linux/sound/soc/soc-core.c

1588 lines
43 KiB
C
Raw Normal View History

[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
/*
* soc-core.c -- ALSA SoC Audio Layer
*
* Copyright 2005 Wolfson Microelectronics PLC.
* Copyright 2005 Openedhand Ltd.
*
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
* Author: Liam Girdwood
* liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
* with code, comments and ideas from :-
* Richard Purdie <richard@openedhand.com>
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Revision history
* 12th Aug 2005 Initial version.
* 25th Oct 2005 Working Codec, Interface and Platform registration.
*
* TODO:
* o Add hw rules to enforce rates, etc.
* o More testing with other codecs/machines.
* o Add more codecs and platforms to ensure good API coverage.
* o Support TDM on PCM and I2S
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/platform_device.h>
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
/* debug */
#define SOC_DEBUG 0
#if SOC_DEBUG
#define dbg(format, arg...) printk(format, ## arg)
#else
#define dbg(format, arg...)
#endif
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
static DEFINE_MUTEX(pcm_mutex);
static DEFINE_MUTEX(io_mutex);
static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
/*
* This is a timeout to do a DAPM powerdown after a stream is closed().
* It can be used to eliminate pops between different playback streams, e.g.
* between two audio tracks.
*/
static int pmdown_time = 5000;
module_param(pmdown_time, int, 0);
MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
/*
* This function forces any delayed work to be queued and run.
*/
static int run_delayed_work(struct delayed_work *dwork)
{
int ret;
/* cancel any work waiting to be queued. */
ret = cancel_delayed_work(dwork);
/* if there was any work waiting then we run it now and
* wait for it's completion */
if (ret) {
schedule_delayed_work(dwork, 0);
flush_scheduled_work();
}
return ret;
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
#ifdef CONFIG_SND_SOC_AC97_BUS
/* unregister ac97 codec */
static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
{
if (codec->ac97->dev.bus)
device_unregister(&codec->ac97->dev);
return 0;
}
/* stop no dev release warning */
static void soc_ac97_device_release(struct device *dev){}
/* register ac97 codec to bus */
static int soc_ac97_dev_register(struct snd_soc_codec *codec)
{
int err;
codec->ac97->dev.bus = &ac97_bus_type;
codec->ac97->dev.parent = NULL;
codec->ac97->dev.release = soc_ac97_device_release;
snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
codec->card->number, 0, codec->name);
err = device_register(&codec->ac97->dev);
if (err < 0) {
snd_printk(KERN_ERR "Can't register ac97 bus\n");
codec->ac97->dev.bus = NULL;
return err;
}
return 0;
}
#endif
static inline const char* get_dai_name(int type)
{
switch(type) {
case SND_SOC_DAI_AC97:
return "AC97";
case SND_SOC_DAI_I2S:
return "I2S";
case SND_SOC_DAI_PCM:
return "PCM";
}
return NULL;
}
/*
* Called by ALSA when a PCM substream is opened, the runtime->hw record is
* then initialized and any private data can be allocated. This also calls
* startup for the cpu DAI, platform, machine and codec DAI.
