linux/arch/parisc/kernel/cache.c

669 lines
18 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
* Copyright (C) 1999 SuSE GmbH Nuernberg
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
*
* Cache and TLB management
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <asm/pdc.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/shmparam.h>
int split_tlb __read_mostly;
int dcache_stride __read_mostly;
int icache_stride __read_mostly;
EXPORT_SYMBOL(dcache_stride);
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
EXPORT_SYMBOL(flush_dcache_page_asm);
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
/* On some machines (e.g. ones with the Merced bus), there can be
* only a single PxTLB broadcast at a time; this must be guaranteed
* by software. We put a spinlock around all TLB flushes to
* ensure this.
*/
DEFINE_SPINLOCK(pa_tlb_lock);
struct pdc_cache_info cache_info __read_mostly;
#ifndef CONFIG_PA20
static struct pdc_btlb_info btlb_info __read_mostly;
#endif
#ifdef CONFIG_SMP
void
flush_data_cache(void)
{
on_each_cpu(flush_data_cache_local, NULL, 1);
}
void
flush_instruction_cache(void)
{
on_each_cpu(flush_instruction_cache_local, NULL, 1);
}
#endif
void
flush_cache_all_local(void)
{
flush_instruction_cache_local(NULL);
flush_data_cache_local(NULL);
}
EXPORT_SYMBOL(flush_cache_all_local);
/* Virtual address of pfn. */
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
void
update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
unsigned long pfn = pte_pfn(*ptep);
struct page *page;
/* We don't have pte special. As a result, we can be called with
an invalid pfn and we don't need to flush the kernel dcache page.
This occurs with FireGL card in C8000. */
if (!pfn_valid(pfn))
return;
page = pfn_to_page(pfn);
if (page_mapping(page) && test_bit(PG_dcache_dirty, &page->flags)) {
flush_kernel_dcache_page_addr(pfn_va(pfn));
clear_bit(PG_dcache_dirty, &page->flags);
} else if (parisc_requires_coherency())
flush_kernel_dcache_page_addr(pfn_va(pfn));
}
void
show_cache_info(struct seq_file *m)
{
char buf[32];
seq_printf(m, "I-cache\t\t: %ld KB\n",
cache_info.ic_size/1024 );
if (cache_info.dc_loop != 1)
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s)\n",
cache_info.dc_size/1024,
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
((cache_info.dc_loop == 1) ? "direct mapped" : buf));
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
cache_info.it_size,
cache_info.dt_size,
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
);
#ifndef CONFIG_PA20
/* BTLB - Block TLB */
if (btlb_info.max_size==0) {
seq_printf(m, "BTLB\t\t: not supported\n" );
} else {
seq_printf(m,
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
btlb_info.max_size, (int)4096,
btlb_info.max_size>>8,
btlb_info.fixed_range_info.num_i,
btlb_info.fixed_range_info.num_d,
btlb_info.fixed_range_info.num_comb,
btlb_info.variable_range_info.num_i,
btlb_info.variable_range_info.num_d,
btlb_info.variable_range_info.num_comb
);
}
#endif
}
void __init
parisc_cache_init(void)
{
if (pdc_cache_info(&cache_info) < 0)
panic("parisc_cache_init: pdc_cache_info failed");
#if 0
printk("ic_size %lx dc_size %lx it_size %lx\n",
cache_info.ic_size,
cache_info.dc_size,
cache_info.it_size);
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.dc_base,
cache_info.dc_stride,
cache_info.dc_count,
cache_info.dc_loop);
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.dc_conf),
cache_info.dc_conf.cc_alias,
cache_info.dc_conf.cc_block,
cache_info.dc_conf.cc_line,
cache_info.dc_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.dc_conf.cc_wt,
cache_info.dc_conf.cc_sh,
cache_info.dc_conf.cc_cst,
cache_info.dc_conf.cc_hv);
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.ic_base,
cache_info.ic_stride,
cache_info.ic_count,
cache_info.ic_loop);
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.ic_conf),
cache_info.ic_conf.cc_alias,
cache_info.ic_conf.cc_block,
cache_info.ic_conf.cc_line,
cache_info.ic_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.ic_conf.cc_wt,
cache_info.ic_conf.cc_sh,
cache_info.ic_conf.cc_cst,
cache_info.ic_conf.cc_hv);
printk("D-TLB conf: sh %d page %d cst %d aid %d pad1 %d\n",
cache_info.dt_conf.tc_sh,
cache_info.dt_conf.tc_page,
cache_info.dt_conf.tc_cst,
cache_info.dt_conf.tc_aid,
cache_info.dt_conf.tc_pad1);
printk("I-TLB conf: sh %d page %d cst %d aid %d pad1 %d\n",
cache_info.it_conf.tc_sh,
