
if (link->state & DEV_CONFIG)
spectrum_cs_release(link);
DEBUG(0, PFX "detach: link=%p link->dev=%p\n", link, link->dev);
if (link->dev) {
DEBUG(0, PFX "About to unregister net device %p\n",
dev);
unregister_netdev(dev);
}
free_orinocodev(dev);
} /* spectrum_cs_detach */
/*
* spectrum_cs_config() is scheduled to run after a CARD_INSERTION
* event is received, to configure the PCMCIA socket, and to make the
* device available to the system.
*/
static void
spectrum_cs_config(dev_link_t *link)
{
struct net_device *dev = link->priv;
client_handle_t handle = link->handle;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
u_char buf[64];
config_info_t conf;
cisinfo_t info;
tuple_t tuple;
cisparse_t parse;
void __iomem *mem;
CS_CHECK(ValidateCIS, pcmcia_validate_cis(handle, &info));
/*
* This reads the card's CONFIG tuple to find its
* configuration registers.
*/
tuple.DesiredTuple = CISTPL_CONFIG;
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(handle, &tuple));
CS_CHECK(GetTupleData, pcmcia_get_tuple_data(handle, &tuple));
CS_CHECK(ParseTuple, pcmcia_parse_tuple(handle, &tuple, &parse));
link->conf.ConfigBase = parse.config.base;
link->conf.Present = parse.config.rmask[0];
/* Configure card */
link->state |= DEV_CONFIG;
/* Look up the current Vcc */
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(handle, &conf));
link->conf.Vcc = conf.Vcc;
/*
* In this loop, we scan the CIS for configuration table
* entries, each of which describes a valid card
* configuration, including voltage, IO window, memory window,
* and interrupt settings.
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(handle, &tuple));
while (1) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_cftable_entry_t dflt = { .index = 0 };
if ( (pcmcia_get_tuple_data(handle, &tuple) != 0)
|| (pcmcia_parse_tuple(handle, &tuple, &parse) != 0))
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
dflt = *cfg;
if (cfg->index == 0)
goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
link->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA;
}
/* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
if (!ignore_cis_vcc)
goto next_entry;
}
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
if(!ignore_cis_vcc)
goto next_entry;
}
}
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp1 = link->conf.Vpp2 =
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp1 = link->conf.Vpp2 =
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
/* Do we need to allocate an interrupt? */
link->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
cistpl_io_t *io =
(cfg->io.nwin) ? &cfg->io : &dflt.io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 =
IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 =
IO_DATA_PATH_WIDTH_8;
link->io.IOAddrLines =
io->flags & CISTPL_IO_LINES_MASK;
link->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) {
link->io.Attributes2 =
link->io.Attributes1;
link->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len;
}
/* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link->handle, &link->io) != 0)
goto next_entry;
}
/* If we got this far, we're cool! */
break;
next_entry:
if (link->io.NumPorts1)
pcmcia_release_io(link->handle, &link->io);
last_ret = pcmcia_get_next_tuple(handle, &tuple);
if (last_ret == CS_NO_MORE_ITEMS) {
printk(KERN_ERR PFX "GetNextTuple(): No matching "
"CIS configuration. Maybe you need the "
"ignore_cis_vcc=1 parameter.\n");
goto cs_failed;
}
}
/*
* Allocate an interrupt line. Note that this does not assign
* a handler to the interrupt, unless the 'Handler' member of
* the irq structure is initialized.
*/
CS_CHECK(RequestIRQ, pcmcia_request_irq(link->handle, &link->irq));
/* We initialize the hermes structure before completing PCMCIA
* configuration just in case the interrupt handler gets
* called. */
mem = ioport_map(link->io.BasePort1, link->io.NumPorts1);
if (!mem)
goto cs_failed;
hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING);
/*
* This actually configures the PCMCIA socket -- setting up
* the I/O windows and the interrupt mapping, and putting the
* card and host interface into "Memory and IO" mode.