*/
static int soc_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
int ret = 0;
mutex_lock(&pcm_mutex);
/* startup the audio subsystem */
if (cpu_dai->ops.startup) {
ret = cpu_dai->ops.startup(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0) {
printk(KERN_ERR "asoc: can't open interface %s\n",
cpu_dai->name);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
goto out;
}
}
if (platform->pcm_ops->open) {
ret = platform->pcm_ops->open(substream);
if (ret < 0) {
printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
goto platform_err;
}
}
if (codec_dai->ops.startup) {
ret = codec_dai->ops.startup(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0) {
printk(KERN_ERR "asoc: can't open codec %s\n",
codec_dai->name);
goto codec_dai_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
}
if (machine->ops && machine->ops->startup) {
ret = machine->ops->startup(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0) {
printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
goto machine_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
}
/* Check that the codec and cpu DAI's are compatible */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
runtime->hw.rate_min =
max(codec_dai->playback.rate_min, cpu_dai->playback.rate_min);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.rate_max =
min(codec_dai->playback.rate_max, cpu_dai->playback.rate_max);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.channels_min =
max(codec_dai->playback.channels_min,
cpu_dai->playback.channels_min);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.channels_max =
min(codec_dai->playback.channels_max,
cpu_dai->playback.channels_max);
runtime->hw.formats =
codec_dai->playback.formats & cpu_dai->playback.formats;
runtime->hw.rates =
codec_dai->playback.rates & cpu_dai->playback.rates;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
} else {
runtime->hw.rate_min =
max(codec_dai->capture.rate_min, cpu_dai->capture.rate_min);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.rate_max =
min(codec_dai->capture.rate_max, cpu_dai->capture.rate_max);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.channels_min =
max(codec_dai->capture.channels_min,
cpu_dai->capture.channels_min);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
runtime->hw.channels_max =
min(codec_dai->capture.channels_max,
cpu_dai->capture.channels_max);
runtime->hw.formats =
codec_dai->capture.formats & cpu_dai->capture.formats;
runtime->hw.rates =
codec_dai->capture.rates & cpu_dai->capture.rates;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
snd_pcm_limit_hw_rates(runtime);
if (!runtime->hw.rates) {
printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
codec_dai->name, cpu_dai->name);
goto machine_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (!runtime->hw.formats) {
printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
codec_dai->name, cpu_dai->name);
goto machine_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
codec_dai->name, cpu_dai->name);
goto machine_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
dbg("asoc: %s <-> %s info:\n",codec_dai->name, cpu_dai->name);
dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
runtime->hw.channels_max);
dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
runtime->hw.rate_max);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
cpu_dai->playback.active = codec_dai->playback.active = 1;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
else
cpu_dai->capture.active = codec_dai->capture.active = 1;
cpu_dai->active = codec_dai->active = 1;
cpu_dai->runtime = runtime;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
socdev->codec->active++;
mutex_unlock(&pcm_mutex);
return 0;
machine_err:
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (machine->ops && machine->ops->shutdown)
machine->ops->shutdown(substream);
codec_dai_err:
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (platform->pcm_ops->close)
platform->pcm_ops->close(substream);
platform_err:
if (cpu_dai->ops.shutdown)
cpu_dai->ops.shutdown(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
out:
mutex_unlock(&pcm_mutex);
return ret;
}
/*
* Power down the audio subsytem pmdown_time msecs after close is called.
* This is to ensure there are no pops or clicks in between any music tracks
* due to DAPM power cycling.
*/
static void close_delayed_work(struct work_struct *work)
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
{
struct snd_soc_device *socdev =
container_of(work, struct snd_soc_device, delayed_work.work);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_codec *codec = socdev->codec;
struct snd_soc_codec_dai *codec_dai;
int i;
mutex_lock(&pcm_mutex);
for(i = 0; i < codec->num_dai; i++) {
codec_dai = &codec->dai[i];
dbg("pop wq checking: %s status: %s waiting: %s\n",
codec_dai->playback.stream_name,
codec_dai->playback.active ? "active" : "inactive",
codec_dai->pop_wait ? "yes" : "no");
/* are we waiting on this codec DAI stream */
if (codec_dai->pop_wait == 1) {
codec_dai->pop_wait = 0;
snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
SND_SOC_DAPM_STREAM_STOP);
/* power down the codec power domain if no longer active */
if (codec->active == 0) {
dbg("pop wq D3 %s %s\n", codec->name,
codec_dai->playback.stream_name);
if (codec->dapm_event)
codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
}
}
}
mutex_unlock(&pcm_mutex);
}
/*
* Called by ALSA when a PCM substream is closed. Private data can be
* freed here. The cpu DAI, codec DAI, machine and platform are also
* shutdown.
*/
static int soc_codec_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_codec *codec = socdev->codec;
mutex_lock(&pcm_mutex);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
cpu_dai->playback.active = codec_dai->playback.active = 0;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
else
cpu_dai->capture.active = codec_dai->capture.active = 0;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (codec_dai->playback.active == 0 &&
codec_dai->capture.active == 0) {
cpu_dai->active = codec_dai->active = 0;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
codec->active--;
if (cpu_dai->ops.shutdown)
cpu_dai->ops.shutdown(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (codec_dai->ops.shutdown)
codec_dai->ops.shutdown(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (machine->ops && machine->ops->shutdown)
machine->ops->shutdown(substream);
if (platform->pcm_ops->close)
platform->pcm_ops->close(substream);
cpu_dai->runtime = NULL;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* start delayed pop wq here for playback streams */
codec_dai->pop_wait = 1;
schedule_delayed_work(&socdev->delayed_work,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
msecs_to_jiffies(pmdown_time));
} else {
/* capture streams can be powered down now */
snd_soc_dapm_stream_event(codec,
codec_dai->capture.stream_name, SND_SOC_DAPM_STREAM_STOP);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (codec->active == 0 && codec_dai->pop_wait == 0){
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (codec->dapm_event)
codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
}
}
mutex_unlock(&pcm_mutex);
return 0;
}
/*
* Called by ALSA when the PCM substream is prepared, can set format, sample
* rate, etc. This function is non atomic and can be called multiple times,
* it can refer to the runtime info.
