linux/drivers/net/fs_enet/fs_enet-main.c

1223 lines
27 KiB
C
Raw Normal View History

/*
* Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/vmalloc.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Freescale Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
module_param(fs_enet_debug, int, 0);
MODULE_PARM_DESC(fs_enet_debug,
"Freescale bitmapped debugging message enable value");
#ifdef CONFIG_NET_POLL_CONTROLLER
static void fs_enet_netpoll(struct net_device *dev);
#endif
static void fs_set_multicast_list(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
(*fep->ops->set_multicast_list)(dev);
}
static void skb_align(struct sk_buff *skb, int align)
{
int off = ((unsigned long)skb->data) & (align - 1);
if (off)
skb_reserve(skb, align - off);
}
/* NAPI receive function */
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
struct net_device *dev = fep->ndev;
const struct fs_platform_info *fpi = fep->fpi;
cbd_t __iomem *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
/* clear RX status bits for napi*/
(*fep->ops->napi_clear_rx_event)(dev);
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
skb_copy_from_linear_data(skb,
skbn->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else {
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn)
skb_align(skbn, ENET_RX_ALIGN);
}
if (skbn != NULL) {
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_receive_skb(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
if (received >= budget)
break;
}
fep->cur_rx = bdp;
if (received < budget) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
/* done */
netif_rx_complete(dev, napi);
(*fep->ops->napi_enable_rx)(dev);
}
return received;
}
/* non NAPI receive function */
static int fs_enet_rx_non_napi(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
cbd_t __iomem *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
u16 pkt_len, sc;
int curidx;
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
skbn = skb;
} else {
skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
skb_copy_from_linear_data(skb,
skbn->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else {
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn)
skb_align(skbn, ENET_RX_ALIGN);
}
if (skbn != NULL) {
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
netif_rx(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
(*fep->ops->rx_bd_done)(dev);
}
fep->cur_rx = bdp;
return 0;
}
static void fs_enet_tx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t __iomem *bdp;
struct sk_buff *skb;
int dirtyidx, do_wake, do_restart;
u16 sc;
spin_lock(&fep->tx_lock);
bdp = fep->dirty_tx;
do_wake = do_restart = 0;
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
dirtyidx = bdp - fep->tx_bd_base;
if (fep->tx_free == fep->tx_ring)
break;
skb = fep->tx_skbuff[dirtyidx];
/*
* Check for errors.
*/
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
if (sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
fep->stats.tx_errors++;
do_restart = 1;
}
} else
fep->stats.tx_packets++;
if (sc & BD_ENET_TX_READY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s HEY! Enet xmit interrupt and TX_READY.\n",
dev->name);
/*
* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
/*
* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(skb);
fep->tx_skbuff[dirtyidx] = NULL;
/*
* Update pointer to next buffer descriptor to be transmitted.
*/
if ((sc & BD_ENET_TX_WRAP) == 0)
bdp++;
else
bdp = fep->tx_bd_base;
/*
* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!fep->tx_free++)
do_wake = 1;
}
fep->dirty_tx = bdp;
if (do_restart)
(*fep->ops->tx_restart)(dev);
spin_unlock(&fep->tx_lock);
if (do_wake)
netif_wake_queue(dev);
}
/*
* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
fs_enet_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fs_enet_private *fep;
const struct fs_platform_info *fpi;
u32 int_events;
u32 int_clr_events;
int nr, napi_ok;
int handled;
fep = netdev_priv(dev);
fpi = fep->fpi;
nr = 0;
while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
nr++;
int_clr_events = int_events;
if (fpi->use_napi)
int_clr_events &= ~fep->ev_napi_rx;
(*fep->ops->clear_int_events)(dev, int_clr_events);
if (int_events & fep->ev_err)
(*fep->ops->ev_error)(dev, int_events);
if (int_events & fep->ev_rx) {
if (!fpi->use_napi)
fs_enet_rx_non_napi(dev);
else {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
napi_ok = napi_schedule_prep(&fep->napi);
(*fep->ops->napi_disable_rx)(dev);
(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
/* NOTE: it is possible for FCCs in NAPI mode */
/* to submit a spurious interrupt while in poll */
if (napi_ok)
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
__netif_rx_schedule(dev, &fep->napi);
}
}
if (int_events & fep->ev_tx)
fs_enet_tx(dev);
}
handled = nr > 0;
return IRQ_RETVAL(handled);
}
void fs_init_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t __iomem *bdp;
struct sk_buff *skb;
int i;
fs_cleanup_bds(dev);
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = fep->tx_ring;
fep->cur_rx = fep->rx_bd_base;
/*
* Initialize the receive buffer descriptors.
