linux/arch/x86_64/mm/numa.c

305 lines
8.0 KiB
C
Raw Normal View History

/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#ifndef Dprintk
#define Dprintk(x...)
#endif
struct pglist_data *node_data[MAX_NUMNODES];
bootmem_data_t plat_node_bdata[MAX_NUMNODES];
int memnode_shift;
u8 memnodemap[NODEMAPSIZE];
unsigned char cpu_to_node[NR_CPUS] = { [0 ... NR_CPUS-1] = NUMA_NO_NODE };
cpumask_t node_to_cpumask[MAX_NUMNODES];
int numa_off __initdata;
int __init compute_hash_shift(struct node *nodes, int numnodes)
{
int i;
int shift = 20;
unsigned long addr,maxend=0;
for (i = 0; i < numnodes; i++)
if ((nodes[i].start != nodes[i].end) && (nodes[i].end > maxend))
maxend = nodes[i].end;
while ((1UL << shift) < (maxend / NODEMAPSIZE))
shift++;
printk (KERN_DEBUG"Using %d for the hash shift. Max adder is %lx \n",
shift,maxend);
memset(memnodemap,0xff,sizeof(*memnodemap) * NODEMAPSIZE);
for (i = 0; i < numnodes; i++) {
if (nodes[i].start == nodes[i].end)
continue;
for (addr = nodes[i].start;
addr < nodes[i].end;
addr += (1UL << shift)) {
if (memnodemap[addr >> shift] != 0xff) {
printk(KERN_INFO
"Your memory is not aligned you need to rebuild your kernel "
"with a bigger NODEMAPSIZE shift=%d adder=%lu\n",
shift,addr);
return -1;
}
memnodemap[addr >> shift] = i;
}
}
return shift;
}
#ifdef CONFIG_SPARSEMEM
int early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
#endif
/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
{
unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
unsigned long nodedata_phys;
const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
start = round_up(start, ZONE_ALIGN);
printk("Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
start_pfn = start >> PAGE_SHIFT;
end_pfn = end >> PAGE_SHIFT;
memory_present(nodeid, start_pfn, end_pfn);
nodedata_phys = find_e820_area(start, end, pgdat_size);
if (nodedata_phys == -1L)
panic("Cannot find memory pgdat in node %d\n", nodeid);
Dprintk("nodedata_phys %lx\n", nodedata_phys);
node_data[nodeid] = phys_to_virt(nodedata_phys);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
/* Find a place for the bootmem map */
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
bootmap_start = find_e820_area(bootmap_start, end, bootmap_pages<<PAGE_SHIFT);
if (bootmap_start == -1L)
panic("Not enough continuous space for bootmap on node %d", nodeid);
Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap_start >> PAGE_SHIFT,
start_pfn, end_pfn);
e820_bootmem_free(NODE_DATA(nodeid), start, end);
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
node_set_online(nodeid);
}
/* Initialize final allocator for a zone */
void __init setup_node_zones(int nodeid)
{
unsigned long start_pfn, end_pfn;
unsigned long zones[MAX_NR_ZONES];
unsigned long dma_end_pfn;
memset(zones, 0, sizeof(unsigned long) * MAX_NR_ZONES);
start_pfn = node_start_pfn(nodeid);
end_pfn = node_end_pfn(nodeid);
Dprintk(KERN_INFO "setting up node %d %lx-%lx\n", nodeid, start_pfn, end_pfn);
/* All nodes > 0 have a zero length zone DMA */
dma_end_pfn = __pa(MAX_DMA_ADDRESS) >> PAGE_SHIFT;
if (start_pfn < dma_end_pfn) {
zones[ZONE_DMA] = dma_end_pfn - start_pfn;
zones[ZONE_NORMAL] = end_pfn - dma_end_pfn;
} else {
zones[ZONE_NORMAL] = end_pfn - start_pfn;
}
free_area_init_node(nodeid, NODE_DATA(nodeid), zones,
start_pfn, NULL);
}
void __init numa_init_array(void)
{
int rr, i;
/* There are unfortunately some poorly designed mainboards around
that only connect memory to a single CPU. This breaks the 1:1 cpu->node
mapping. To avoid this fill in the mapping for all possible
CPUs, as the number of CPUs is not known yet.
