linux/sound/usb/caiaq/audio.c

862 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2008 Daniel Mack, Karsten Wiese
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/spinlock.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "device.h"
#include "audio.h"
#define N_URBS 32
#define CLOCK_DRIFT_TOLERANCE 5
#define FRAMES_PER_URB 8
#define BYTES_PER_FRAME 512
#define CHANNELS_PER_STREAM 2
#define BYTES_PER_SAMPLE 3
#define BYTES_PER_SAMPLE_USB 4
#define MAX_BUFFER_SIZE (128*1024)
#define MAX_ENDPOINT_SIZE 512
#define ENDPOINT_CAPTURE 2
#define ENDPOINT_PLAYBACK 6
#define MAKE_CHECKBYTE(dev,stream,i) \
(stream << 1) | (~(i / (dev->n_streams * BYTES_PER_SAMPLE_USB)) & 1)
static struct snd_pcm_hardware snd_usb_caiaq_pcm_hardware = {
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER),
.formats = SNDRV_PCM_FMTBIT_S24_3BE,
.rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_96000),
.rate_min = 44100,
.rate_max = 0, /* will overwrite later */
.channels_min = CHANNELS_PER_STREAM,
.channels_max = CHANNELS_PER_STREAM,
.buffer_bytes_max = MAX_BUFFER_SIZE,
.period_bytes_min = 128,
.period_bytes_max = MAX_BUFFER_SIZE,
.periods_min = 1,
.periods_max = 1024,
};
static void
activate_substream(struct snd_usb_caiaqdev *dev,
struct snd_pcm_substream *sub)
{
spin_lock(&dev->spinlock);
if (sub->stream == SNDRV_PCM_STREAM_PLAYBACK)
dev->sub_playback[sub->number] = sub;
else
dev->sub_capture[sub->number] = sub;
spin_unlock(&dev->spinlock);
}
static void
deactivate_substream(struct snd_usb_caiaqdev *dev,
struct snd_pcm_substream *sub)
{
unsigned long flags;
spin_lock_irqsave(&dev->spinlock, flags);
if (sub->stream == SNDRV_PCM_STREAM_PLAYBACK)
dev->sub_playback[sub->number] = NULL;
else
dev->sub_capture[sub->number] = NULL;
spin_unlock_irqrestore(&dev->spinlock, flags);
}
static int
all_substreams_zero(struct snd_pcm_substream **subs)
{
int i;
for (i = 0; i < MAX_STREAMS; i++)
if (subs[i] != NULL)
return 0;
return 1;
}
static int stream_start(struct snd_usb_caiaqdev *dev)
{
int i, ret;
debug("%s(%p)\n", __func__, dev);
if (dev->streaming)
return -EINVAL;
memset(dev->sub_playback, 0, sizeof(dev->sub_playback));
memset(dev->sub_capture, 0, sizeof(dev->sub_capture));
dev->input_panic = 0;
dev->output_panic = 0;
dev->first_packet = 4;
dev->streaming = 1;
dev->warned = 0;
for (i = 0; i < N_URBS; i++) {
ret = usb_submit_urb(dev->data_urbs_in[i], GFP_ATOMIC);
if (ret) {
log("unable to trigger read #%d! (ret %d)\n", i, ret);
dev->streaming = 0;
return -EPIPE;
}
}
return 0;
}
static void stream_stop(struct snd_usb_caiaqdev *dev)
{
int i;
debug("%s(%p)\n", __func__, dev);
if (!dev->streaming)
return;
dev->streaming = 0;
for (i = 0; i < N_URBS; i++) {
usb_kill_urb(dev->data_urbs_in[i]);
usb_kill_urb(dev->data_urbs_out[i]);
}
}
static int snd_usb_caiaq_substream_open(struct snd_pcm_substream *substream)
{
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(substream);
debug("%s(%p)\n", __func__, substream);
substream->runtime->hw = dev->pcm_info;
snd_pcm_limit_hw_rates(substream->runtime);
return 0;
}
static int snd_usb_caiaq_substream_close(struct snd_pcm_substream *substream)
{
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(substream);
debug("%s(%p)\n", __func__, substream);
if (all_substreams_zero(dev->sub_playback) &&
all_substreams_zero(dev->sub_capture)) {
