ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* Module Name: utmutex - local mutex support
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
/*
|
2010-01-22 11:07:36 +00:00
|
|
|
* Copyright (C) 2000 - 2010, Intel Corp.
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
|
|
* including a substantially similar Disclaimer requirement for further
|
|
|
|
* binary redistribution.
|
|
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
|
|
* of any contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
|
|
* Software Foundation.
|
|
|
|
*
|
|
|
|
* NO WARRANTY
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <acpi/acpi.h>
|
2009-01-09 05:30:03 +00:00
|
|
|
#include "accommon.h"
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
#define _COMPONENT ACPI_UTILITIES
|
2005-08-05 04:44:28 +00:00
|
|
|
ACPI_MODULE_NAME("utmutex")
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
/* Local prototypes */
|
2005-08-05 04:44:28 +00:00
|
|
|
static acpi_status acpi_ut_create_mutex(acpi_mutex_handle mutex_id);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2010-01-21 01:08:31 +00:00
|
|
|
static void acpi_ut_delete_mutex(acpi_mutex_handle mutex_id);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_mutex_initialize
|
|
|
|
*
|
|
|
|
* PARAMETERS: None.
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
2009-03-09 08:31:04 +00:00
|
|
|
* DESCRIPTION: Create the system mutex objects. This includes mutexes,
|
|
|
|
* spin locks, and reader/writer locks.
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_status acpi_ut_mutex_initialize(void)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
u32 i;
|
|
|
|
acpi_status status;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_TRACE(ut_mutex_initialize);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2009-03-09 08:31:04 +00:00
|
|
|
/* Create each of the predefined mutex objects */
|
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
for (i = 0; i < ACPI_NUM_MUTEX; i++) {
|
2005-08-05 04:44:28 +00:00
|
|
|
status = acpi_ut_create_mutex(i);
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
|
|
return_ACPI_STATUS(status);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
/* Create the spinlocks for use at interrupt level */
|
|
|
|
|
2006-06-23 21:04:00 +00:00
|
|
|
spin_lock_init(acpi_gbl_gpe_lock);
|
|
|
|
spin_lock_init(acpi_gbl_hardware_lock);
|
2006-06-08 20:29:00 +00:00
|
|
|
|
2009-03-09 08:31:04 +00:00
|
|
|
/* Create the reader/writer lock for namespace access */
|
|
|
|
|
|
|
|
status = acpi_ut_create_rw_lock(&acpi_gbl_namespace_rw_lock);
|
2005-08-05 04:44:28 +00:00
|
|
|
return_ACPI_STATUS(status);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_mutex_terminate
|
|
|
|
*
|
|
|
|
* PARAMETERS: None.
|
|
|
|
*
|
|
|
|
* RETURN: None.
|
|
|
|
*
|
2009-03-09 08:31:04 +00:00
|
|
|
* DESCRIPTION: Delete all of the system mutex objects. This includes mutexes,
|
|
|
|
* spin locks, and reader/writer locks.
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
void acpi_ut_mutex_terminate(void)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
u32 i;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_TRACE(ut_mutex_terminate);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2009-03-09 08:31:04 +00:00
|
|
|
/* Delete each predefined mutex object */
|
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
for (i = 0; i < ACPI_NUM_MUTEX; i++) {
|
2010-01-21 01:08:31 +00:00
|
|
|
acpi_ut_delete_mutex(i);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
/* Delete the spinlocks */
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_os_delete_lock(acpi_gbl_gpe_lock);
|
2006-06-08 20:29:00 +00:00
|
|
|
acpi_os_delete_lock(acpi_gbl_hardware_lock);
|
2009-03-09 08:31:04 +00:00
|
|
|
|
|
|
|
/* Delete the reader/writer lock */
|
|
|
|
|
|
|
|
acpi_ut_delete_rw_lock(&acpi_gbl_namespace_rw_lock);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
return_VOID;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_create_mutex
|
|
|
|
*
|
|
|
|
* PARAMETERS: mutex_iD - ID of the mutex to be created
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Create a mutex object.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
static acpi_status acpi_ut_create_mutex(acpi_mutex_handle mutex_id)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_status status = AE_OK;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_TRACE_U32(ut_create_mutex, mutex_id);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
if (!acpi_gbl_mutex_info[mutex_id].mutex) {
|
2006-06-23 21:04:00 +00:00
|
|
|
status =
|
|
|
|
acpi_os_create_mutex(&acpi_gbl_mutex_info[mutex_id].mutex);
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_gbl_mutex_info[mutex_id].thread_id =
|
|
|
|
ACPI_MUTEX_NOT_ACQUIRED;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
acpi_gbl_mutex_info[mutex_id].use_count = 0;
|
|
|
|
}
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
return_ACPI_STATUS(status);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_delete_mutex
|
|
|
|
*
|
|
|
|
* PARAMETERS: mutex_iD - ID of the mutex to be deleted
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Delete a mutex object.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2010-01-21 01:08:31 +00:00
|
|
|
static void acpi_ut_delete_mutex(acpi_mutex_handle mutex_id)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_TRACE_U32(ut_delete_mutex, mutex_id);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2006-06-23 21:04:00 +00:00
|
|
|
acpi_os_delete_mutex(acpi_gbl_mutex_info[mutex_id].mutex);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
acpi_gbl_mutex_info[mutex_id].mutex = NULL;
|
2005-07-08 04:00:00 +00:00
|
|
|
acpi_gbl_mutex_info[mutex_id].thread_id = ACPI_MUTEX_NOT_ACQUIRED;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_acquire_mutex
|
|
|
|
*
|
|
|
|
* PARAMETERS: mutex_iD - ID of the mutex to be acquired
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Acquire a mutex object.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_status acpi_ut_acquire_mutex(acpi_mutex_handle mutex_id)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_status status;
|
2006-10-03 04:00:00 +00:00
|
|
|
acpi_thread_id this_thread_id;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_NAME(ut_acquire_mutex);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
if (mutex_id > ACPI_MAX_MUTEX) {
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
return (AE_BAD_PARAMETER);
|
|
|
|
}
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
this_thread_id = acpi_os_get_thread_id();
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
#ifdef ACPI_MUTEX_DEBUG
|
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
u32 i;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
/*
|
|
|
|
* Mutex debug code, for internal debugging only.