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
skb = dev_alloc_skb(ENET_RX_FRSIZE);
if (skb == NULL) {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, unable to allocate skb\n",
dev->name);
break;
}
skb_align(skb, ENET_RX_ALIGN);
fep->rx_skbuff[i] = skb;
CBDW_BUFADDR(bdp,
dma_map_single(fep->dev, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0); /* zero */
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
}
/*
* if we failed, fillup remainder
*/
for (; i < fep->rx_ring; i++, bdp++) {
fep->rx_skbuff[i] = NULL;
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* ...and the same for transmit.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
fep->tx_skbuff[i] = NULL;
CBDW_BUFADDR(bdp, 0);
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
}
}
void fs_cleanup_bds(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct sk_buff *skb;
cbd_t __iomem *bdp;
int i;
/*
* Reset SKB transmit buffers.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Reset SKB receive buffers
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
/* unmap */
dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE);
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
/**********************************************************************************/
static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
cbd_t __iomem *bdp;
int curidx;
u16 sc;
unsigned long flags;
spin_lock_irqsave(&fep->tx_lock, flags);
/*
* Fill in a Tx ring entry
*/
bdp = fep->cur_tx;
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
/*
* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s tx queue full!.\n", dev->name);
return NETDEV_TX_BUSY;
}
curidx = bdp - fep->tx_bd_base;
/*
* Clear all of the status flags.
*/
CBDC_SC(bdp, BD_ENET_TX_STATS);
/*
* Save skb pointer.
*/
fep->tx_skbuff[curidx] = skb;
fep->stats.tx_bytes += skb->len;
/*
* Push the data cache so the CPM does not get stale memory data.
*/
CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
skb->data, skb->len, DMA_TO_DEVICE));
CBDW_DATLEN(bdp, skb->len);
dev->trans_start = jiffies;
/*
* If this was the last BD in the ring, start at the beginning again.
*/
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
fep->cur_tx++;
else
fep->cur_tx = fep->tx_bd_base;
if (!--fep->tx_free)
netif_stop_queue(dev);
/* Trigger transmission start */
sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
BD_ENET_TX_LAST | BD_ENET_TX_TC;
/* note that while FEC does not have this bit
* it marks it as available for software use
* yay for hw reuse :) */
if (skb->len <= 60)
sc |= BD_ENET_TX_PAD;
CBDS_SC(bdp, sc);
(*fep->ops->tx_kickstart)(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
return NETDEV_TX_OK;
}
static void fs_timeout(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int wake = 0;
fep->stats.tx_errors++;
spin_lock_irqsave(&fep->lock, flags);
if (dev->flags & IFF_UP) {
phy_stop(fep->phydev);
(*fep->ops->stop)(dev);
(*fep->ops->restart)(dev);
phy_start(fep->phydev);
}
phy_start(fep->phydev);
wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
spin_unlock_irqrestore(&fep->lock, flags);
if (wake)
netif_wake_queue(dev);
}
/*-----------------------------------------------------------------------------
* generic link-change handler - should be sufficient for most cases