/* when the last client has stopped streaming,
* all sample rates are allowed again */
stream_stop(dev);
dev->pcm_info.rates = dev->samplerates;
}
return 0;
}
static int snd_usb_caiaq_pcm_hw_params(struct snd_pcm_substream *sub,
struct snd_pcm_hw_params *hw_params)
{
debug("%s(%p)\n", __func__, sub);
return snd_pcm_lib_malloc_pages(sub, params_buffer_bytes(hw_params));
}
static int snd_usb_caiaq_pcm_hw_free(struct snd_pcm_substream *sub)
{
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(sub);
debug("%s(%p)\n", __func__, sub);
deactivate_substream(dev, sub);
return snd_pcm_lib_free_pages(sub);
}
/* this should probably go upstream */
#if SNDRV_PCM_RATE_5512 != 1 << 0 || SNDRV_PCM_RATE_192000 != 1 << 12
#error "Change this table"
#endif
static unsigned int rates[] = { 5512, 8000, 11025, 16000, 22050, 32000, 44100,
48000, 64000, 88200, 96000, 176400, 192000 };
static int snd_usb_caiaq_pcm_prepare(struct snd_pcm_substream *substream)
{
int bytes_per_sample, bpp, ret, i;
int index = substream->number;
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
debug("%s(%p)\n", __func__, substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
int out_pos;
switch (dev->spec.data_alignment) {
case 0:
case 2:
out_pos = BYTES_PER_SAMPLE + 1;
break;
case 3:
default:
out_pos = 0;
break;
}
dev->period_out_count[index] = out_pos;
dev->audio_out_buf_pos[index] = out_pos;
} else {
int in_pos;
switch (dev->spec.data_alignment) {
case 0:
in_pos = BYTES_PER_SAMPLE + 2;
break;
case 2:
in_pos = BYTES_PER_SAMPLE;
break;
case 3:
default:
in_pos = 0;
break;
}
dev->period_in_count[index] = in_pos;
dev->audio_in_buf_pos[index] = in_pos;
}
if (dev->streaming)
return 0;
/* the first client that opens a stream defines the sample rate
* setting for all subsequent calls, until the last client closed. */
for (i=0; i < ARRAY_SIZE(rates); i++)
if (runtime->rate == rates[i])
dev->pcm_info.rates = 1 << i;
snd_pcm_limit_hw_rates(runtime);
bytes_per_sample = BYTES_PER_SAMPLE;
if (dev->spec.data_alignment >= 2)
bytes_per_sample++;
bpp = ((runtime->rate / 8000) + CLOCK_DRIFT_TOLERANCE)
* bytes_per_sample * CHANNELS_PER_STREAM * dev->n_streams;
if (bpp > MAX_ENDPOINT_SIZE)
bpp = MAX_ENDPOINT_SIZE;
ret = snd_usb_caiaq_set_audio_params(dev, runtime->rate,
runtime->sample_bits, bpp);
if (ret)
return ret;
ret = stream_start(dev);
if (ret)
return ret;
dev->output_running = 0;
wait_event_timeout(dev->prepare_wait_queue, dev->output_running, HZ);
if (!dev->output_running) {
stream_stop(dev);
return -EPIPE;
}
return 0;
}
static int snd_usb_caiaq_pcm_trigger(struct snd_pcm_substream *sub, int cmd)
{
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(sub);
debug("%s(%p) cmd %d\n", __func__, sub, cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
activate_substream(dev, sub);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
deactivate_substream(dev, sub);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t
snd_usb_caiaq_pcm_pointer(struct snd_pcm_substream *sub)
{
int index = sub->number;
struct snd_usb_caiaqdev *dev = snd_pcm_substream_chip(sub);
snd_pcm_uframes_t ptr;
spin_lock(&dev->spinlock);
if (dev->input_panic || dev->output_panic)
ptr = SNDRV_PCM_POS_XRUN;
if (sub->stream == SNDRV_PCM_STREAM_PLAYBACK)
ptr = bytes_to_frames(sub->runtime,