*/
static int soc_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_codec *codec = socdev->codec;
int ret = 0;
mutex_lock(&pcm_mutex);
if (machine->ops && machine->ops->prepare) {
ret = machine->ops->prepare(substream);
if (ret < 0) {
printk(KERN_ERR "asoc: machine prepare error\n");
goto out;
}
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (platform->pcm_ops->prepare) {
ret = platform->pcm_ops->prepare(substream);
if (ret < 0) {
printk(KERN_ERR "asoc: platform prepare error\n");
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
goto out;
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (codec_dai->ops.prepare) {
ret = codec_dai->ops.prepare(substream);
if (ret < 0) {
printk(KERN_ERR "asoc: codec DAI prepare error\n");
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
goto out;
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (cpu_dai->ops.prepare) {
ret = cpu_dai->ops.prepare(substream);
if (ret < 0) {
printk(KERN_ERR "asoc: cpu DAI prepare error\n");
goto out;
}
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
/* we only want to start a DAPM playback stream if we are not waiting
* on an existing one stopping */
if (codec_dai->pop_wait) {
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
/* we are waiting for the delayed work to start */
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
snd_soc_dapm_stream_event(socdev->codec,
codec_dai->capture.stream_name,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
SND_SOC_DAPM_STREAM_START);
else {
codec_dai->pop_wait = 0;
cancel_delayed_work(&socdev->delayed_work);
if (codec_dai->dai_ops.digital_mute)
codec_dai->dai_ops.digital_mute(codec_dai, 0);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
} else {
/* no delayed work - do we need to power up codec */
if (codec->dapm_state != SNDRV_CTL_POWER_D0) {
if (codec->dapm_event)
codec->dapm_event(codec, SNDRV_CTL_POWER_D1);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_soc_dapm_stream_event(codec,
codec_dai->playback.stream_name,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
SND_SOC_DAPM_STREAM_START);
else
snd_soc_dapm_stream_event(codec,
codec_dai->capture.stream_name,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
SND_SOC_DAPM_STREAM_START);
if (codec->dapm_event)
codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
if (codec_dai->dai_ops.digital_mute)
codec_dai->dai_ops.digital_mute(codec_dai, 0);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
} else {
/* codec already powered - power on widgets */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_soc_dapm_stream_event(codec,
codec_dai->playback.stream_name,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
SND_SOC_DAPM_STREAM_START);
else
snd_soc_dapm_stream_event(codec,
codec_dai->capture.stream_name,
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
SND_SOC_DAPM_STREAM_START);
if (codec_dai->dai_ops.digital_mute)
codec_dai->dai_ops.digital_mute(codec_dai, 0);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
}
out:
mutex_unlock(&pcm_mutex);
return ret;
}
/*
* Called by ALSA when the hardware params are set by application. This
* function can also be called multiple times and can allocate buffers
* (using snd_pcm_lib_* ). It's non-atomic.