cache_info.it_conf.tc_page,
cache_info.it_conf.tc_cst,
cache_info.it_conf.tc_aid,
cache_info.it_conf.tc_pad1);
#endif
split_tlb = 0;
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
if (cache_info.dt_conf.tc_sh == 2)
printk(KERN_WARNING "Unexpected TLB configuration. "
"Will flush I/D separately (could be optimized).\n");
split_tlb = 1;
}
/* "New and Improved" version from Jim Hull
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
* The following CAFL_STRIDE is an optimized version, see
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
*/
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
#undef CAFL_STRIDE
#ifndef CONFIG_PA20
if (pdc_btlb_info(&btlb_info) < 0) {
memset(&btlb_info, 0, sizeof btlb_info);
}
#endif
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
PDC_MODEL_NVA_UNSUPPORTED) {
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
#if 0
panic("SMP kernel required to avoid non-equivalent aliasing");
#endif
}
}
void disable_sr_hashing(void)
{
int srhash_type, retval;
unsigned long space_bits;
switch (boot_cpu_data.cpu_type) {
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
BUG();
return;
case pcxs:
case pcxt:
case pcxt_:
srhash_type = SRHASH_PCXST;
break;
case pcxl:
srhash_type = SRHASH_PCXL;
break;
case pcxl2: /* pcxl2 doesn't support space register hashing */
return;
default: /* Currently all PA2.0 machines use the same ins. sequence */
srhash_type = SRHASH_PA20;
break;
}
disable_sr_hashing_asm(srhash_type);
retval = pdc_spaceid_bits(&space_bits);
/* If this procedure isn't implemented, don't panic. */
if (retval < 0 && retval != PDC_BAD_OPTION)
panic("pdc_spaceid_bits call failed.\n");
if (space_bits != 0)
panic("SpaceID hashing is still on!\n");
}
static inline void
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
unsigned long physaddr)
{
preempt_disable();
flush_dcache_page_asm(physaddr, vmaddr);
if (vma->vm_flags & VM_EXEC)
flush_icache_page_asm(physaddr, vmaddr);
preempt_enable();
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
struct vm_area_struct *mpnt;
unsigned long offset;
unsigned long addr, old_addr = 0;
pgoff_t pgoff;
if (mapping && !mapping_mapped(mapping)) {
set_bit(PG_dcache_dirty, &page->flags);
return;
}
flush_kernel_dcache_page(page);
if (!mapping)
return;
pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
/* We have carefully arranged in arch_get_unmapped_area() that
* *any* mappings of a file are always congruently mapped (whether
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
* to flush one address here for them all to become coherent */
flush_dcache_mmap_lock(mapping);
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
addr = mpnt->vm_start + offset;
/* The TLB is the engine of coherence on parisc: The
* CPU is entitled to speculate any page with a TLB
* mapping, so here we kill the mapping then flush the
* page along a special flush only alias mapping.
* This guarantees that the page is no-longer in the
* cache for any process and nor may it be
* speculatively read in (until the user or kernel
* specifically accesses it, of course) */
flush_tlb_page(mpnt, addr);
if (old_addr == 0 || (old_addr & (SHMLBA - 1)) != (addr & (SHMLBA - 1))) {
__flush_cache_page(mpnt, addr, page_to_phys(page));
if (old_addr)
printk(KERN_ERR "INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %s\n", old_addr, addr, mpnt->vm_file ? (char *)mpnt->vm_file->f_path.dentry->d_name.name : "(null)");
old_addr = addr;
}
}
flush_dcache_mmap_unlock(mapping);
}
EXPORT_SYMBOL(flush_dcache_page);
/* Defined in arch/parisc/kernel/pacache.S */
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
EXPORT_SYMBOL(flush_kernel_dcache_page_asm);
EXPORT_SYMBOL(flush_data_cache_local);
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
int parisc_cache_flush_threshold __read_mostly = FLUSH_THRESHOLD;
void __init parisc_setup_cache_timing(void)
{
unsigned long rangetime, alltime;
unsigned long size;
alltime = mfctl(16);
flush_data_cache();
alltime = mfctl(16) - alltime;
size = (unsigned long)(_end - _text);
rangetime = mfctl(16);
flush_kernel_dcache_range((unsigned long)_text, size);
rangetime = mfctl(16) - rangetime;
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
alltime, size, rangetime);
/* Racy, but if we see an intermediate value, it's ok too... */
parisc_cache_flush_threshold = size * alltime / rangetime;
