linux/arch/sparc64/kernel/irq.c

994 lines
24 KiB
C
Raw Normal View History

/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/sbus.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
/* UPA nodes send interrupt packet to UltraSparc with first data reg
* value low 5 (7 on Starfire) bits holding the IRQ identifier being
* delivered. We must translate this into a non-vector IRQ so we can
* set the softint on this cpu.
*
* To make processing these packets efficient and race free we use
* an array of irq buckets below. The interrupt vector handler in
* entry.S feeds incoming packets into per-cpu pil-indexed lists.
* The IVEC handler does not need to act atomically, the PIL dispatch
* code uses CAS to get an atomic snapshot of the list and clear it
* at the same time.
*
* If you make changes to ino_bucket, please update hand coded assembler
* of the vectored interrupt trap handler(s) in entry.S and sun4v_ivec.S
*/
struct ino_bucket {
/* Next handler in per-CPU IRQ worklist. We know that
* bucket pointers have the high 32-bits clear, so to
* save space we only store the bits we need.
*/
/*0x00*/unsigned int irq_chain;
/* Virtual interrupt number assigned to this INO. */
/*0x04*/unsigned int virt_irq;
};
#define NUM_IVECS (IMAP_INR + 1)
struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
#define __irq_ino(irq) \
(((struct ino_bucket *)(unsigned long)(irq)) - &ivector_table[0])
#define __bucket(irq) ((struct ino_bucket *)(unsigned long)(irq))
#define __irq(bucket) ((unsigned int)(unsigned long)(bucket))
/* This has to be in the main kernel image, it cannot be
* turned into per-cpu data. The reason is that the main
* kernel image is locked into the TLB and this structure
* is accessed from the vectored interrupt trap handler. If
* access to this structure takes a TLB miss it could cause
* the 5-level sparc v9 trap stack to overflow.
*/
#define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
static unsigned int virt_to_real_irq_table[NR_IRQS];
static unsigned char virt_irq_alloc(unsigned int real_irq)
{
unsigned char ent;
BUILD_BUG_ON(NR_IRQS >= 256);
for (ent = 1; ent < NR_IRQS; ent++) {
if (!virt_to_real_irq_table[ent])
break;
}
if (ent >= NR_IRQS) {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
return 0;
}
virt_to_real_irq_table[ent] = real_irq;
return ent;
}
#ifdef CONFIG_PCI_MSI
static void virt_irq_free(unsigned int virt_irq)
{
unsigned int real_irq;
if (virt_irq >= NR_IRQS)
return;
real_irq = virt_to_real_irq_table[virt_irq];
virt_to_real_irq_table[virt_irq] = 0;
__bucket(real_irq)->virt_irq = 0;
}
#endif
static unsigned int virt_to_real_irq(unsigned char virt_irq)
{
return virt_to_real_irq_table[virt_irq];
}
/*
* /proc/interrupts printing:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto skip;
seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
#endif
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 09:24:36 +00:00
seq_printf(p, " %9s", irq_desc[i].chip->typename);
seq_printf(p, " %s", action->name);
for (action=action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
skip:
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);;
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
struct irq_handler_data {
unsigned long iclr;
unsigned long imap;
void (*pre_handler)(unsigned int, void *, void *);
void *pre_handler_arg1;
void *pre_handler_arg2;
};
static inline struct ino_bucket *virt_irq_to_bucket(unsigned int virt_irq)
{
unsigned int real_irq = virt_to_real_irq(virt_irq);
struct ino_bucket *bucket = NULL;
if (likely(real_irq))
bucket = __bucket(real_irq);
return bucket;
}
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int virt_irq)
{
cpumask_t mask = irq_desc[virt_irq].affinity;
int cpuid;
if (cpus_equal(mask, CPU_MASK_ALL)) {
static int irq_rover;
static DEFINE_SPINLOCK(irq_rover_lock);
unsigned long flags;
/* Round-robin distribution... */
do_round_robin:
spin_lock_irqsave(&irq_rover_lock, flags);
while (!cpu_online(irq_rover)) {
if (++irq_rover >= NR_CPUS)
irq_rover = 0;
}
cpuid = irq_rover;
do {
if (++irq_rover >= NR_CPUS)
irq_rover = 0;
} while (!cpu_online(irq_rover));
spin_unlock_irqrestore(&irq_rover_lock, flags);
} else {
cpumask_t tmp;
cpus_and(tmp, cpu_online_map, mask);
if (cpus_empty(tmp))
goto do_round_robin;
cpuid = first_cpu(tmp);
}
return cpuid;
}
#else
static int irq_choose_cpu(unsigned int virt_irq)
{
return real_hard_smp_processor_id();
}
#endif
static void sun4u_irq_enable(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(virt_irq);
imap = data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
}