dev->audio_out_buf_pos[index]);
else
ptr = bytes_to_frames(sub->runtime,
dev->audio_in_buf_pos[index]);
spin_unlock(&dev->spinlock);
return ptr;
}
/* operators for both playback and capture */
static struct snd_pcm_ops snd_usb_caiaq_ops = {
.open = snd_usb_caiaq_substream_open,
.close = snd_usb_caiaq_substream_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usb_caiaq_pcm_hw_params,
.hw_free = snd_usb_caiaq_pcm_hw_free,
.prepare = snd_usb_caiaq_pcm_prepare,
.trigger = snd_usb_caiaq_pcm_trigger,
.pointer = snd_usb_caiaq_pcm_pointer
};
static void check_for_elapsed_periods(struct snd_usb_caiaqdev *dev,
struct snd_pcm_substream **subs)
{
int stream, pb, *cnt;
struct snd_pcm_substream *sub;
for (stream = 0; stream < dev->n_streams; stream++) {
sub = subs[stream];
if (!sub)
continue;
pb = snd_pcm_lib_period_bytes(sub);
cnt = (sub->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
&dev->period_out_count[stream] :
&dev->period_in_count[stream];
if (*cnt >= pb) {
snd_pcm_period_elapsed(sub);
*cnt %= pb;
}
}
}
static void read_in_urb_mode0(struct snd_usb_caiaqdev *dev,
const struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
unsigned char *usb_buf = urb->transfer_buffer + iso->offset;
struct snd_pcm_substream *sub;
int stream, i;
if (all_substreams_zero(dev->sub_capture))
return;
for (i = 0; i < iso->actual_length;) {
for (stream = 0; stream < dev->n_streams; stream++, i++) {
sub = dev->sub_capture[stream];
if (sub) {
struct snd_pcm_runtime *rt = sub->runtime;
char *audio_buf = rt->dma_area;
int sz = frames_to_bytes(rt, rt->buffer_size);
audio_buf[dev->audio_in_buf_pos[stream]++]
= usb_buf[i];
dev->period_in_count[stream]++;
if (dev->audio_in_buf_pos[stream] == sz)
dev->audio_in_buf_pos[stream] = 0;
}
}
}
}
static void read_in_urb_mode2(struct snd_usb_caiaqdev *dev,
const struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
unsigned char *usb_buf = urb->transfer_buffer + iso->offset;
unsigned char check_byte;
struct snd_pcm_substream *sub;
int stream, i;
for (i = 0; i < iso->actual_length;) {
if (i % (dev->n_streams * BYTES_PER_SAMPLE_USB) == 0) {
for (stream = 0;
stream < dev->n_streams;
stream++, i++) {
if (dev->first_packet)
continue;
check_byte = MAKE_CHECKBYTE(dev, stream, i);
if ((usb_buf[i] & 0x3f) != check_byte)
dev->input_panic = 1;
if (usb_buf[i] & 0x80)
dev->output_panic = 1;
}
}
dev->first_packet = 0;
for (stream = 0; stream < dev->n_streams; stream++, i++) {
sub = dev->sub_capture[stream];
if (dev->input_panic)
usb_buf[i] = 0;
if (sub) {
struct snd_pcm_runtime *rt = sub->runtime;
char *audio_buf = rt->dma_area;
int sz = frames_to_bytes(rt, rt->buffer_size);
audio_buf[dev->audio_in_buf_pos[stream]++] =
usb_buf[i];
dev->period_in_count[stream]++;
if (dev->audio_in_buf_pos[stream] == sz)
dev->audio_in_buf_pos[stream] = 0;
}
}
}
}
static void read_in_urb_mode3(struct snd_usb_caiaqdev *dev,
const struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
unsigned char *usb_buf = urb->transfer_buffer + iso->offset;
int stream, i;
/* paranoia check */
if (iso->actual_length % (BYTES_PER_SAMPLE_USB * CHANNELS_PER_STREAM))
return;
for (i = 0; i < iso->actual_length;) {
for (stream = 0; stream < dev->n_streams; stream++) {
struct snd_pcm_substream *sub = dev->sub_capture[stream];
char *audio_buf = NULL;
int c, n, sz = 0;
if (sub && !dev->input_panic) {