*/
static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
int ret = 0;
mutex_lock(&pcm_mutex);
if (machine->ops && machine->ops->hw_params) {
ret = machine->ops->hw_params(substream, params);
if (ret < 0) {
printk(KERN_ERR "asoc: machine hw_params failed\n");
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
goto out;
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (codec_dai->ops.hw_params) {
ret = codec_dai->ops.hw_params(substream, params);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0) {
printk(KERN_ERR "asoc: can't set codec %s hw params\n",
codec_dai->name);
goto codec_err;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
}
if (cpu_dai->ops.hw_params) {
ret = cpu_dai->ops.hw_params(substream, params);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0) {
printk(KERN_ERR "asoc: can't set interface %s hw params\n",
cpu_dai->name);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
goto interface_err;
}
}
if (platform->pcm_ops->hw_params) {
ret = platform->pcm_ops->hw_params(substream, params);
if (ret < 0) {
printk(KERN_ERR "asoc: can't set platform %s hw params\n",
platform->name);
goto platform_err;
}
}
out:
mutex_unlock(&pcm_mutex);
return ret;
platform_err:
if (cpu_dai->ops.hw_free)
cpu_dai->ops.hw_free(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
interface_err:
if (codec_dai->ops.hw_free)
codec_dai->ops.hw_free(substream);
codec_err:
if(machine->ops && machine->ops->hw_free)
machine->ops->hw_free(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
mutex_unlock(&pcm_mutex);
return ret;
}
/*
* Free's resources allocated by hw_params, can be called multiple times
*/
static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_codec *codec = socdev->codec;
mutex_lock(&pcm_mutex);
/* apply codec digital mute */
if (!codec->active && codec_dai->dai_ops.digital_mute)
codec_dai->dai_ops.digital_mute(codec_dai, 1);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
/* free any machine hw params */
if (machine->ops && machine->ops->hw_free)
machine->ops->hw_free(substream);
/* free any DMA resources */
if (platform->pcm_ops->hw_free)
platform->pcm_ops->hw_free(substream);
/* now free hw params for the DAI's */
if (codec_dai->ops.hw_free)
codec_dai->ops.hw_free(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (cpu_dai->ops.hw_free)
cpu_dai->ops.hw_free(substream);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
mutex_unlock(&pcm_mutex);
return 0;
}
static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_dai_link *machine = rtd->dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
int ret;
if (codec_dai->ops.trigger) {
ret = codec_dai->ops.trigger(substream, cmd);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0)
return ret;
}
if (platform->pcm_ops->trigger) {
ret = platform->pcm_ops->trigger(substream, cmd);
if (ret < 0)
return ret;
}
if (cpu_dai->ops.trigger) {
ret = cpu_dai->ops.trigger(substream, cmd);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (ret < 0)
return ret;
}
return 0;
}
/* ASoC PCM operations */
static struct snd_pcm_ops soc_pcm_ops = {
.open = soc_pcm_open,
.close = soc_codec_close,
.hw_params = soc_pcm_hw_params,
.hw_free = soc_pcm_hw_free,
.prepare = soc_pcm_prepare,
.trigger = soc_pcm_trigger,
};
#ifdef CONFIG_PM
/* powers down audio subsystem for suspend */
static int soc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_machine *machine = socdev->machine;
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
struct snd_soc_codec *codec = socdev->codec;
int i;
/* mute any active DAC's */
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
if (dai->dai_ops.digital_mute && dai->playback.active)
dai->dai_ops.digital_mute(dai, 1);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
if (machine->suspend_pre)
machine->suspend_pre(pdev, state);
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
cpu_dai->suspend(pdev, cpu_dai);
if (platform->suspend)
platform->suspend(pdev, cpu_dai);
}
/* close any waiting streams and save state */
run_delayed_work(&socdev->delayed_work);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
codec->suspend_dapm_state = codec->dapm_state;
for(i = 0; i < codec->num_dai; i++) {
char *stream = codec->dai[i].playback.stream_name;
if (stream != NULL)
snd_soc_dapm_stream_event(codec, stream,
SND_SOC_DAPM_STREAM_SUSPEND);
stream = codec->dai[i].capture.stream_name;
if (stream != NULL)
snd_soc_dapm_stream_event(codec, stream,
SND_SOC_DAPM_STREAM_SUSPEND);
}
if (codec_dev->suspend)
codec_dev->suspend(pdev, state);
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
cpu_dai->suspend(pdev, cpu_dai);
}
if (machine->suspend_post)
machine->suspend_post(pdev, state);
return 0;
}
/* powers up audio subsystem after a suspend */
static int soc_resume(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_machine *machine = socdev->machine;
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
struct snd_soc_codec *codec = socdev->codec;
int i;
if (machine->resume_pre)
machine->resume_pre(pdev);