*-----------------------------------------------------------------------------*/
static void generic_adjust_link(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev = fep->phydev;
int new_state = 0;
if (phydev->link) {
/* adjust to duplex mode */
if (phydev->duplex != fep->oldduplex) {
new_state = 1;
fep->oldduplex = phydev->duplex;
}
if (phydev->speed != fep->oldspeed) {
new_state = 1;
fep->oldspeed = phydev->speed;
}
if (!fep->oldlink) {
new_state = 1;
fep->oldlink = 1;
}
if (new_state)
fep->ops->restart(dev);
} else if (fep->oldlink) {
new_state = 1;
fep->oldlink = 0;
fep->oldspeed = 0;
fep->oldduplex = -1;
}
if (new_state && netif_msg_link(fep))
phy_print_status(phydev);
}
static void fs_adjust_link(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&fep->lock, flags);
if(fep->ops->adjust_link)
fep->ops->adjust_link(dev);
else
generic_adjust_link(dev);
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fs_init_phy(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct phy_device *phydev;
fep->oldlink = 0;
fep->oldspeed = 0;
fep->oldduplex = -1;
if(fep->fpi->bus_id)
phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
PHY_INTERFACE_MODE_MII);
else {
printk("No phy bus ID specified in BSP code\n");
return -EINVAL;
}
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
fep->phydev = phydev;
return 0;
}
static int fs_enet_open(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
int r;
int err;
/* to initialize the fep->cur_rx,... */
/* not doing this, will cause a crash in fs_enet_rx_napi */
fs_init_bds(fep->ndev);
if (fep->fpi->use_napi)
napi_enable(&fep->napi);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
/* Install our interrupt handler. */
r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
"fs_enet-mac", dev);
if (r != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate FS_ENET IRQ!", dev->name);
if (fep->fpi->use_napi)
napi_disable(&fep->napi);
return -EINVAL;
}
err = fs_init_phy(dev);
if (err) {
if (fep->fpi->use_napi)
napi_disable(&fep->napi);
return err;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
}
phy_start(fep->phydev);
netif_start_queue(dev);
return 0;
}
static int fs_enet_close(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
netif_stop_queue(dev);
netif_carrier_off(dev);
if (fep->fpi->use_napi)
napi_disable(&fep->napi);
phy_stop(fep->phydev);
spin_lock_irqsave(&fep->lock, flags);
spin_lock(&fep->tx_lock);
(*fep->ops->stop)(dev);
spin_unlock(&fep->tx_lock);
spin_unlock_irqrestore(&fep->lock, flags);
/* release any irqs */
phy_disconnect(fep->phydev);
fep->phydev = NULL;
free_irq(fep->interrupt, dev);
return 0;
}
static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
/*************************************************************************/
static void fs_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
}
static int fs_get_regs_len(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return (*fep->ops->get_regs_len)(dev);
}
static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct fs_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int r, len;
len = regs->len;
spin_lock_irqsave(&fep->lock, flags);
r = (*fep->ops->get_regs)(dev, p, &len);
spin_unlock_irqrestore(&fep->lock, flags);
if (r == 0)
regs->version = 0;
}
static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
