linux/drivers/s390/block/dasd_ioctl.c

619 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
* Horst Hummel <Horst.Hummel@de.ibm.com>
* Carsten Otte <Cotte@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Bugreports.to..: <Linux390@de.ibm.com>
* Copyright IBM Corp. 1999, 2001
*
* i/o controls for the dasd driver.
*/
#define KMSG_COMPONENT "dasd"
#include <linux/interrupt.h>
#include <linux/compat.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <asm/ccwdev.h>
#include <asm/schid.h>
#include <asm/cmb.h>
#include <linux/uaccess.h>
/* This is ugly... */
#define PRINTK_HEADER "dasd_ioctl:"
#include "dasd_int.h"
static int
dasd_ioctl_api_version(void __user *argp)
{
int ver = DASD_API_VERSION;
return put_user(ver, (int __user *)argp);
}
/*
* Enable device.
* used by dasdfmt after BIODASDDISABLE to retrigger blocksize detection
*/
static int
dasd_ioctl_enable(struct block_device *bdev)
{
struct dasd_device *base;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
dasd_enable_device(base);
/* Formatting the dasd device can change the capacity. */
mutex_lock(&bdev->bd_mutex);
i_size_write(bdev->bd_inode,
(loff_t)get_capacity(base->block->gdp) << 9);
mutex_unlock(&bdev->bd_mutex);
dasd_put_device(base);
return 0;
}
/*
* Disable device.
* Used by dasdfmt. Disable I/O operations but allow ioctls.
*/
static int
dasd_ioctl_disable(struct block_device *bdev)
{
struct dasd_device *base;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
/*
* Man this is sick. We don't do a real disable but only downgrade
* the device to DASD_STATE_BASIC. The reason is that dasdfmt uses
* BIODASDDISABLE to disable accesses to the device via the block
* device layer but it still wants to do i/o on the device by
* using the BIODASDFMT ioctl. Therefore the correct state for the
* device is DASD_STATE_BASIC that allows to do basic i/o.
*/
dasd_set_target_state(base, DASD_STATE_BASIC);
/*
* Set i_size to zero, since read, write, etc. check against this
* value.
*/
mutex_lock(&bdev->bd_mutex);
i_size_write(bdev->bd_inode, 0);
mutex_unlock(&bdev->bd_mutex);
dasd_put_device(base);
return 0;
}
/*
* Quiesce device.
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_quiesce(struct dasd_block *block)
{
unsigned long flags;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
struct dasd_device *base;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
base = block->base;
if (!capable (CAP_SYS_ADMIN))
return -EACCES;
pr_info("%s: The DASD has been put in the quiesce "
"state\n", dev_name(&base->cdev->dev));
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags);
return 0;
}
/*
* Resume device.
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_resume(struct dasd_block *block)
{
unsigned long flags;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
struct dasd_device *base;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
base = block->base;
if (!capable (CAP_SYS_ADMIN))
return -EACCES;
pr_info("%s: I/O operations have been resumed "
"on the DASD\n", dev_name(&base->cdev->dev));
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
dasd_device_remove_stop_bits(base, DASD_STOPPED_QUIESCE);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
dasd_schedule_block_bh(block);
return 0;
}
/*
* Abort all failfast I/O on a device.
*/
static int dasd_ioctl_abortio(struct dasd_block *block)
{
unsigned long flags;
struct dasd_device *base;
struct dasd_ccw_req *cqr, *n;
base = block->base;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (test_and_set_bit(DASD_FLAG_ABORTALL, &base->flags))
return 0;
DBF_DEV_EVENT(DBF_NOTICE, base, "%s", "abortall flag set");
spin_lock_irqsave(&block->request_queue_lock, flags);
spin_lock(&block->queue_lock);
list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) {
if (test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
cqr->callback_data &&
cqr->callback_data != DASD_SLEEPON_START_TAG &&
cqr->callback_data != DASD_SLEEPON_END_TAG) {
spin_unlock(&block->queue_lock);
blk_abort_request(cqr->callback_data);
spin_lock(&block->queue_lock);
}
}
spin_unlock(&block->queue_lock);
spin_unlock_irqrestore(&block->request_queue_lock, flags);
dasd_schedule_block_bh(block);
return 0;
}
/*
* Allow I/O on a device
*/
static int dasd_ioctl_allowio(struct dasd_block *block)
{
struct dasd_device *base;
base = block->base;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (test_and_clear_bit(DASD_FLAG_ABORTALL, &base->flags))
DBF_DEV_EVENT(DBF_NOTICE, base, "%s", "abortall flag unset");
return 0;
}
/*
* performs formatting of _device_ according to _fdata_
* Note: The discipline's format_function is assumed to deliver formatting
* commands to format multiple units of the device. In terms of the ECKD
* devices this means CCWs are generated to format multiple tracks.