}
static void sun4u_irq_disable(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data)) {
unsigned long imap = data->imap;
u32 tmp = upa_readq(imap);
tmp &= ~IMAP_VALID;
upa_writeq(tmp, imap);
}
}
static void sun4u_irq_end(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_desc *desc = irq_desc + virt_irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(data))
upa_writeq(ICLR_IDLE, data->iclr);
}
static void sun4v_irq_enable(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
if (likely(bucket)) {
unsigned long cpuid;
int err;
cpuid = irq_choose_cpu(virt_irq);
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk("sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk("sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
}
static void sun4v_irq_disable(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
if (likely(bucket)) {
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk("sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
}
#ifdef CONFIG_PCI_MSI
static void sun4v_msi_enable(unsigned int virt_irq)
{
sun4v_irq_enable(virt_irq);
unmask_msi_irq(virt_irq);
}
static void sun4v_msi_disable(unsigned int virt_irq)
{
mask_msi_irq(virt_irq);
sun4v_irq_disable(virt_irq);
}
#endif
static void sun4v_irq_end(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
struct irq_desc *desc = irq_desc + virt_irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(bucket)) {
int err;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk("sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
}
static void sun4v_virq_enable(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
if (likely(bucket)) {
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(virt_irq);
dev_handle = ino & IMAP_IGN;
dev_ino = ino & IMAP_INO;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk("sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk("sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk("sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
}
static void sun4v_virq_disable(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
if (likely(bucket)) {
unsigned long dev_handle, dev_ino;
int err;
dev_handle = ino & IMAP_IGN;
dev_ino = ino & IMAP_INO;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk("sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
}
static void sun4v_virq_end(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = bucket - &ivector_table[0];
struct irq_desc *desc = irq_desc + virt_irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(bucket)) {
unsigned long dev_handle, dev_ino;
int err;
dev_handle = ino & IMAP_IGN;
dev_ino = ino & IMAP_INO;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk("sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
}
static void run_pre_handler(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data->pre_handler)) {
data->pre_handler(__irq_ino(__irq(bucket)),
data->pre_handler_arg1,
data->pre_handler_arg2);
}
}
static struct irq_chip sun4u_irq = {
.typename = "sun4u",
.enable = sun4u_irq_enable,
.disable = sun4u_irq_disable,
.end = sun4u_irq_end,
};
static struct irq_chip sun4u_irq_ack = {
.typename = "sun4u+ack",
.enable = sun4u_irq_enable,
.disable = sun4u_irq_disable,
.ack = run_pre_handler,
.end = sun4u_irq_end,
};
static struct irq_chip sun4v_irq = {
.typename = "sun4v",
.enable = sun4v_irq_enable,
.disable = sun4v_irq_disable,
.end = sun4v_irq_end,
};
static struct irq_chip sun4v_irq_ack = {
.typename = "sun4v+ack",
.enable = sun4v_irq_enable,
.disable = sun4v_irq_disable,
.ack = run_pre_handler,
.end = sun4v_irq_end,
};
#ifdef CONFIG_PCI_MSI
static struct irq_chip sun4v_msi = {
.typename = "sun4v+msi",
.mask = mask_msi_irq,
.unmask = unmask_msi_irq,
.enable = sun4v_msi_enable,
.disable = sun4v_msi_disable,
.ack = run_pre_handler,
.end = sun4v_irq_end,
};
#endif
static struct irq_chip sun4v_virq = {
.typename = "vsun4v",
.enable = sun4v_virq_enable,
.disable = sun4v_virq_disable,
.end = sun4v_virq_end,
};
static struct irq_chip sun4v_virq_ack = {
.typename = "vsun4v+ack",
.enable = sun4v_virq_enable,
.disable = sun4v_virq_disable,
.ack = run_pre_handler,
.end = sun4v_virq_end,
};
void irq_install_pre_handler(int virt_irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_chip *chip;
data->pre_handler = func;
data->pre_handler_arg1 = arg1;
data->pre_handler_arg2 = arg2;
chip = get_irq_chip(virt_irq);
if (chip == &sun4u_irq_ack ||
chip == &sun4v_irq_ack ||
chip == &sun4v_virq_ack
#ifdef CONFIG_PCI_MSI
|| chip == &sun4v_msi
#endif
)
return;
chip = (chip == &sun4u_irq ?
&sun4u_irq_ack :
(chip == &sun4v_irq ?