parisc_cache_flush_threshold = (parisc_cache_flush_threshold + L1_CACHE_BYTES - 1) &~ (L1_CACHE_BYTES - 1);
if (!parisc_cache_flush_threshold)
parisc_cache_flush_threshold = FLUSH_THRESHOLD;
if (parisc_cache_flush_threshold > cache_info.dc_size)
parisc_cache_flush_threshold = cache_info.dc_size;
printk(KERN_INFO "Setting cache flush threshold to %x (%d CPUs online)\n", parisc_cache_flush_threshold, num_online_cpus());
}
parisc: fixes and cleanups in page cache flushing (1/4) This is the first patch in a series of 4, with which the page cache flushing of parisc will gets fixed and enhanced. This even fixes the nasty "minifail" bug (http://wiki.parisc-linux.org/TestCases?highlight=%28minifail%29) which prevented parisc to stay an official debian port. Basically the flush in copy_user_page together with the TLB patch from commit 7139bc1579901b53db7e898789e916ee2fb52d78 is what fixes the minifail bug. This patch still uses the TMPALIAS approach. The new copy_user_page implementation calls flush_dcache_page_asm to flush the user dcache page (crucial for minifail fix) via a kernel TMPALIAS mapping. After that, it just copies the page using the kernel mapping. It does a final flush if needed. Generally it is hard to avoid doing some cache flushes using the kernel mapping (e.g., copy_to_user_page and copy_from_user_page). This patch depends on a subsequent change to pacache.S implementing clear_page_asm and copy_page_asm. These are optimized routines to clear and copy a page. The calls in clear_user_page and copy_user_page could be replaced by calls to memset and memcpy, respectively. I tested prefetch optimizations in clear_page_asm and copy_page_asm but didn't see any significant performance improvement on rp3440. I'm not sure if these are routines are significantly faster than memset and/or memcpy, but they are there for further performance evaluation. Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de>
2013-02-03 22:59:09 +00:00
extern void purge_kernel_dcache_page_asm(unsigned long);
extern void clear_user_page_asm(void *, unsigned long);
extern void copy_user_page_asm(void *, void *, unsigned long);
void flush_kernel_dcache_page_addr(void *addr)
{
unsigned long flags;
flush_kernel_dcache_page_asm(addr);
purge_tlb_start(flags);
pdtlb_kernel(addr);
purge_tlb_end(flags);
}
EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
parisc: fixes and cleanups in page cache flushing (1/4) This is the first patch in a series of 4, with which the page cache flushing of parisc will gets fixed and enhanced. This even fixes the nasty "minifail" bug (http://wiki.parisc-linux.org/TestCases?highlight=%28minifail%29) which prevented parisc to stay an official debian port. Basically the flush in copy_user_page together with the TLB patch from commit 7139bc1579901b53db7e898789e916ee2fb52d78 is what fixes the minifail bug. This patch still uses the TMPALIAS approach. The new copy_user_page implementation calls flush_dcache_page_asm to flush the user dcache page (crucial for minifail fix) via a kernel TMPALIAS mapping. After that, it just copies the page using the kernel mapping. It does a final flush if needed. Generally it is hard to avoid doing some cache flushes using the kernel mapping (e.g., copy_to_user_page and copy_from_user_page). This patch depends on a subsequent change to pacache.S implementing clear_page_asm and copy_page_asm. These are optimized routines to clear and copy a page. The calls in clear_user_page and copy_user_page could be replaced by calls to memset and memcpy, respectively. I tested prefetch optimizations in clear_page_asm and copy_page_asm but didn't see any significant performance improvement on rp3440. I'm not sure if these are routines are significantly faster than memset and/or memcpy, but they are there for further performance evaluation. Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de>
2013-02-03 22:59:09 +00:00
void clear_user_page(void *vto, unsigned long vaddr, struct page *page)
{
clear_page_asm(vto);
if (!parisc_requires_coherency())
flush_kernel_dcache_page_asm(vto);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