struct snd_pcm_runtime *rt = sub->runtime;
audio_buf = rt->dma_area;
sz = frames_to_bytes(rt, rt->buffer_size);
}
for (c = 0; c < CHANNELS_PER_STREAM; c++) {
/* 3 audio data bytes, followed by 1 check byte */
if (audio_buf) {
for (n = 0; n < BYTES_PER_SAMPLE; n++) {
audio_buf[dev->audio_in_buf_pos[stream]++] = usb_buf[i+n];
if (dev->audio_in_buf_pos[stream] == sz)
dev->audio_in_buf_pos[stream] = 0;
}
dev->period_in_count[stream] += BYTES_PER_SAMPLE;
}
i += BYTES_PER_SAMPLE;
if (usb_buf[i] != ((stream << 1) | c) &&
!dev->first_packet) {
if (!dev->input_panic)
printk(" EXPECTED: %02x got %02x, c %d, stream %d, i %d\n",
((stream << 1) | c), usb_buf[i], c, stream, i);
dev->input_panic = 1;
}
i++;
}
}
}
if (dev->first_packet > 0)
dev->first_packet--;
}
static void read_in_urb(struct snd_usb_caiaqdev *dev,
const struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
if (!dev->streaming)
return;
if (iso->actual_length < dev->bpp)
return;
switch (dev->spec.data_alignment) {
case 0:
read_in_urb_mode0(dev, urb, iso);
break;
case 2:
read_in_urb_mode2(dev, urb, iso);
break;
case 3:
read_in_urb_mode3(dev, urb, iso);
break;
}
if ((dev->input_panic || dev->output_panic) && !dev->warned) {
debug("streaming error detected %s %s\n",
dev->input_panic ? "(input)" : "",
dev->output_panic ? "(output)" : "");
dev->warned = 1;
}
}
static void fill_out_urb_mode_0(struct snd_usb_caiaqdev *dev,
struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
unsigned char *usb_buf = urb->transfer_buffer + iso->offset;
struct snd_pcm_substream *sub;
int stream, i;
for (i = 0; i < iso->length;) {
for (stream = 0; stream < dev->n_streams; stream++, i++) {
sub = dev->sub_playback[stream];
if (sub) {
struct snd_pcm_runtime *rt = sub->runtime;
char *audio_buf = rt->dma_area;
int sz = frames_to_bytes(rt, rt->buffer_size);
usb_buf[i] =
audio_buf[dev->audio_out_buf_pos[stream]];
dev->period_out_count[stream]++;
dev->audio_out_buf_pos[stream]++;
if (dev->audio_out_buf_pos[stream] == sz)
dev->audio_out_buf_pos[stream] = 0;
} else
usb_buf[i] = 0;
}
/* fill in the check bytes */
if (dev->spec.data_alignment == 2 &&
i % (dev->n_streams * BYTES_PER_SAMPLE_USB) ==
(dev->n_streams * CHANNELS_PER_STREAM))
for (stream = 0; stream < dev->n_streams; stream++, i++)
usb_buf[i] = MAKE_CHECKBYTE(dev, stream, i);
}
}
static void fill_out_urb_mode_3(struct snd_usb_caiaqdev *dev,
struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
unsigned char *usb_buf = urb->transfer_buffer + iso->offset;
int stream, i;
for (i = 0; i < iso->length;) {
for (stream = 0; stream < dev->n_streams; stream++) {
struct snd_pcm_substream *sub = dev->sub_playback[stream];
char *audio_buf = NULL;
int c, n, sz = 0;
if (sub) {
struct snd_pcm_runtime *rt = sub->runtime;
audio_buf = rt->dma_area;
sz = frames_to_bytes(rt, rt->buffer_size);
}
for (c = 0; c < CHANNELS_PER_STREAM; c++) {
for (n = 0; n < BYTES_PER_SAMPLE; n++) {
if (audio_buf) {
usb_buf[i+n] = audio_buf[dev->audio_out_buf_pos[stream]++];
if (dev->audio_out_buf_pos[stream] == sz)
dev->audio_out_buf_pos[stream] = 0;
} else {
usb_buf[i+n] = 0;
}
}
if (audio_buf)
dev->period_out_count[stream] += BYTES_PER_SAMPLE;
i += BYTES_PER_SAMPLE;
/* fill in the check byte pattern */
usb_buf[i++] = (stream << 1) | c;
}
}
}
}
static inline void fill_out_urb(struct snd_usb_caiaqdev *dev,
