mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-05 08:48:53 +00:00
247 lines
6.1 KiB
C
247 lines
6.1 KiB
C
|
/*
|
||
|
* Microblaze support for cache consistent memory.
|
||
|
* Copyright (C) 2010 Michal Simek <monstr@monstr.eu>
|
||
|
* Copyright (C) 2010 PetaLogix
|
||
|
* Copyright (C) 2005 John Williams <jwilliams@itee.uq.edu.au>
|
||
|
*
|
||
|
* Based on PowerPC version derived from arch/arm/mm/consistent.c
|
||
|
* Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
|
||
|
* Copyright (C) 2000 Russell King
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/stddef.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/bootmem.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/cpuinfo.h>
|
||
|
|
||
|
#ifndef CONFIG_MMU
|
||
|
|
||
|
/* I have to use dcache values because I can't relate on ram size */
|
||
|
#define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1)
|
||
|
|
||
|
/*
|
||
|
* Consistent memory allocators. Used for DMA devices that want to
|
||
|
* share uncached memory with the processor core.
|
||
|
* My crufty no-MMU approach is simple. In the HW platform we can optionally
|
||
|
* mirror the DDR up above the processor cacheable region. So, memory accessed
|
||
|
* in this mirror region will not be cached. It's alloced from the same
|
||
|
* pool as normal memory, but the handle we return is shifted up into the
|
||
|
* uncached region. This will no doubt cause big problems if memory allocated
|
||
|
* here is not also freed properly. -- JW
|
||
|
*/
|
||
|
void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
|
||
|
{
|
||
|
struct page *page, *end, *free;
|
||
|
unsigned long order;
|
||
|
void *ret, *virt;
|
||
|
|
||
|
if (in_interrupt())
|
||
|
BUG();
|
||
|
|
||
|
size = PAGE_ALIGN(size);
|
||
|
order = get_order(size);
|
||
|
|
||
|
page = alloc_pages(gfp, order);
|
||
|
if (!page)
|
||
|
goto no_page;
|
||
|
|
||
|
/* We could do with a page_to_phys and page_to_bus here. */
|
||
|
virt = page_address(page);
|
||
|
ret = ioremap(virt_to_phys(virt), size);
|
||
|
if (!ret)
|
||
|
goto no_remap;
|
||
|
|
||
|
/*
|
||
|
* Here's the magic! Note if the uncached shadow is not implemented,
|
||
|
* it's up to the calling code to also test that condition and make
|
||
|
* other arranegments, such as manually flushing the cache and so on.
|
||
|
*/
|
||
|
#ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
||
|
ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK);
|
||
|
#endif
|
||
|
/* dma_handle is same as physical (shadowed) address */
|
||
|
*dma_handle = (dma_addr_t)ret;
|
||
|
|
||
|
/*
|
||
|
* free wasted pages. We skip the first page since we know
|
||
|
* that it will have count = 1 and won't require freeing.
|
||
|
* We also mark the pages in use as reserved so that
|
||
|
* remap_page_range works.
|
||
|
*/
|
||
|
page = virt_to_page(virt);
|
||
|
free = page + (size >> PAGE_SHIFT);
|
||
|
end = page + (1 << order);
|
||
|
|
||
|
for (; page < end; page++) {
|
||
|
init_page_count(page);
|
||
|
if (page >= free)
|
||
|
__free_page(page);
|
||
|
else
|
||
|
SetPageReserved(page);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
no_remap:
|
||
|
__free_pages(page, order);
|
||
|
no_page:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
|
||
|
{
|
||
|
int order, err, i;
|
||
|
unsigned long page, va, flags;
|
||
|
phys_addr_t pa;
|
||
|
struct vm_struct *area;
|
||
|
void *ret;
|
||
|
|
||
|
if (in_interrupt())
|
||
|
BUG();
|
||
|
|
||
|
/* Only allocate page size areas. */
|
||
|
size = PAGE_ALIGN(size);
|
||
|
order = get_order(size);
|
||
|
|
||
|
page = __get_free_pages(gfp, order);
|
||
|
if (!page) {
|
||
|
BUG();
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* we need to ensure that there are no cachelines in use,
|
||
|
* or worse dirty in this area.