*/
static int
dasd_format(struct dasd_block *block, struct format_data_t *fdata)
{
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
struct dasd_device *base;
int rc;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
base = block->base;
if (base->discipline->format_device == NULL)
return -EPERM;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
if (base->state != DASD_STATE_BASIC) {
pr_warn("%s: The DASD cannot be formatted while it is enabled\n",
dev_name(&base->cdev->dev));
return -EBUSY;
}
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
DBF_DEV_EVENT(DBF_NOTICE, base,
"formatting units %u to %u (%u B blocks) flags %u",
fdata->start_unit,
fdata->stop_unit, fdata->blksize, fdata->intensity);
/* Since dasdfmt keeps the device open after it was disabled,
* there still exists an inode for this device.
* We must update i_blkbits, otherwise we might get errors when
* enabling the device later.
*/
if (fdata->start_unit == 0) {
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
struct block_device *bdev = bdget_disk(block->gdp, 0);
bdev->bd_inode->i_blkbits = blksize_bits(fdata->blksize);
bdput(bdev);
}
rc = base->discipline->format_device(base, fdata, 1);
if (rc == -EAGAIN)
rc = base->discipline->format_device(base, fdata, 0);
return rc;
}
static int dasd_check_format(struct dasd_block *block,
struct format_check_t *cdata)
{
struct dasd_device *base;
int rc;
base = block->base;
if (!base->discipline->check_device_format)
return -ENOTTY;
rc = base->discipline->check_device_format(base, cdata, 1);
if (rc == -EAGAIN)
rc = base->discipline->check_device_format(base, cdata, 0);
return rc;
}
/*
* Format device.
*/
static int
dasd_ioctl_format(struct block_device *bdev, void __user *argp)
{
struct dasd_device *base;
struct format_data_t fdata;
int rc;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!argp)
return -EINVAL;
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
if (base->features & DASD_FEATURE_READONLY ||
test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) {
dasd_put_device(base);
return -EROFS;
}
if (copy_from_user(&fdata, argp, sizeof(struct format_data_t))) {
dasd_put_device(base);
return -EFAULT;
}
if (bdev != bdev->bd_contains) {
pr_warn("%s: The specified DASD is a partition and cannot be formatted\n",
dev_name(&base->cdev->dev));
dasd_put_device(base);
return -EINVAL;
}
rc = dasd_format(base->block, &fdata);
dasd_put_device(base);
return rc;
}
/*
* Check device format
*/
static int dasd_ioctl_check_format(struct block_device *bdev, void __user *argp)
{
struct format_check_t cdata;
struct dasd_device *base;
int rc = 0;
if (!argp)
return -EINVAL;
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
if (bdev != bdev->bd_contains) {
pr_warn("%s: The specified DASD is a partition and cannot be checked\n",
dev_name(&base->cdev->dev));
rc = -EINVAL;
goto out_err;
}
if (copy_from_user(&cdata, argp, sizeof(cdata))) {
rc = -EFAULT;
goto out_err;
}
rc = dasd_check_format(base->block, &cdata);
if (rc)
goto out_err;
if (copy_to_user(argp, &cdata, sizeof(cdata)))
rc = -EFAULT;
out_err:
dasd_put_device(base);
return rc;
}
#ifdef CONFIG_DASD_PROFILE
/*
* Reset device profile information
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_reset_profile(struct dasd_block *block)
{
dasd_profile_reset(&block->profile);
return 0;
}
/*
* Return device profile information
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_read_profile(struct dasd_block *block, void __user *argp)
{
struct dasd_profile_info_t *data;
int rc = 0;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
spin_lock_bh(&block->profile.lock);
if (block->profile.data) {
data->dasd_io_reqs = block->profile.data->dasd_io_reqs;
data->dasd_io_sects = block->profile.data->dasd_io_sects;
memcpy(data->dasd_io_secs, block->profile.data->dasd_io_secs,
sizeof(data->dasd_io_secs));
memcpy(data->dasd_io_times, block->profile.data->dasd_io_times,