struct urb *urb,
const struct usb_iso_packet_descriptor *iso)
{
switch (dev->spec.data_alignment) {
case 0:
case 2:
fill_out_urb_mode_0(dev, urb, iso);
break;
case 3:
fill_out_urb_mode_3(dev, urb, iso);
break;
}
}
static void read_completed(struct urb *urb)
{
struct snd_usb_caiaq_cb_info *info = urb->context;
struct snd_usb_caiaqdev *dev;
struct urb *out;
int frame, len, send_it = 0, outframe = 0;
if (urb->status || !info)
return;
dev = info->dev;
if (!dev->streaming)
return;
out = dev->data_urbs_out[info->index];
/* read the recently received packet and send back one which has
* the same layout */
for (frame = 0; frame < FRAMES_PER_URB; frame++) {
if (urb->iso_frame_desc[frame].status)
continue;
len = urb->iso_frame_desc[outframe].actual_length;
out->iso_frame_desc[outframe].length = len;
out->iso_frame_desc[outframe].actual_length = 0;
out->iso_frame_desc[outframe].offset = BYTES_PER_FRAME * frame;
if (len > 0) {
spin_lock(&dev->spinlock);
fill_out_urb(dev, out, &out->iso_frame_desc[outframe]);
read_in_urb(dev, urb, &urb->iso_frame_desc[frame]);
spin_unlock(&dev->spinlock);
check_for_elapsed_periods(dev, dev->sub_playback);
check_for_elapsed_periods(dev, dev->sub_capture);
send_it = 1;
}
outframe++;
}
if (send_it) {
out->number_of_packets = FRAMES_PER_URB;
out->transfer_flags = URB_ISO_ASAP;
usb_submit_urb(out, GFP_ATOMIC);
}
/* re-submit inbound urb */
for (frame = 0; frame < FRAMES_PER_URB; frame++) {
urb->iso_frame_desc[frame].offset = BYTES_PER_FRAME * frame;
urb->iso_frame_desc[frame].length = BYTES_PER_FRAME;
urb->iso_frame_desc[frame].actual_length = 0;
}
urb->number_of_packets = FRAMES_PER_URB;
urb->transfer_flags = URB_ISO_ASAP;
usb_submit_urb(urb, GFP_ATOMIC);
}
static void write_completed(struct urb *urb)
{
struct snd_usb_caiaq_cb_info *info = urb->context;
struct snd_usb_caiaqdev *dev = info->dev;
if (!dev->output_running) {
dev->output_running = 1;
wake_up(&dev->prepare_wait_queue);
}
}
static struct urb **alloc_urbs(struct snd_usb_caiaqdev *dev, int dir, int *ret)
{
int i, frame;
struct urb **urbs;
struct usb_device *usb_dev = dev->chip.dev;
unsigned int pipe;
pipe = (dir == SNDRV_PCM_STREAM_PLAYBACK) ?
usb_sndisocpipe(usb_dev, ENDPOINT_PLAYBACK) :
usb_rcvisocpipe(usb_dev, ENDPOINT_CAPTURE);
urbs = kmalloc(N_URBS * sizeof(*urbs), GFP_KERNEL);
if (!urbs) {
log("unable to kmalloc() urbs, OOM!?\n");
*ret = -ENOMEM;
return NULL;
}
for (i = 0; i < N_URBS; i++) {
urbs[i] = usb_alloc_urb(FRAMES_PER_URB, GFP_KERNEL);
if (!urbs[i]) {
log("unable to usb_alloc_urb(), OOM!?\n");
*ret = -ENOMEM;
return urbs;
}
urbs[i]->transfer_buffer =
kmalloc(FRAMES_PER_URB * BYTES_PER_FRAME, GFP_KERNEL);
if (!urbs[i]->transfer_buffer) {
log("unable to kmalloc() transfer buffer, OOM!?\n");
*ret = -ENOMEM;
return urbs;
}
for (frame = 0; frame < FRAMES_PER_URB; frame++) {
struct usb_iso_packet_descriptor *iso =
&urbs[i]->iso_frame_desc[frame];
iso->offset = BYTES_PER_FRAME * frame;
iso->length = BYTES_PER_FRAME;
}
urbs[i]->dev = usb_dev;
urbs[i]->pipe = pipe;
urbs[i]->transfer_buffer_length = FRAMES_PER_URB
* BYTES_PER_FRAME;
urbs[i]->context = &dev->data_cb_info[i];
urbs[i]->interval = 1;
urbs[i]->transfer_flags = URB_ISO_ASAP;
urbs[i]->number_of_packets = FRAMES_PER_URB;
urbs[i]->complete = (dir == SNDRV_PCM_STREAM_CAPTURE) ?