fs_enet: check for phydev existence in the ethtool handlers Otherwise oops will happen if ethernet device has not been opened: Unable to handle kernel paging request for data at address 0x0000014c Faulting instruction address: 0xc016f7f0 Oops: Kernel access of bad area, sig: 11 [#1] MPC85xx NIP: c016f7f0 LR: c01722a0 CTR: 00000000 REGS: c79ddc70 TRAP: 0300 Not tainted (2.6.24-rc3-g820a386b) MSR: 00029000 <EE,ME> CR: 20004428 XER: 20000000 DEAR: 0000014c, ESR: 00000000 TASK = c789f5e0[999] 'snmpd' THREAD: c79dc000 GPR00: c01aceb8 c79ddd20 c789f5e0 00000000 c79ddd3c 00000000 c79ddd64 00000000 GPR08: 00000000 c7845b60 c79dde3c c01ace80 20004422 200249fc 000002a0 100da728 GPR16: 100c0000 00000000 00000000 00000000 20022078 00000009 200220e0 bfc85558 GPR24: c79ddd3c 00000000 00000000 c02e0e70 c022fc64 ffffffff c7845800 bfc85498 NIP [c016f7f0] phy_ethtool_gset+0x0/0x4c LR [c01722a0] fs_get_settings+0x18/0x28 Call Trace: [c79ddd20] [c79dde38] 0xc79dde38 (unreliable) [c79ddd30] [c01aceb8] dev_ethtool+0x294/0x11ec [c79dde30] [c01aaa44] dev_ioctl+0x454/0x6a8 [c79ddeb0] [c019b9d4] sock_ioctl+0x84/0x230 [c79dded0] [c007ded8] do_ioctl+0x34/0x8c [c79ddee0] [c007dfbc] vfs_ioctl+0x8c/0x41c [c79ddf10] [c007e38c] sys_ioctl+0x40/0x74 [c79ddf40] [c000d4c0] ret_from_syscall+0x0/0x3c Instruction dump: 81630000 800b0030 2f800000 419e0010 7c0803a6 4e800021 7c691b78 80010014 7d234b78 38210010 7c0803a6 4e800020 <8003014c> 7c6b1b78 38600000 90040004 Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Acked-by: Vitaly Bordug <vitb@kernel.crashing.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-01-08 19:05:55 +00:00
if (!fep->phydev)
return -ENODEV;
return phy_ethtool_gset(fep->phydev, cmd);
}
static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
fs_enet: check for phydev existence in the ethtool handlers Otherwise oops will happen if ethernet device has not been opened: Unable to handle kernel paging request for data at address 0x0000014c Faulting instruction address: 0xc016f7f0 Oops: Kernel access of bad area, sig: 11 [#1] MPC85xx NIP: c016f7f0 LR: c01722a0 CTR: 00000000 REGS: c79ddc70 TRAP: 0300 Not tainted (2.6.24-rc3-g820a386b) MSR: 00029000 <EE,ME> CR: 20004428 XER: 20000000 DEAR: 0000014c, ESR: 00000000 TASK = c789f5e0[999] 'snmpd' THREAD: c79dc000 GPR00: c01aceb8 c79ddd20 c789f5e0 00000000 c79ddd3c 00000000 c79ddd64 00000000 GPR08: 00000000 c7845b60 c79dde3c c01ace80 20004422 200249fc 000002a0 100da728 GPR16: 100c0000 00000000 00000000 00000000 20022078 00000009 200220e0 bfc85558 GPR24: c79ddd3c 00000000 00000000 c02e0e70 c022fc64 ffffffff c7845800 bfc85498 NIP [c016f7f0] phy_ethtool_gset+0x0/0x4c LR [c01722a0] fs_get_settings+0x18/0x28 Call Trace: [c79ddd20] [c79dde38] 0xc79dde38 (unreliable) [c79ddd30] [c01aceb8] dev_ethtool+0x294/0x11ec [c79dde30] [c01aaa44] dev_ioctl+0x454/0x6a8 [c79ddeb0] [c019b9d4] sock_ioctl+0x84/0x230 [c79dded0] [c007ded8] do_ioctl+0x34/0x8c [c79ddee0] [c007dfbc] vfs_ioctl+0x8c/0x41c [c79ddf10] [c007e38c] sys_ioctl+0x40/0x74 [c79ddf40] [c000d4c0] ret_from_syscall+0x0/0x3c Instruction dump: 81630000 800b0030 2f800000 419e0010 7c0803a6 4e800021 7c691b78 80010014 7d234b78 38210010 7c0803a6 4e800020 <8003014c> 7c6b1b78 38600000 90040004 Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Acked-by: Vitaly Bordug <vitb@kernel.crashing.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-01-08 19:05:55 +00:00