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
cpu_dai->resume(pdev, cpu_dai);
}
if (codec_dev->resume)
codec_dev->resume(pdev);
for(i = 0; i < codec->num_dai; i++) {
char* stream = codec->dai[i].playback.stream_name;
if (stream != NULL)
snd_soc_dapm_stream_event(codec, stream,
SND_SOC_DAPM_STREAM_RESUME);
stream = codec->dai[i].capture.stream_name;
if (stream != NULL)
snd_soc_dapm_stream_event(codec, stream,
SND_SOC_DAPM_STREAM_RESUME);
}
/* unmute any active DAC's */
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
if (dai->dai_ops.digital_mute && dai->playback.active)
dai->dai_ops.digital_mute(dai, 0);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
for(i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
cpu_dai->resume(pdev, cpu_dai);
if (platform->resume)
platform->resume(pdev, cpu_dai);
}
if (machine->resume_post)
machine->resume_post(pdev);
return 0;
}
#else
#define soc_suspend NULL
#define soc_resume NULL
#endif
/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
int ret = 0, i;
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_machine *machine = socdev->machine;
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
if (machine->probe) {
ret = machine->probe(pdev);
if(ret < 0)
return ret;
}
for (i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->probe) {
ret = cpu_dai->probe(pdev);
if(ret < 0)
goto cpu_dai_err;
}
}
if (codec_dev->probe) {
ret = codec_dev->probe(pdev);
if(ret < 0)
goto cpu_dai_err;
}
if (platform->probe) {
ret = platform->probe(pdev);
if(ret < 0)
goto platform_err;
}
/* DAPM stream work */
INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
return 0;
platform_err:
if (codec_dev->remove)
codec_dev->remove(pdev);
cpu_dai_err:
for (i--; i >= 0; i--) {
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->remove)
cpu_dai->remove(pdev);
}
if (machine->remove)
machine->remove(pdev);
return ret;
}
/* removes a socdev */
static int soc_remove(struct platform_device *pdev)
{
int i;
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_machine *machine = socdev->machine;
struct snd_soc_platform *platform = socdev->platform;
struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
run_delayed_work(&socdev->delayed_work);
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (platform->remove)
platform->remove(pdev);
if (codec_dev->remove)
codec_dev->remove(pdev);
for (i = 0; i < machine->num_links; i++) {
struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
if (cpu_dai->remove)
cpu_dai->remove(pdev);
}
if (machine->remove)
machine->remove(pdev);
return 0;
}
/* ASoC platform driver */
static struct platform_driver soc_driver = {
.driver = {
.name = "soc-audio",
},
.probe = soc_probe,
.remove = soc_remove,
.suspend = soc_suspend,
.resume = soc_resume,
};
/* create a new pcm */
static int soc_new_pcm(struct snd_soc_device *socdev,
struct snd_soc_dai_link *dai_link, int num)
{
struct snd_soc_codec *codec = socdev->codec;
struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
struct snd_soc_pcm_runtime *rtd;
struct snd_pcm *pcm;
char new_name[64];
int ret = 0, playback = 0, capture = 0;
rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
if (rtd == NULL)
return -ENOMEM;
rtd->dai = dai_link;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
rtd->socdev = socdev;
codec_dai->codec = socdev->codec;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
/* check client and interface hw capabilities */
sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
get_dai_name(cpu_dai->type), num);
if (codec_dai->playback.channels_min)
playback = 1;
if (codec_dai->capture.channels_min)
capture = 1;
ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
capture, &pcm);
if (ret < 0) {
printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
kfree(rtd);
return ret;
}
pcm->private_data = rtd;
soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
soc_pcm_ops.page = socdev->platform->pcm_ops->page;
if (playback)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
if (capture)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
if (ret < 0) {
printk(KERN_ERR "asoc: platform pcm constructor failed\n");
kfree(rtd);
return ret;
}
pcm->private_free = socdev->platform->pcm_free;
printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
cpu_dai->name);
return ret;
}
/* codec register dump */
static ssize_t codec_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct snd_soc_device *devdata = dev_get_drvdata(dev);
struct snd_soc_codec *codec = devdata->codec;
int i, step = 1, count = 0;
if (!codec->reg_cache_size)
return 0;
if (codec->reg_cache_step)
step = codec->reg_cache_step;
count += sprintf(buf, "%s registers\n", codec->name);
for(i = 0; i < codec->reg_cache_size; i += step)
count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));
return count;
}
static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
/**
* snd_soc_new_ac97_codec - initailise AC97 device
* @codec: audio codec
* @ops: AC97 bus operations
* @num: AC97 codec number
*
* Initialises AC97 codec resources for use by ad-hoc devices only.