read_completed : write_completed;
}
*ret = 0;
return urbs;
}
static void free_urbs(struct urb **urbs)
{
int i;
if (!urbs)
return;
for (i = 0; i < N_URBS; i++) {
if (!urbs[i])
continue;
usb_kill_urb(urbs[i]);
kfree(urbs[i]->transfer_buffer);
usb_free_urb(urbs[i]);
}
kfree(urbs);
}
int snd_usb_caiaq_audio_init(struct snd_usb_caiaqdev *dev)
{
int i, ret;
dev->n_audio_in = max(dev->spec.num_analog_audio_in,
dev->spec.num_digital_audio_in) /
CHANNELS_PER_STREAM;
dev->n_audio_out = max(dev->spec.num_analog_audio_out,
dev->spec.num_digital_audio_out) /
CHANNELS_PER_STREAM;
dev->n_streams = max(dev->n_audio_in, dev->n_audio_out);
debug("dev->n_audio_in = %d\n", dev->n_audio_in);
debug("dev->n_audio_out = %d\n", dev->n_audio_out);
debug("dev->n_streams = %d\n", dev->n_streams);
if (dev->n_streams > MAX_STREAMS) {
log("unable to initialize device, too many streams.\n");
return -EINVAL;
}
ret = snd_pcm_new(dev->chip.card, dev->product_name, 0,
dev->n_audio_out, dev->n_audio_in, &dev->pcm);
if (ret < 0) {
log("snd_pcm_new() returned %d\n", ret);
return ret;
}
dev->pcm->private_data = dev;
strcpy(dev->pcm->name, dev->product_name);
memset(dev->sub_playback, 0, sizeof(dev->sub_playback));
memset(dev->sub_capture, 0, sizeof(dev->sub_capture));
memcpy(&dev->pcm_info, &snd_usb_caiaq_pcm_hardware,
sizeof(snd_usb_caiaq_pcm_hardware));
/* setup samplerates */
dev->samplerates = dev->pcm_info.rates;
switch (dev->chip.usb_id) {
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_SESSIONIO):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_GUITARRIGMOBILE):
dev->samplerates |= SNDRV_PCM_RATE_192000;
/* fall thru */
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AUDIO2DJ):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AUDIO4DJ):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AUDIO8DJ):
case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_TRAKTORAUDIO2):
dev->samplerates |= SNDRV_PCM_RATE_88200;
break;
}
snd_pcm_set_ops(dev->pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_usb_caiaq_ops);
snd_pcm_set_ops(dev->pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_usb_caiaq_ops);
snd_pcm_lib_preallocate_pages_for_all(dev->pcm,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
MAX_BUFFER_SIZE, MAX_BUFFER_SIZE);
dev->data_cb_info =
kmalloc(sizeof(struct snd_usb_caiaq_cb_info) * N_URBS,
GFP_KERNEL);
if (!dev->data_cb_info)
return -ENOMEM;
for (i = 0; i < N_URBS; i++) {
dev->data_cb_info[i].dev = dev;
dev->data_cb_info[i].index = i;
}
dev->data_urbs_in = alloc_urbs(dev, SNDRV_PCM_STREAM_CAPTURE, &ret);
if (ret < 0) {
kfree(dev->data_cb_info);
free_urbs(dev->data_urbs_in);
return ret;
}
dev->data_urbs_out = alloc_urbs(dev, SNDRV_PCM_STREAM_PLAYBACK, &ret);
if (ret < 0) {
kfree(dev->data_cb_info);
free_urbs(dev->data_urbs_in);
free_urbs(dev->data_urbs_out);
return ret;
}
return 0;
}
void snd_usb_caiaq_audio_free(struct snd_usb_caiaqdev *dev)
{
debug("%s(%p)\n", __func__, dev);
stream_stop(dev);
free_urbs(dev->data_urbs_in);
free_urbs(dev->data_urbs_out);
kfree(dev->data_cb_info);
}