&sun4v_irq_ack : &sun4v_virq_ack));
set_irq_chip(virt_irq, chip);
}
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
if (!bucket->virt_irq) {
bucket->virt_irq = virt_irq_alloc(__irq(bucket));
set_irq_chip(bucket->virt_irq, &sun4u_irq);
}
data = get_irq_chip_data(bucket->virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(bucket->virt_irq, data);
data->imap = imap;
data->iclr = iclr;
out:
return bucket->virt_irq;
}
static unsigned int sun4v_build_common(unsigned long sysino,
struct irq_chip *chip)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
BUG_ON(tlb_type != hypervisor);
bucket = &ivector_table[sysino];
if (!bucket->virt_irq) {
bucket->virt_irq = virt_irq_alloc(__irq(bucket));
set_irq_chip(bucket->virt_irq, chip);
}
data = get_irq_chip_data(bucket->virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(bucket->virt_irq, data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
data->imap = ~0UL;
data->iclr = ~0UL;
out:
return bucket->virt_irq;
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
return sun4v_build_common(sysino, &sun4v_irq);
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
unsigned long sysino, hv_err;
BUG_ON(devhandle & ~IMAP_IGN);
BUG_ON(devino & ~IMAP_INO);
sysino = devhandle | devino;
hv_err = sun4v_vintr_set_cookie(devhandle, devino, sysino);
if (hv_err) {
prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
"err=%lu\n", devhandle, devino, hv_err);
prom_halt();
}
return sun4v_build_common(sysino, &sun4v_virq);
}
#ifdef CONFIG_PCI_MSI
unsigned int sun4v_build_msi(u32 devhandle, unsigned int *virt_irq_p,
unsigned int msi_start, unsigned int msi_end)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
unsigned long sysino;
unsigned int devino;
BUG_ON(tlb_type != hypervisor);
/* Find a free devino in the given range. */
for (devino = msi_start; devino < msi_end; devino++) {
sysino = sun4v_devino_to_sysino(devhandle, devino);
bucket = &ivector_table[sysino];
if (!bucket->virt_irq)
break;
}
if (devino >= msi_end)
return 0;
sysino = sun4v_devino_to_sysino(devhandle, devino);
bucket = &ivector_table[sysino];
bucket->virt_irq = virt_irq_alloc(__irq(bucket));
*virt_irq_p = bucket->virt_irq;
set_irq_chip(bucket->virt_irq, &sun4v_msi);
data = get_irq_chip_data(bucket->virt_irq);
if (unlikely(data))
return devino;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(bucket->virt_irq, data);
data->imap = ~0UL;
data->iclr = ~0UL;
return devino;
}
void sun4v_destroy_msi(unsigned int virt_irq)
{
virt_irq_free(virt_irq);
}
#endif
void ack_bad_irq(unsigned int virt_irq)
{
struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
unsigned int ino = 0xdeadbeef;
if (bucket)
ino = bucket - &ivector_table[0];
printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
ino, virt_irq);
}
void handler_irq(int irq, struct pt_regs *regs)
{
struct ino_bucket *bucket;
struct pt_regs *old_regs;
clear_softint(1 << irq);
old_regs = set_irq_regs(regs);
irq_enter();
/* Sliiiick... */
bucket = __bucket(xchg32(irq_work(smp_processor_id()), 0));
while (bucket) {
struct ino_bucket *next = __bucket(bucket->irq_chain);
bucket->irq_chain = 0;
__do_IRQ(bucket->virt_irq);
bucket = next;
}
irq_exit();
set_irq_regs(old_regs);
}
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (!strcmp(dp->name, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist = 0;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask, int use_bootmem)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
void *p = NULL;
if (use_bootmem) {
p = __alloc_bootmem_low(size, size, 0);
} else {
struct page *page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, order);
if (page)
p = page_address(page);
}
if (!p) {
prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask, int use_bootmem)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
void *p = NULL;
if (use_bootmem) {
p = __alloc_bootmem_low(size, size, 0);
} else {
struct page *page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, order);
if (page)
p = page_address(page);
}
if (!p) {
prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
{
#ifdef CONFIG_SMP
void *page;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
if (use_bootmem)
page = alloc_bootmem_low_pages(PAGE_SIZE);
else
page = (void *) get_zeroed_page(GFP_ATOMIC);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
prom_halt();
}
tb->cpu_mondo_block_pa = __pa(page);
tb->cpu_list_pa = __pa(page + 64);
#endif
}
/* Allocate and register the mondo and error queues for this cpu. */
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
{
struct trap_per_cpu *tb = &trap_block[cpu];
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
if (alloc) {
alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask, use_bootmem);
alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask, use_bootmem);
alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask, use_bootmem);
alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask, use_bootmem);
alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask, use_bootmem);
alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, tb->nonresum_qmask, use_bootmem);
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
init_cpu_send_mondo_info(tb, use_bootmem);
}
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
if (load) {
if (cpu != hard_smp_processor_id()) {
prom_printf("SUN4V: init mondo on cpu %d not %d\n",
cpu, hard_smp_processor_id());
prom_halt();
}
sun4v_register_mondo_queues(cpu);
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
map_prom_timers();
kill_prom_timer();
memset(&ivector_table[0], 0, sizeof(ivector_table));
if (tlb_type == hypervisor)
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_desc[0].action = &timer_irq_action;
}