parisc: fixes and cleanups in page cache flushing (1/4) This is the first patch in a series of 4, with which the page cache flushing of parisc will gets fixed and enhanced. This even fixes the nasty "minifail" bug (http://wiki.parisc-linux.org/TestCases?highlight=%28minifail%29) which prevented parisc to stay an official debian port. Basically the flush in copy_user_page together with the TLB patch from commit 7139bc1579901b53db7e898789e916ee2fb52d78 is what fixes the minifail bug. This patch still uses the TMPALIAS approach. The new copy_user_page implementation calls flush_dcache_page_asm to flush the user dcache page (crucial for minifail fix) via a kernel TMPALIAS mapping. After that, it just copies the page using the kernel mapping. It does a final flush if needed. Generally it is hard to avoid doing some cache flushes using the kernel mapping (e.g., copy_to_user_page and copy_from_user_page). This patch depends on a subsequent change to pacache.S implementing clear_page_asm and copy_page_asm. These are optimized routines to clear and copy a page. The calls in clear_user_page and copy_user_page could be replaced by calls to memset and memcpy, respectively. I tested prefetch optimizations in clear_page_asm and copy_page_asm but didn't see any significant performance improvement on rp3440. I'm not sure if these are routines are significantly faster than memset and/or memcpy, but they are there for further performance evaluation. Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de>
2013-02-03 22:59:09 +00:00
struct page *pg)
{
parisc: fixes and cleanups in page cache flushing (1/4) This is the first patch in a series of 4, with which the page cache flushing of parisc will gets fixed and enhanced. This even fixes the nasty "minifail" bug (http://wiki.parisc-linux.org/TestCases?highlight=%28minifail%29) which prevented parisc to stay an official debian port. Basically the flush in copy_user_page together with the TLB patch from commit 7139bc1579901b53db7e898789e916ee2fb52d78 is what fixes the minifail bug. This patch still uses the TMPALIAS approach. The new copy_user_page implementation calls flush_dcache_page_asm to flush the user dcache page (crucial for minifail fix) via a kernel TMPALIAS mapping. After that, it just copies the page using the kernel mapping. It does a final flush if needed. Generally it is hard to avoid doing some cache flushes using the kernel mapping (e.g., copy_to_user_page and copy_from_user_page). This patch depends on a subsequent change to pacache.S implementing clear_page_asm and copy_page_asm. These are optimized routines to clear and copy a page. The calls in clear_user_page and copy_user_page could be replaced by calls to memset and memcpy, respectively. I tested prefetch optimizations in clear_page_asm and copy_page_asm but didn't see any significant performance improvement on rp3440. I'm not sure if these are routines are significantly faster than memset and/or memcpy, but they are there for further performance evaluation. Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de>
2013-02-03 22:59:09 +00:00
/* Copy using kernel mapping. No coherency is needed
(all in kmap/kunmap) on machines that don't support
non-equivalent aliasing. However, the `from' page
needs to be flushed before it can be accessed through
the kernel mapping. */
preempt_disable();
flush_dcache_page_asm(__pa(vfrom), vaddr);
preempt_enable();
copy_page_asm(vto, vfrom);
if (!parisc_requires_coherency())
flush_kernel_dcache_page_asm(vto);
}
EXPORT_SYMBOL(copy_user_page);
#ifdef CONFIG_PA8X00
void kunmap_parisc(void *addr)
{
if (parisc_requires_coherency())
flush_kernel_dcache_page_addr(addr);
}
EXPORT_SYMBOL(kunmap_parisc);
#endif
void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
{
unsigned long flags;
/* Note: purge_tlb_entries can be called at startup with
no context. */
purge_tlb_start(flags);
mtsp(mm->context, 1);
pdtlb(addr);
pitlb(addr);
purge_tlb_end(flags);
}
EXPORT_SYMBOL(purge_tlb_entries);
void __flush_tlb_range(unsigned long sid, unsigned long start,
unsigned long end)
{
unsigned long npages;
npages = ((end - (start & PAGE_MASK)) + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
if (npages >= 512) /* 2MB of space: arbitrary, should be tuned */
flush_tlb_all();
else {
unsigned long flags;
purge_tlb_start(flags);
mtsp(sid, 1);
if (split_tlb) {
while (npages--) {
pdtlb(start);
pitlb(start);
start += PAGE_SIZE;
}
} else {
while (npages--) {
pdtlb(start);
start += PAGE_SIZE;
}
}
purge_tlb_end(flags);
}
}
static void cacheflush_h_tmp_function(void *dummy)
{
flush_cache_all_local();
}
void flush_cache_all(void)
{
on_each_cpu(cacheflush_h_tmp_function, NULL, 1);
}