if (!fep->phydev)
return -ENODEV;
return phy_ethtool_sset(fep->phydev, cmd);
}
static int fs_nway_reset(struct net_device *dev)
{
return 0;
}
static u32 fs_get_msglevel(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
return fep->msg_enable;
}
static void fs_set_msglevel(struct net_device *dev, u32 value)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->msg_enable = value;
}
static const struct ethtool_ops fs_ethtool_ops = {
.get_drvinfo = fs_get_drvinfo,
.get_regs_len = fs_get_regs_len,
.get_settings = fs_get_settings,
.set_settings = fs_set_settings,
.nway_reset = fs_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = fs_get_msglevel,
.set_msglevel = fs_set_msglevel,
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
.set_sg = ethtool_op_set_sg,
.get_regs = fs_get_regs,
};
static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
if (!netif_running(dev))
return -EINVAL;
return phy_mii_ioctl(fep->phydev, mii, cmd);
}
extern int fs_mii_connect(struct net_device *dev);
extern void fs_mii_disconnect(struct net_device *dev);
/**************************************************************************************/
/* handy pointer to the immap */
void __iomem *fs_enet_immap = NULL;
static int setup_immap(void)
{
#ifdef CONFIG_CPM1
fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
WARN_ON(!fs_enet_immap);
#elif defined(CONFIG_CPM2)
fs_enet_immap = cpm2_immr;
#endif
return 0;
}
static void cleanup_immap(void)
{
#if defined(CONFIG_CPM1)
iounmap(fs_enet_immap);
#endif
}
/**************************************************************************************/
static int __devinit find_phy(struct device_node *np,
struct fs_platform_info *fpi)
{
struct device_node *phynode, *mdionode;
int ret = 0, len, bus_id;
const u32 *data;
data = of_get_property(np, "fixed-link", NULL);
if (data) {
snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
return 0;
}
data = of_get_property(np, "phy-handle", &len);
if (!data || len != 4)
return -EINVAL;
phynode = of_find_node_by_phandle(*data);
if (!phynode)
return -EINVAL;
data = of_get_property(phynode, "reg", &len);
if (!data || len != 4) {
ret = -EINVAL;
goto out_put_phy;
}
mdionode = of_get_parent(phynode);
if (!mdionode) {
ret = -EINVAL;
goto out_put_phy;
}
bus_id = of_get_gpio(mdionode, 0);
if (bus_id < 0) {
struct resource res;
ret = of_address_to_resource(mdionode, 0, &res);
if (ret)
goto out_put_mdio;
bus_id = res.start;
}
snprintf(fpi->bus_id, 16, "%x:%02x", bus_id, *data);
out_put_mdio:
of_node_put(mdionode);
out_put_phy:
of_node_put(phynode);
return ret;
}
#ifdef CONFIG_FS_ENET_HAS_FEC
#define IS_FEC(match) ((match)->data == &fs_fec_ops)
#else
#define IS_FEC(match) 0
#endif
static int __devinit fs_enet_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
struct net_device *ndev;
struct fs_enet_private *fep;
struct fs_platform_info *fpi;
const u32 *data;
const u8 *mac_addr;
int privsize, len, ret = -ENODEV;
fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
if (!fpi)
return -ENOMEM;
if (!IS_FEC(match)) {
data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
if (!data || len != 4)
goto out_free_fpi;
fpi->cp_command = *data;
}
fpi->rx_ring = 32;
fpi->tx_ring = 32;
fpi->rx_copybreak = 240;
fpi->use_napi = 1;
fpi->napi_weight = 17;
ret = find_phy(ofdev->node, fpi);