We round robin the existing nodes. */
rr = 0;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_node[i] != NUMA_NO_NODE)
continue;
rr = next_node(rr, node_online_map);
if (rr == MAX_NUMNODES)
rr = first_node(node_online_map);
cpu_to_node[i] = rr;
rr++;
}
set_bit(0, &node_to_cpumask[cpu_to_node(0)]);
}
#ifdef CONFIG_NUMA_EMU
int numa_fake __initdata = 0;
/* Numa emulation */
static int numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
struct node nodes[MAX_NUMNODES];
unsigned long sz = ((end_pfn - start_pfn)<<PAGE_SHIFT) / numa_fake;
/* Kludge needed for the hash function */
if (hweight64(sz) > 1) {
unsigned long x = 1;
while ((x << 1) < sz)
x <<= 1;
if (x < sz/2)
printk("Numa emulation unbalanced. Complain to maintainer\n");
sz = x;
}
memset(&nodes,0,sizeof(nodes));
for (i = 0; i < numa_fake; i++) {
nodes[i].start = (start_pfn<<PAGE_SHIFT) + i*sz;
if (i == numa_fake-1)
sz = (end_pfn<<PAGE_SHIFT) - nodes[i].start;
nodes[i].end = nodes[i].start + sz;
if (i != numa_fake-1)
nodes[i].end--;
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n",
i,
nodes[i].start, nodes[i].end,
(nodes[i].end - nodes[i].start) >> 20);
node_set_online(i);
}
memnode_shift = compute_hash_shift(nodes, numa_fake);
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n");
return -1;
}
for_each_online_node(i)
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
numa_init_array();
return 0;
}
#endif
void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
#ifdef CONFIG_NUMA_EMU
if (numa_fake && !numa_emulation(start_pfn, end_pfn))
return;
#endif
#ifdef CONFIG_ACPI_NUMA
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT))
return;
#endif
#ifdef CONFIG_K8_NUMA
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
return;
#endif
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT);
/* setup dummy node covering all memory */
memnode_shift = 63;
memnodemap[0] = 0;
nodes_clear(node_online_map);
node_set_online(0);
for (i = 0; i < NR_CPUS; i++)
cpu_to_node[i] = 0;
node_to_cpumask[0] = cpumask_of_cpu(0);
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}
__cpuinit void numa_add_cpu(int cpu)
{
/* BP is initialized elsewhere */
if (cpu)
set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
}
unsigned long __init numa_free_all_bootmem(void)
{
int i;
unsigned long pages = 0;
for_each_online_node(i) {
pages += free_all_bootmem_node(NODE_DATA(i));
}
return pages;
}
void __init paging_init(void)
{
int i;
for_each_online_node(i) {
setup_node_zones(i);
}
}
/* [numa=off] */
__init int numa_setup(char *opt)
{
if (!strncmp(opt,"off",3))
numa_off = 1;
#ifdef CONFIG_NUMA_EMU
if(!strncmp(opt, "fake=", 5)) {
numa_fake = simple_strtoul(opt+5,NULL,0); ;
if (numa_fake >= MAX_NUMNODES)
numa_fake = MAX_NUMNODES;
}
#endif
#ifdef CONFIG_ACPI_NUMA
if (!strncmp(opt,"noacpi",6))
acpi_numa = -1;
#endif
return 1;
}
EXPORT_SYMBOL(cpu_to_node);
EXPORT_SYMBOL(node_to_cpumask);
EXPORT_SYMBOL(memnode_shift);
EXPORT_SYMBOL(memnodemap);
EXPORT_SYMBOL(node_data);