*/
int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
struct snd_ac97_bus_ops *ops, int num)
{
mutex_lock(&codec->mutex);
codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
if (codec->ac97 == NULL) {
mutex_unlock(&codec->mutex);
return -ENOMEM;
}
codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
if (codec->ac97->bus == NULL) {
kfree(codec->ac97);
codec->ac97 = NULL;
mutex_unlock(&codec->mutex);
return -ENOMEM;
}
codec->ac97->bus->ops = ops;
codec->ac97->num = num;
mutex_unlock(&codec->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
/**
* snd_soc_free_ac97_codec - free AC97 codec device
* @codec: audio codec
*
* Frees AC97 codec device resources.
*/
void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
{
mutex_lock(&codec->mutex);
kfree(codec->ac97->bus);
kfree(codec->ac97);
codec->ac97 = NULL;
mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
/**
* snd_soc_update_bits - update codec register bits
* @codec: audio codec
* @reg: codec register
* @mask: register mask
* @value: new value
*
* Writes new register value.
*
* Returns 1 for change else 0.
*/
int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new;
mutex_lock(&io_mutex);
old = snd_soc_read(codec, reg);
new = (old & ~mask) | value;
change = old != new;
if (change)
snd_soc_write(codec, reg, new);
mutex_unlock(&io_mutex);
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits);
/**
* snd_soc_test_bits - test register for change
* @codec: audio codec
* @reg: codec register
* @mask: register mask
* @value: new value
*
* Tests a register with a new value and checks if the new value is
* different from the old value.
*
* Returns 1 for change else 0.
*/
int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new;
mutex_lock(&io_mutex);
old = snd_soc_read(codec, reg);
new = (old & ~mask) | value;
change = old != new;
mutex_unlock(&io_mutex);
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_test_bits);
/**
* snd_soc_new_pcms - create new sound card and pcms
* @socdev: the SoC audio device
*
* Create a new sound card based upon the codec and interface pcms.
*
* Returns 0 for success, else error.
*/
int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
{
struct snd_soc_codec *codec = socdev->codec;
struct snd_soc_machine *machine = socdev->machine;
int ret = 0, i;
mutex_lock(&codec->mutex);
/* register a sound card */
codec->card = snd_card_new(idx, xid, codec->owner, 0);
if (!codec->card) {
printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
codec->name);
mutex_unlock(&codec->mutex);
return -ENODEV;
}
codec->card->dev = socdev->dev;
codec->card->private_data = codec;
strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
/* create the pcms */
for(i = 0; i < machine->num_links; i++) {
ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
if (ret < 0) {
printk(KERN_ERR "asoc: can't create pcm %s\n",
machine->dai_link[i].stream_name);
mutex_unlock(&codec->mutex);
return ret;
}
}
mutex_unlock(&codec->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
/**
* snd_soc_register_card - register sound card
* @socdev: the SoC audio device
*
* Register a SoC sound card. Also registers an AC97 device if the
* codec is AC97 for ad hoc devices.
*
* Returns 0 for success, else error.