sizeof(data->dasd_io_times));
memcpy(data->dasd_io_timps, block->profile.data->dasd_io_timps,
sizeof(data->dasd_io_timps));
memcpy(data->dasd_io_time1, block->profile.data->dasd_io_time1,
sizeof(data->dasd_io_time1));
memcpy(data->dasd_io_time2, block->profile.data->dasd_io_time2,
sizeof(data->dasd_io_time2));
memcpy(data->dasd_io_time2ps,
block->profile.data->dasd_io_time2ps,
sizeof(data->dasd_io_time2ps));
memcpy(data->dasd_io_time3, block->profile.data->dasd_io_time3,
sizeof(data->dasd_io_time3));
memcpy(data->dasd_io_nr_req,
block->profile.data->dasd_io_nr_req,
sizeof(data->dasd_io_nr_req));
spin_unlock_bh(&block->profile.lock);
} else {
spin_unlock_bh(&block->profile.lock);
rc = -EIO;
goto out;
}
if (copy_to_user(argp, data, sizeof(*data)))
rc = -EFAULT;
out:
kfree(data);
return rc;
}
#else
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_reset_profile(struct dasd_block *block)
{
return -ENOTTY;
}
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_read_profile(struct dasd_block *block, void __user *argp)
{
return -ENOTTY;
}
#endif
/*
* Return dasd information. Used for BIODASDINFO and BIODASDINFO2.
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_information(struct dasd_block *block,
unsigned int cmd, void __user *argp)
{
struct dasd_information2_t *dasd_info;
struct subchannel_id sch_id;
struct ccw_dev_id dev_id;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
struct dasd_device *base;
struct ccw_device *cdev;
unsigned long flags;
int rc;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
base = block->base;
if (!base->discipline || !base->discipline->fill_info)
return -EINVAL;
dasd_info = kzalloc(sizeof(struct dasd_information2_t), GFP_KERNEL);
if (dasd_info == NULL)
return -ENOMEM;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
rc = base->discipline->fill_info(base, dasd_info);
if (rc) {
kfree(dasd_info);
return rc;
}
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
cdev = base->cdev;
ccw_device_get_id(cdev, &dev_id);
ccw_device_get_schid(cdev, &sch_id);
dasd_info->devno = dev_id.devno;
dasd_info->schid = sch_id.sch_no;
dasd_info->cu_type = cdev->id.cu_type;
dasd_info->cu_model = cdev->id.cu_model;
dasd_info->dev_type = cdev->id.dev_type;
dasd_info->dev_model = cdev->id.dev_model;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
dasd_info->status = base->state;
/*
* The open_count is increased for every opener, that includes
* the blkdev_get in dasd_scan_partitions.
* This must be hidden from user-space.
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
dasd_info->open_count = atomic_read(&block->open_count);
if (!block->bdev)
dasd_info->open_count++;
/*
* check if device is really formatted
* LDL / CDL was returned by 'fill_info'
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
if ((base->state < DASD_STATE_READY) ||
(dasd_check_blocksize(block->bp_block)))
dasd_info->format = DASD_FORMAT_NONE;
dasd_info->features |=
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
((base->features & DASD_FEATURE_READONLY) != 0);
memcpy(dasd_info->type, base->discipline->name, 4);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
if (block->request_queue->request_fn) {
struct list_head *l;
#ifdef DASD_EXTENDED_PROFILING
{
struct list_head *l;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_lock_irqsave(&block->lock, flags);
list_for_each(l, &block->request_queue->queue_head)
dasd_info->req_queue_len++;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_unlock_irqrestore(&block->lock, flags);
}
#endif /* DASD_EXTENDED_PROFILING */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
list_for_each(l, &base->ccw_queue)
dasd_info->chanq_len++;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
spin_unlock_irqrestore(get_ccwdev_lock(base->cdev),
flags);
}
rc = 0;
if (copy_to_user(argp, dasd_info,
((cmd == (unsigned int) BIODASDINFO2) ?