|
|
|
|
*
|
|
|
|
* Deadlock prevention. Check if this thread owns any mutexes of value
|
|
|
|
* greater than or equal to this one. If so, the thread has violated
|
|
|
|
* the mutex ordering rule. This indicates a coding error somewhere in
|
|
|
|
* the ACPI subsystem code.
|
|
|
|
*/
|
2008-06-10 06:30:04 +00:00
|
|
|
for (i = mutex_id; i < ACPI_NUM_MUTEX; i++) {
|
2005-09-16 20:51:15 +00:00
|
|
|
if (acpi_gbl_mutex_info[i].thread_id == this_thread_id) {
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
if (i == mutex_id) {
|
2006-01-27 21:43:00 +00:00
|
|
|
ACPI_ERROR((AE_INFO,
|
2009-04-22 03:39:10 +00:00
|
|
|
"Mutex [%s] already acquired by this thread [%p]",
|
2006-01-27 21:43:00 +00:00
|
|
|
acpi_ut_get_mutex_name
|
|
|
|
(mutex_id),
|
2009-04-22 03:39:10 +00:00
|
|
|
ACPI_CAST_PTR(void,
|
|
|
|
this_thread_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
return (AE_ALREADY_ACQUIRED);
|
|
|
|
}
|
|
|
|
|
2006-01-27 21:43:00 +00:00
|
|
|
ACPI_ERROR((AE_INFO,
|
2009-04-22 03:39:10 +00:00
|
|
|
"Invalid acquire order: Thread %p owns [%s], wants [%s]",
|
|
|
|
ACPI_CAST_PTR(void, this_thread_id),
|
2006-01-27 21:43:00 +00:00
|
|
|
acpi_ut_get_mutex_name(i),
|
|
|
|
acpi_ut_get_mutex_name(mutex_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
return (AE_ACQUIRE_DEADLOCK);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
|
2009-04-22 03:39:10 +00:00
|
|
|
"Thread %p attempting to acquire Mutex [%s]\n",
|
|
|
|
ACPI_CAST_PTR(void, this_thread_id),
|
2006-10-20 21:30:26 +00:00
|
|
|
acpi_ut_get_mutex_name(mutex_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2006-06-23 21:04:00 +00:00
|
|
|
status = acpi_os_acquire_mutex(acpi_gbl_mutex_info[mutex_id].mutex,
|
|
|
|
ACPI_WAIT_FOREVER);
|
2005-08-05 04:44:28 +00:00
|
|
|
if (ACPI_SUCCESS(status)) {
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
|
2009-04-22 03:39:10 +00:00
|
|
|
"Thread %p acquired Mutex [%s]\n",
|
|
|
|
ACPI_CAST_PTR(void, this_thread_id),
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_ut_get_mutex_name(mutex_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
acpi_gbl_mutex_info[mutex_id].use_count++;
|
2005-07-08 04:00:00 +00:00
|
|
|
acpi_gbl_mutex_info[mutex_id].thread_id = this_thread_id;
|
2005-08-05 04:44:28 +00:00
|
|
|
} else {
|
2006-01-27 21:43:00 +00:00
|
|
|
ACPI_EXCEPTION((AE_INFO, status,
|
2009-04-22 03:39:10 +00:00
|
|
|
"Thread %p could not acquire Mutex [%X]",
|
|
|
|
ACPI_CAST_PTR(void, this_thread_id), mutex_id));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ut_release_mutex
|
|
|
|
*
|
|
|
|
* PARAMETERS: mutex_iD - ID of the mutex to be released
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Release a mutex object.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_status acpi_ut_release_mutex(acpi_mutex_handle mutex_id)
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
{
|
2006-10-03 04:00:00 +00:00
|
|
|
acpi_thread_id this_thread_id;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
ACPI: ACPICA 20060421
Removed a device initialization optimization introduced in
20051216 where the _STA method was not run unless an _INI
was also present for the same device. This optimization
could cause problems because it could allow _INI methods
to be run within a not-present device subtree (If a
not-present device had no _INI, _STA would not be run,
the not-present status would not be discovered, and the
children of the device would be incorrectly traversed.)