*/
CS_CHECK(RequestConfiguration,
pcmcia_request_configuration(link->handle, &link->conf));
/* Ok, we have the configuration, prepare to register the netdev */
dev->base_addr = link->io.BasePort1;
dev->irq = link->irq.AssignedIRQ;
SET_MODULE_OWNER(dev);
card->node.major = card->node.minor = 0;
/* Reset card and download firmware */
if (spectrum_cs_hard_reset(priv) != 0) {
goto failed;
}
SET_NETDEV_DEV(dev, &handle_to_dev(handle));
/* Tell the stack we exist */
if (register_netdev(dev) != 0) {
printk(KERN_ERR PFX "register_netdev() failed\n");
goto failed;
}
/* At this point, the dev_node_t structure(s) needs to be
* initialized and arranged in a linked list at link->dev. */
strcpy(card->node.dev_name, dev->name);
link->dev = &card->node; /* link->dev being non-NULL is also
used to indicate that the
net_device has been registered */
link->state &= ~DEV_CONFIG_PENDING;
/* Finally, report what we've done */
printk(KERN_DEBUG "%s: index 0x%02x: Vcc %d.%d",
dev->name, link->conf.ConfigIndex,
link->conf.Vcc / 10, link->conf.Vcc % 10);
if (link->conf.Vpp1)
printk(", Vpp %d.%d", link->conf.Vpp1 / 10,
link->conf.Vpp1 % 10);
printk(", irq %d", link->irq.AssignedIRQ);
if (link->io.NumPorts1)
printk(", io 0x%04x-0x%04x", link->io.BasePort1,
link->io.BasePort1 + link->io.NumPorts1 - 1);
if (link->io.NumPorts2)
printk(" & 0x%04x-0x%04x", link->io.BasePort2,
link->io.BasePort2 + link->io.NumPorts2 - 1);
printk("\n");
return;
cs_failed:
cs_error(link->handle, last_fn, last_ret);
failed:
spectrum_cs_release(link);
} /* spectrum_cs_config */
/*
* After a card is removed, spectrum_cs_release() will unregister the
* device, and release the PCMCIA configuration. If the device is
* still open, this will be postponed until it is closed.
*/
static void
spectrum_cs_release(dev_link_t *link)
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
unsigned long flags;
/* We're committed to taking the device away now, so mark the
* hardware as unavailable */
spin_lock_irqsave(&priv->lock, flags);
priv->hw_unavailable++;
spin_unlock_irqrestore(&priv->lock, flags);
/* Don't bother checking to see if these succeed or not */
pcmcia_release_configuration(link->handle);
if (link->io.NumPorts1)
pcmcia_release_io(link->handle, &link->io);
if (link->irq.AssignedIRQ)
pcmcia_release_irq(link->handle, &link->irq);
link->state &= ~DEV_CONFIG;
if (priv->hw.iobase)
ioport_unmap(priv->hw.iobase);
} /* spectrum_cs_release */
static int
spectrum_cs_suspend(struct pcmcia_device *p_dev)
{
dev_link_t *link = dev_to_instance(p_dev);
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
unsigned long flags;
int err = 0;
link->state |= DEV_SUSPEND;
/* Mark the device as stopped, to block IO until later */
if (link->state & DEV_CONFIG) {
spin_lock_irqsave(&priv->lock, flags);
err = __orinoco_down(dev);
if (err)
printk(KERN_WARNING "%s: Error %d downing interface\n",
dev->name, err);
netif_device_detach(dev);
priv->hw_unavailable++;
spin_unlock_irqrestore(&priv->lock, flags);
pcmcia_release_configuration(link->handle);
}
return 0;
}
static int
spectrum_cs_resume(struct pcmcia_device *p_dev)
{
dev_link_t *link = dev_to_instance(p_dev);
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
link->state &= ~DEV_SUSPEND;
if (link->state & DEV_CONFIG) {
/* FIXME: should we double check that this is
* the same card as we had before */
pcmcia_request_configuration(link->handle, &link->conf);
netif_device_attach(dev);
priv->hw_unavailable--;
schedule_work(&priv->reset_work);
}
return 0;
}
/*
* The card status event handler. Mostly, this schedules other stuff
* to run after an event is received.
*/
static int
spectrum_cs_event(event_t event, int priority,
event_callback_args_t * args)
{
dev_link_t *link = args->client_data;
switch (event) {
case CS_EVENT_CARD_INSERTION:
link->state |= DEV_PRESENT | DEV_CONFIG_PENDING;
spectrum_cs_config(link);
break;
}
return 0;
} /* spectrum_cs_event */
/********************************************************************/
/* Module initialization */
/********************************************************************/
/* Can't be declared "const" or the whole __initdata section will
* become const */
static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
" (Pavel Roskin <proski@gnu.org>,"
" David Gibson <hermes@gibson.dropbear.id.au>, et al)";
static struct pcmcia_device_id spectrum_cs_ids[] = {
PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4100 */
PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids);
static struct pcmcia_driver orinoco_driver = {
.owner = THIS_MODULE,
.drv = {
.name = DRIVER_NAME,
},
.attach = spectrum_cs_attach,
.remove = spectrum_cs_detach,
.suspend = spectrum_cs_suspend,
.resume = spectrum_cs_resume,
.event = spectrum_cs_event,
.id_table = spectrum_cs_ids,
};
static int __init
init_spectrum_cs(void)
{
printk(KERN_DEBUG "%s\n", version);
return pcmcia_register_driver(&orinoco_driver);
}
static void __exit
exit_spectrum_cs(void)
{
pcmcia_unregister_driver(&orinoco_driver);
}
module_init(init_spectrum_cs);
module_exit(exit_spectrum_cs);