|
||
|
*/
|
||
|
flush_dcache_range(virt_to_phys(page), virt_to_phys(page) + size);
|
||
|
|
||
|
/* Allocate some common virtual space to map the new pages. */
|
||
|
area = get_vm_area(size, VM_ALLOC);
|
||
|
if (area == NULL) {
|
||
|
free_pages(page, order);
|
||
|
return NULL;
|
||
|
}
|
||
|
va = (unsigned long) area->addr;
|
||
|
ret = (void *)va;
|
||
|
|
||
|
/* This gives us the real physical address of the first page. */
|
||
|
*dma_handle = pa = virt_to_bus((void *)page);
|
||
|
|
||
|
/* MS: This is the whole magic - use cache inhibit pages */
|
||
|
flags = _PAGE_KERNEL | _PAGE_NO_CACHE;
|
||
|
|
||
|
/*
|
||
|
* Set refcount=1 on all pages in an order>0
|
||
|
* allocation so that vfree() will actually
|
||
|
* free all pages that were allocated.
|
||
|
*/
|
||
|
if (order > 0) {
|
||
|
struct page *rpage = virt_to_page(page);
|
||
|
for (i = 1; i < (1 << order); i++)
|
||
|
init_page_count(rpage+i);
|
||
|
}
|
||
|
|
||
|
err = 0;
|
||
|
for (i = 0; i < size && err == 0; i += PAGE_SIZE)
|
||
|
err = map_page(va+i, pa+i, flags);
|
||
|
|
||
|
if (err) {
|
||
|
vfree((void *)va);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#endif /* CONFIG_MMU */
|
||
|
EXPORT_SYMBOL(consistent_alloc);
|
||
|
|
||
|
/*
|
||
|
* free page(s) as defined by the above mapping.
|
||
|
*/
|
||
|
void consistent_free(void *vaddr)
|
||
|
{
|
||
|
if (in_interrupt())
|
||
|
BUG();
|
||
|
|
||
|
/* Clear SHADOW_MASK bit in address, and free as per usual */
|
||
|
#ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
||
|
vaddr = (void *)((unsigned)vaddr & ~UNCACHED_SHADOW_MASK);
|
||
|
#endif
|
||
|
vfree(vaddr);
|
||
|
}
|
||
|
EXPORT_SYMBOL(consistent_free);
|
||
|
|
||
|
/*
|
||
|
* make an area consistent.
|
||
|
*/
|
||
|
void consistent_sync(void *vaddr, size_t size, int direction)
|
||
|
{
|
||
|
unsigned long start;
|
||
|
unsigned long end;
|
||
|
|
||
|
start = (unsigned long)vaddr;
|
||
|
|
||
|
/* Convert start address back down to unshadowed memory region */
|
||
|
#ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
||
|
start &= ~UNCACHED_SHADOW_MASK;
|
||
|
#endif
|
||
|
end = start + size;
|
||
|
|
||
|
switch (direction) {
|
||
|
case PCI_DMA_NONE:
|
||
|
BUG();
|
||
|
case PCI_DMA_FROMDEVICE: /* invalidate only */
|
||
|
flush_dcache_range(start, end);
|
||
|
break;
|
||
|
case PCI_DMA_TODEVICE: /* writeback only */
|
||
|
flush_dcache_range(start, end);
|
||
|
break;
|
||
|
case PCI_DMA_BIDIRECTIONAL: /* writeback and invalidate */
|
||
|
flush_dcache_range(start, end);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(consistent_sync);
|
||
|
|
||
|
/*
|
||
|
* consistent_sync_page makes memory consistent. identical
|
||
|
* to consistent_sync, but takes a struct page instead of a
|
||
|
* virtual address
|
||
|
*/
|
||
|
void consistent_sync_page(struct page *page, unsigned long offset,
|
||
|
size_t size, int direction)
|
||
|
{
|
||
|
unsigned long start = (unsigned long)page_address(page) + offset;
|
||
|
consistent_sync((void *)start, size, direction);
|
||
|
}
|
||
|
EXPORT_SYMBOL(consistent_sync_page);
|