Implemented a new _STA optimization where namespace
subtrees that do not contain _INI are identified and
ignored during device initialization. Selectively running
_STA can significantly improve boot time on large machines
(with assistance from Len Brown.)
Implemented support for the device initialization case
where the returned _STA flags indicate a device not-present
but functioning. In this case, _INI is not run, but the
device children are examined for presence, as per the
ACPI specification.
Implemented an additional change to the IndexField support
in order to conform to MS behavior. The value written to
the Index Register is not simply a byte offset, it is a
byte offset in units of the access width of the parent
Index Field. (Fiodor Suietov)
Defined and deployed a new OSL interface,
acpi_os_validate_address(). This interface is called during
the creation of all AML operation regions, and allows
the host OS to exert control over what addresses it will
allow the AML code to access. Operation Regions whose
addresses are disallowed will cause a runtime exception
when they are actually accessed (will not affect or abort
table loading.)
Defined and deployed a new OSL interface,
acpi_os_validate_interface(). This interface allows the host OS
to match the various "optional" interface/behavior strings
for the _OSI predefined control method as appropriate
(with assistance from Bjorn Helgaas.)
Restructured and corrected various problems in the
exception handling code paths within DsCallControlMethod
and DsTerminateControlMethod in dsmethod (with assistance
from Takayoshi Kochi.)
Modified the Linux source converter to ignore quoted string
literals while converting identifiers from mixed to lower
case. This will correct problems with the disassembler
and other areas where such strings must not be modified.
The ACPI_FUNCTION_* macros no longer require quotes around
the function name. This allows the Linux source converter
to convert the names, now that the converter ignores
quoted strings.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-21 21:15:00 +00:00
|
|
|
ACPI_FUNCTION_NAME(ut_release_mutex);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2005-08-05 04:44:28 +00:00
|
|
|
this_thread_id = acpi_os_get_thread_id();
|
2009-04-22 03:39:10 +00:00
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Thread %p releasing Mutex [%s]\n",
|
|
|
|
ACPI_CAST_PTR(void, this_thread_id),
|
2005-08-05 04:44:28 +00:00
|
|
|
acpi_ut_get_mutex_name(mutex_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2006-06-08 20:29:00 +00:00
|
|
|
if (mutex_id > ACPI_MAX_MUTEX) {
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
return (AE_BAD_PARAMETER);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mutex must be acquired in order to release it!
|
|
|
|
*/
|
2005-07-08 04:00:00 +00:00
|
|
|
if (acpi_gbl_mutex_info[mutex_id].thread_id == ACPI_MUTEX_NOT_ACQUIRED) {
|
2006-01-27 21:43:00 +00:00
|
|
|
ACPI_ERROR((AE_INFO,
|
|
|
|
"Mutex [%X] is not acquired, cannot release",
|
|
|
|
mutex_id));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
return (AE_NOT_ACQUIRED);
|
|
|
|
}
|
|
|
|
#ifdef ACPI_MUTEX_DEBUG
|
|
|
|
{
|
2005-08-05 04:44:28 +00:00
|
|
|
u32 i;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
/*
|
|
|
|
* Mutex debug code, for internal debugging only.
|
|
|
|
*
|
|
|
|
* Deadlock prevention. Check if this thread owns any mutexes of value
|
|
|
|
* greater than this one. If so, the thread has violated the mutex
|
|
|
|
* ordering rule. This indicates a coding error somewhere in
|
|
|
|
* the ACPI subsystem code.
|
|
|
|
*/
|
2008-06-10 06:30:04 +00:00
|
|
|
for (i = mutex_id; i < ACPI_NUM_MUTEX; i++) {
|
2005-09-16 20:51:15 +00:00
|
|
|
if (acpi_gbl_mutex_info[i].thread_id == this_thread_id) {
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
if (i == mutex_id) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2006-01-27 21:43:00 +00:00
|
|
|
ACPI_ERROR((AE_INFO,
|
|
|
|
"Invalid release order: owns [%s], releasing [%s]",
|
|
|
|
acpi_ut_get_mutex_name(i),
|
|
|
|
acpi_ut_get_mutex_name(mutex_id)));
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
|
|
|
return (AE_RELEASE_DEADLOCK);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Mark unlocked FIRST */
|
|
|
|
|
2005-07-08 04:00:00 +00:00
|
|
|
acpi_gbl_mutex_info[mutex_id].thread_id = ACPI_MUTEX_NOT_ACQUIRED;
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
|
2006-06-23 21:04:00 +00:00
|
|
|
acpi_os_release_mutex(acpi_gbl_mutex_info[mutex_id].mutex);
|
|
|
|
return (AE_OK);
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 04:00:00 +00:00
|
|
|
}
|