if (ret)
goto out_free_fpi;
privsize = sizeof(*fep) +
sizeof(struct sk_buff **) *
(fpi->rx_ring + fpi->tx_ring);
ndev = alloc_etherdev(privsize);
if (!ndev) {
ret = -ENOMEM;
goto out_free_fpi;
}
dev_set_drvdata(&ofdev->dev, ndev);
fep = netdev_priv(ndev);
fep->dev = &ofdev->dev;
fep->ndev = ndev;
fep->fpi = fpi;
fep->ops = match->data;
ret = fep->ops->setup_data(ndev);
if (ret)
goto out_free_dev;
fep->rx_skbuff = (struct sk_buff **)&fep[1];
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
spin_lock_init(&fep->lock);
spin_lock_init(&fep->tx_lock);
mac_addr = of_get_mac_address(ofdev->node);
if (mac_addr)
memcpy(ndev->dev_addr, mac_addr, 6);
ret = fep->ops->allocate_bd(ndev);
if (ret)
goto out_cleanup_data;
fep->rx_bd_base = fep->ring_base;
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
fep->tx_ring = fpi->tx_ring;
fep->rx_ring = fpi->rx_ring;
ndev->open = fs_enet_open;
ndev->hard_start_xmit = fs_enet_start_xmit;
ndev->tx_timeout = fs_timeout;
ndev->watchdog_timeo = 2 * HZ;
ndev->stop = fs_enet_close;
ndev->get_stats = fs_enet_get_stats;
ndev->set_multicast_list = fs_set_multicast_list;
#ifdef CONFIG_NET_POLL_CONTROLLER
ndev->poll_controller = fs_enet_netpoll;
#endif
if (fpi->use_napi)
netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
fpi->napi_weight);
ndev->ethtool_ops = &fs_ethtool_ops;
ndev->do_ioctl = fs_ioctl;
init_timer(&fep->phy_timer_list);
netif_carrier_off(ndev);
ret = register_netdev(ndev);
if (ret)
goto out_free_bd;
printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
ndev->name,
ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
return 0;
out_free_bd:
fep->ops->free_bd(ndev);
out_cleanup_data:
fep->ops->cleanup_data(ndev);
out_free_dev:
free_netdev(ndev);
dev_set_drvdata(&ofdev->dev, NULL);
out_free_fpi:
kfree(fpi);
return ret;
}
static int fs_enet_remove(struct of_device *ofdev)
{
struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
struct fs_enet_private *fep = netdev_priv(ndev);
unregister_netdev(ndev);
fep->ops->free_bd(ndev);
fep->ops->cleanup_data(ndev);
dev_set_drvdata(fep->dev, NULL);
free_netdev(ndev);
return 0;
}
static struct of_device_id fs_enet_match[] = {
#ifdef CONFIG_FS_ENET_HAS_SCC
{
.compatible = "fsl,cpm1-scc-enet",
.data = (void *)&fs_scc_ops,
},
{
.compatible = "fsl,cpm2-scc-enet",
.data = (void *)&fs_scc_ops,
},
#endif
#ifdef CONFIG_FS_ENET_HAS_FCC
{
.compatible = "fsl,cpm2-fcc-enet",
.data = (void *)&fs_fcc_ops,
},
#endif
#ifdef CONFIG_FS_ENET_HAS_FEC
{
.compatible = "fsl,pq1-fec-enet",
.data = (void *)&fs_fec_ops,
},
#endif
{}
};
static struct of_platform_driver fs_enet_driver = {
.name = "fs_enet",
.match_table = fs_enet_match,
.probe = fs_enet_probe,
.remove = fs_enet_remove,
};
static int __init fs_init(void)
{
int r = setup_immap();
if (r != 0)
return r;
r = of_register_platform_driver(&fs_enet_driver);
if (r != 0)
goto out;
return 0;
out:
cleanup_immap();
return r;
}
static void __exit fs_cleanup(void)
{
of_unregister_platform_driver(&fs_enet_driver);
cleanup_immap();
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void fs_enet_netpoll(struct net_device *dev)
{
disable_irq(dev->irq);
fs_enet_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/**************************************************************************************/
module_init(fs_init);
module_exit(fs_cleanup);