*/
int snd_soc_register_card(struct snd_soc_device *socdev)
{
struct snd_soc_codec *codec = socdev->codec;
struct snd_soc_machine *machine = socdev->machine;
int ret = 0, i, ac97 = 0, err = 0;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
mutex_lock(&codec->mutex);
for(i = 0; i < machine->num_links; i++) {
if (socdev->machine->dai_link[i].init) {
err = socdev->machine->dai_link[i].init(codec);
if (err < 0) {
printk(KERN_ERR "asoc: failed to init %s\n",
socdev->machine->dai_link[i].stream_name);
continue;
}
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
if (socdev->machine->dai_link[i].cpu_dai->type == SND_SOC_DAI_AC97)
ac97 = 1;
}
snprintf(codec->card->shortname, sizeof(codec->card->shortname),
"%s", machine->name);
snprintf(codec->card->longname, sizeof(codec->card->longname),
"%s (%s)", machine->name, codec->name);
ret = snd_card_register(codec->card);
if (ret < 0) {
printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
codec->name);
goto out;
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
}
#ifdef CONFIG_SND_SOC_AC97_BUS
if (ac97) {
ret = soc_ac97_dev_register(codec);
if (ret < 0) {
printk(KERN_ERR "asoc: AC97 device register failed\n");
snd_card_free(codec->card);
goto out;
}
}
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
#endif
err = snd_soc_dapm_sys_add(socdev->dev);
if (err < 0)
printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
err = device_create_file(socdev->dev, &dev_attr_codec_reg);
if (err < 0)
printk(KERN_WARNING "asoc: failed to add codec sysfs entries\n");
out:
[ALSA] ASoC: core code This patch is the core of ASoC functionality. The ASoC core is designed to provide the following features :- o Codec independence. Allows reuse of codec drivers on other platforms and machines. o Platform driver code reuse. Reuse of platform specific audio DMA and DAI drivers on different machines. o Easy I2S/PCM digital audio interface configuration between codec and SoC. Each SoC interface and codec registers their audio interface capabilities with the core at initialisation. The capabilities are subsequently matched and configured at run time for best power and performance when the application hw params are known. o Machine specific controls/operations: Allow machines to add controls and operations to the audio subsystem. e.g. volume control for speaker amp. To achieve all this, ASoC splits an embedded audio system into 3 components :- 1. Codec driver: The codec driver is platform independent and contains audio controls, audio interface capabilities, codec dapm and codec IO functions. 2. Platform driver: The platform driver contains the audio dma engine and audio interface drivers (e.g. I2S, AC97, PCM) for that platform. 3. Machine driver: The machine driver handles any machine specific controls and audio events. i.e. turning on an amp at start of playback. Signed-off-by: Frank Mandarino <fmandarino@endrelia.com> Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Liam Girdwood <liam.Girdwood@wolfsonmicro.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-10-06 16:31:09 +00:00
mutex_unlock(&codec->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_card);
/**
* snd_soc_free_pcms - free sound card and pcms
* @socdev: the SoC audio device
*
* Frees sound card and pcms associated with the socdev.
* Also unregister the codec if it is an AC97 device.
*/
void snd_soc_free_pcms(struct snd_soc_device *socdev)
{
struct snd_soc_codec *codec = socdev->codec;
mutex_lock(&codec->mutex);
#ifdef CONFIG_SND_SOC_AC97_BUS
if (codec->ac97)
soc_ac97_dev_unregister(codec);
#endif
if (codec->card)
snd_card_free(codec->card);
device_remove_file(socdev->dev, &dev_attr_codec_reg);
mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
/**
* snd_soc_set_runtime_hwparams - set the runtime hardware parameters
* @substream: the pcm substream
* @hw: the hardware parameters
*
* Sets the substream runtime hardware parameters.
*/
int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
const struct snd_pcm_hardware *hw)
{
struct snd_pcm_runtime *runtime = substream->runtime;
runtime->hw.info = hw->info;
runtime->hw.formats = hw->formats;
runtime->hw.period_bytes_min = hw->period_bytes_min;
runtime->hw.period_bytes_max = hw->period_bytes_max;
runtime->hw.periods_min = hw->periods_min;
runtime->hw.periods_max = hw->periods_max;
runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
runtime->hw.fifo_size = hw->fifo_size;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
/**
* snd_soc_cnew - create new control
* @_template: control template
* @data: control private data
* @lnng_name: control long name
*
* Create a new mixer control from a template control.
*
* Returns 0 for success, else error.