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
sizeof(struct dasd_information2_t) :
sizeof(struct dasd_information_t))))
rc = -EFAULT;
kfree(dasd_info);
return rc;
}
/*
* Set read only
*/
static int
dasd_ioctl_set_ro(struct block_device *bdev, void __user *argp)
{
struct dasd_device *base;
int intval, rc;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (bdev != bdev->bd_contains)
// ro setting is not allowed for partitions
return -EINVAL;
if (get_user(intval, (int __user *)argp))
return -EFAULT;
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
if (!intval && test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) {
dasd_put_device(base);
return -EROFS;
}
set_disk_ro(bdev->bd_disk, intval);
rc = dasd_set_feature(base->cdev, DASD_FEATURE_READONLY, intval);
dasd_put_device(base);
return rc;
}
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
static int dasd_ioctl_readall_cmb(struct dasd_block *block, unsigned int cmd,
struct cmbdata __user *argp)
{
size_t size = _IOC_SIZE(cmd);
struct cmbdata data;
int ret;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 13:11:23 +00:00
ret = cmf_readall(block->base->cdev, &data);
if (!ret && copy_to_user(argp, &data, min(size, sizeof(*argp))))
return -EFAULT;
return ret;
}
int dasd_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct dasd_block *block;
struct dasd_device *base;
void __user *argp;
int rc;
if (is_compat_task())
argp = compat_ptr(arg);
else
argp = (void __user *)arg;
if ((_IOC_DIR(cmd) != _IOC_NONE) && !arg) {
PRINT_DEBUG("empty data ptr");
return -EINVAL;
}
base = dasd_device_from_gendisk(bdev->bd_disk);
if (!base)
return -ENODEV;
block = base->block;
rc = 0;
switch (cmd) {
case BIODASDDISABLE:
rc = dasd_ioctl_disable(bdev);
break;
case BIODASDENABLE:
rc = dasd_ioctl_enable(bdev);
break;
case BIODASDQUIESCE:
rc = dasd_ioctl_quiesce(block);
break;
case BIODASDRESUME:
rc = dasd_ioctl_resume(block);
break;
case BIODASDABORTIO:
rc = dasd_ioctl_abortio(block);
break;
case BIODASDALLOWIO:
rc = dasd_ioctl_allowio(block);
break;
case BIODASDFMT:
rc = dasd_ioctl_format(bdev, argp);
break;
case BIODASDCHECKFMT:
rc = dasd_ioctl_check_format(bdev, argp);
break;
case BIODASDINFO:
rc = dasd_ioctl_information(block, cmd, argp);
break;
case BIODASDINFO2:
rc = dasd_ioctl_information(block, cmd, argp);
break;
case BIODASDPRRD:
rc = dasd_ioctl_read_profile(block, argp);
break;
case BIODASDPRRST:
rc = dasd_ioctl_reset_profile(block);
break;
case BLKROSET:
rc = dasd_ioctl_set_ro(bdev, argp);
break;
case DASDAPIVER:
rc = dasd_ioctl_api_version(argp);
break;
case BIODASDCMFENABLE:
rc = enable_cmf(base->cdev);
break;
case BIODASDCMFDISABLE:
rc = disable_cmf(base->cdev);
break;
case BIODASDREADALLCMB:
rc = dasd_ioctl_readall_cmb(block, cmd, argp);
break;
default:
/* if the discipline has an ioctl method try it. */
rc = -ENOTTY;
if (base->discipline->ioctl)
rc = base->discipline->ioctl(block, cmd, argp);
}
dasd_put_device(base);
return rc;
}