static inline unsigned long mm_total_size(struct mm_struct *mm)
{
struct vm_area_struct *vma;
unsigned long usize = 0;
for (vma = mm->mmap; vma; vma = vma->vm_next)
usize += vma->vm_end - vma->vm_start;
return usize;
}
static inline pte_t *get_ptep(pgd_t *pgd, unsigned long addr)
{
pte_t *ptep = NULL;
if (!pgd_none(*pgd)) {
pud_t *pud = pud_offset(pgd, addr);
if (!pud_none(*pud)) {
pmd_t *pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd))
ptep = pte_offset_map(pmd, addr);
}
}
return ptep;
}
void flush_cache_mm(struct mm_struct *mm)
{
struct vm_area_struct *vma;
pgd_t *pgd;
/* Flushing the whole cache on each cpu takes forever on
rp3440, etc. So, avoid it if the mm isn't too big. */
if (mm_total_size(mm) >= parisc_cache_flush_threshold) {
flush_cache_all();
return;
}
if (mm->context == mfsp(3)) {
for (vma = mm->mmap; vma; vma = vma->vm_next) {
flush_user_dcache_range_asm(vma->vm_start, vma->vm_end);
if ((vma->vm_flags & VM_EXEC) == 0)
continue;
flush_user_icache_range_asm(vma->vm_start, vma->vm_end);
}
return;
}
pgd = mm->pgd;
for (vma = mm->mmap; vma; vma = vma->vm_next) {
unsigned long addr;
for (addr = vma->vm_start; addr < vma->vm_end;
addr += PAGE_SIZE) {
unsigned long pfn;
pte_t *ptep = get_ptep(pgd, addr);
if (!ptep)
continue;
pfn = pte_pfn(*ptep);
if (!pfn_valid(pfn))
continue;
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
}
}
}
void
flush_user_dcache_range(unsigned long start, unsigned long end)
{
if ((end - start) < parisc_cache_flush_threshold)
flush_user_dcache_range_asm(start,end);
else
flush_data_cache();
}
void
flush_user_icache_range(unsigned long start, unsigned long end)
{
if ((end - start) < parisc_cache_flush_threshold)
flush_user_icache_range_asm(start,end);
else
flush_instruction_cache();
}
void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
unsigned long addr;
pgd_t *pgd;
BUG_ON(!vma->vm_mm->context);
if ((end - start) >= parisc_cache_flush_threshold) {
flush_cache_all();
return;
}
if (vma->vm_mm->context == mfsp(3)) {
flush_user_dcache_range_asm(start, end);
if (vma->vm_flags & VM_EXEC)
flush_user_icache_range_asm(start, end);
return;
}
pgd = vma->vm_mm->pgd;
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
unsigned long pfn;
pte_t *ptep = get_ptep(pgd, addr);
if (!ptep)
continue;
pfn = pte_pfn(*ptep);
if (pfn_valid(pfn))
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
}
}
void
flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
{
BUG_ON(!vma->vm_mm->context);
if (pfn_valid(pfn)) {
flush_tlb_page(vma, vmaddr);
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
}
}
#ifdef CONFIG_PARISC_TMPALIAS
void clear_user_highpage(struct page *page, unsigned long vaddr)
{
void *vto;
unsigned long flags;
/* Clear using TMPALIAS region. The page doesn't need to
be flushed but the kernel mapping needs to be purged. */
vto = kmap_atomic(page);
/* The PA-RISC 2.0 Architecture book states on page F-6:
"Before a write-capable translation is enabled, *all*
non-equivalently-aliased translations must be removed
from the page table and purged from the TLB. (Note
that the caches are not required to be flushed at this
time.) Before any non-equivalent aliased translation
is re-enabled, the virtual address range for the writeable
page (the entire page) must be flushed from the cache,
and the write-capable translation removed from the page
table and purged from the TLB." */
purge_kernel_dcache_page_asm((unsigned long)vto);
purge_tlb_start(flags);
pdtlb_kernel(vto);
purge_tlb_end(flags);
preempt_disable();
clear_user_page_asm(vto, vaddr);
preempt_enable();
pagefault_enable(); /* kunmap_atomic(addr, KM_USER0); */
}
void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
void *vfrom, *vto;
unsigned long flags;
/* Copy using TMPALIAS region. This has the advantage
that the `from' page doesn't need to be flushed. However,
the `to' page must be flushed in copy_user_page_asm since
it can be used to bring in executable code. */
vfrom = kmap_atomic(from);
vto = kmap_atomic(to);
purge_kernel_dcache_page_asm((unsigned long)vto);
purge_tlb_start(flags);
pdtlb_kernel(vto);
pdtlb_kernel(vfrom);
purge_tlb_end(flags);
preempt_disable();
copy_user_page_asm(vto, vfrom, vaddr);
flush_dcache_page_asm(__pa(vto), vaddr);
preempt_enable();
pagefault_enable(); /* kunmap_atomic(addr, KM_USER1); */
pagefault_enable(); /* kunmap_atomic(addr, KM_USER0); */
}
#endif /* CONFIG_PARISC_TMPALIAS */