*/
struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
void *data, char *long_name)
{
struct snd_kcontrol_new template;
memcpy(&template, _template, sizeof(template));
if (long_name)
template.name = long_name;
template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
template.index = 0;
return snd_ctl_new1(&template, data);
}
EXPORT_SYMBOL_GPL(snd_soc_cnew);
/**
* snd_soc_info_enum_double - enumerated double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double enumerated
* mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
uinfo->value.enumerated.items = e->mask;
if (uinfo->value.enumerated.item > e->mask - 1)
uinfo->value.enumerated.item = e->mask - 1;
strcpy(uinfo->value.enumerated.name,
e->texts[uinfo->value.enumerated.item]);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
/**
* snd_soc_get_enum_double - enumerated double mixer get callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to get the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned short val, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
val = snd_soc_read(codec, e->reg);
ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
if (e->shift_l != e->shift_r)
ucontrol->value.enumerated.item[1] =
(val >> e->shift_r) & (bitmask - 1);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
/**
* snd_soc_put_enum_double - enumerated double mixer put callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to set the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned short val;
unsigned short mask, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
if (ucontrol->value.enumerated.item[0] > e->mask - 1)
return -EINVAL;
val = ucontrol->value.enumerated.item[0] << e->shift_l;
mask = (bitmask - 1) << e->shift_l;
if (e->shift_l != e->shift_r) {
if (ucontrol->value.enumerated.item[1] > e->mask - 1)
return -EINVAL;
val |= ucontrol->value.enumerated.item[1] << e->shift_r;
mask |= (bitmask - 1) << e->shift_r;
}
return snd_soc_update_bits(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
/**
* snd_soc_info_enum_ext - external enumerated single mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about an external enumerated
* single mixer.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = e->mask;
if (uinfo->value.enumerated.item > e->mask - 1)
uinfo->value.enumerated.item = e->mask - 1;
strcpy(uinfo->value.enumerated.name,
e->texts[uinfo->value.enumerated.item]);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
/**
* snd_soc_info_volsw_ext - external single mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single external mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = kcontrol->private_value;
uinfo->type =
mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
/**
* snd_soc_info_bool_ext - external single boolean mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single boolean external mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_bool_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_bool_ext);
/**
* snd_soc_info_volsw - single mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
uinfo->type =
mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = shift == rshift ? 1 : 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
/**
* snd_soc_get_volsw - single mixer get callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to get the value of a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec, reg) >> shift) & mask;
if (shift != rshift)
ucontrol->value.integer.value[1] =
(snd_soc_read(codec, reg) >> rshift) & mask;
if (invert) {
ucontrol->value.integer.value[0] =
mask - ucontrol->value.integer.value[0];
if (shift != rshift)
ucontrol->value.integer.value[1] =
mask - ucontrol->value.integer.value[1];
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
/**
* snd_soc_put_volsw - single mixer put callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to set the value of a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
int err;
unsigned short val, val2, val_mask;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
val_mask = mask << shift;
val = val << shift;
if (shift != rshift) {
val2 = (ucontrol->value.integer.value[1] & mask);
if (invert)
val2 = mask - val2;
val_mask |= mask << rshift;
val |= val2 << rshift;
}
err = snd_soc_update_bits(codec, reg, val_mask, val);
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
/**
* snd_soc_info_volsw_2r - double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double mixer control that
* spans 2 codec registers.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 12) & 0xff;
uinfo->type =
mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
/**
* snd_soc_get_volsw_2r - double mixer get callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to get the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int reg2 = (kcontrol->private_value >> 24) & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int mask = (kcontrol->private_value >> 12) & 0xff;
int invert = (kcontrol->private_value >> 20) & 0x01;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec, reg) >> shift) & mask;
ucontrol->value.integer.value[1] =
(snd_soc_read(codec, reg2) >> shift) & mask;
if (invert) {
ucontrol->value.integer.value[0] =
mask - ucontrol->value.integer.value[0];
ucontrol->value.integer.value[1] =
mask - ucontrol->value.integer.value[1];
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
/**
* snd_soc_put_volsw_2r - double mixer set callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to set the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int reg2 = (kcontrol->private_value >> 24) & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int mask = (kcontrol->private_value >> 12) & 0xff;
int invert = (kcontrol->private_value >> 20) & 0x01;
int err;
unsigned short val, val2, val_mask;
val_mask = mask << shift;
val = (ucontrol->value.integer.value[0] & mask);
val2 = (ucontrol->value.integer.value[1] & mask);
if (invert) {
val = mask - val;
val2 = mask - val2;
}
val = val << shift;
val2 = val2 << shift;
if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
return err;
err = snd_soc_update_bits(codec, reg2, val_mask, val2);
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
static int __devinit snd_soc_init(void)
{
printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
return platform_driver_register(&soc_driver);
}
static void snd_soc_exit(void)
{
platform_driver_unregister(&soc_driver);
}
module_init(snd_soc_init);
module_exit(snd_soc_exit);
/* Module information */
MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
MODULE_DESCRIPTION("ALSA SoC Core");
MODULE_LICENSE("GPL");