linux/scripts/Makefile.lib

390 lines
14 KiB
Makefile
Raw Normal View History

# Backward compatibility
asflags-y += $(EXTRA_AFLAGS)
ccflags-y += $(EXTRA_CFLAGS)
cppflags-y += $(EXTRA_CPPFLAGS)
ldflags-y += $(EXTRA_LDFLAGS)
#
# flags that take effect in sub directories
export KBUILD_SUBDIR_ASFLAGS := $(KBUILD_SUBDIR_ASFLAGS) $(subdir-asflags-y)
export KBUILD_SUBDIR_CCFLAGS := $(KBUILD_SUBDIR_CCFLAGS) $(subdir-ccflags-y)
# Figure out what we need to build from the various variables
# ===========================================================================
# When an object is listed to be built compiled-in and modular,
# only build the compiled-in version
obj-m := $(filter-out $(obj-y),$(obj-m))
# Libraries are always collected in one lib file.
# Filter out objects already built-in
lib-y := $(filter-out $(obj-y), $(sort $(lib-y) $(lib-m)))
# Handle objects in subdirs
# ---------------------------------------------------------------------------
# o if we encounter foo/ in $(obj-y), replace it by foo/built-in.o
# and add the directory to the list of dirs to descend into: $(subdir-y)
# o if we encounter foo/ in $(obj-m), remove it from $(obj-m)
# and add the directory to the list of dirs to descend into: $(subdir-m)
# Determine modorder.
# Unfortunately, we don't have information about ordering between -y
# and -m subdirs. Just put -y's first.
modorder := $(patsubst %/,%/modules.order, $(filter %/, $(obj-y)) $(obj-m:.o=.ko))
__subdir-y := $(patsubst %/,%,$(filter %/, $(obj-y)))
subdir-y += $(__subdir-y)
__subdir-m := $(patsubst %/,%,$(filter %/, $(obj-m)))
subdir-m += $(__subdir-m)
obj-y := $(patsubst %/, %/built-in.o, $(obj-y))
obj-m := $(filter-out %/, $(obj-m))
# Subdirectories we need to descend into
subdir-ym := $(sort $(subdir-y) $(subdir-m))
# if $(foo-objs) exists, foo.o is a composite object
multi-used-y := $(sort $(foreach m,$(obj-y), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))), $(m))))
multi-used-m := $(sort $(foreach m,$(obj-m), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))), $(m))))
multi-used := $(multi-used-y) $(multi-used-m)
single-used-m := $(sort $(filter-out $(multi-used-m),$(obj-m)))
# Build list of the parts of our composite objects, our composite
# objects depend on those (obviously)
multi-objs-y := $(foreach m, $(multi-used-y), $($(m:.o=-objs)) $($(m:.o=-y)))
multi-objs-m := $(foreach m, $(multi-used-m), $($(m:.o=-objs)) $($(m:.o=-y)))
multi-objs := $(multi-objs-y) $(multi-objs-m)
# $(subdir-obj-y) is the list of objects in $(obj-y) which uses dir/ to
# tell kbuild to descend
subdir-obj-y := $(filter %/built-in.o, $(obj-y))
# $(obj-dirs) is a list of directories that contain object files
kbuild: create directory for dir/file.o When add a obj with dir to obj-y, like this obj-y += dir/file.o The $(obj)/dir not created, this patch fix this. When try to add a file(which in a subdir) to my board's obj-y, the build progress crashed. For example, I use at91rm9200ek board, and in kernel dir run: mkdir objtree make O=objtree at91rm9200_defconfig mkdir arch/arm/mach-at91/dir touch arch/arm/mach-at91/dir/file.c and edit arch/arm/mach-at91/dir/file.c to add some code. then edit arch/arm/mach-at91/Makefile, change the following line: obj-$(CONFIG_MACH_AT91RM9200EK) += board-rm9200ek.o to: obj-$(CONFIG_MACH_AT91RM9200EK) += board-rm9200ek.o dir/file.o Now build it: make O=objtree Then the error appears: ... CC arch/arm/mach-at91/board-rm9200dk.o CC arch/arm/mach-at91/board-rm9200ek.o CC arch/arm/mach-at91/dir/file.o linux-2.6/arch/arm/mach-at91/dir/file.c:5: fatal error: opening dependency file arch/arm/mach-at91/dir/.file.o.d: No such file or directory Check the objtree: LANG=en ls objtree/arch/arm/mach-at91/dir ls: cannot access objtree/arch/arm/mach-at91/dir: No such file or directory It's apparently that the target dir not created for file.o Check kbuild source code. It seems that kbuild create dirs for that in $(obj-dirs). But if the dir need not to create a built-in.o, It should never in $(obj-dirs). So I make this patch to make sure It in $(obj-dirs) this bug caused by commit f5fb976520a53f45f8bbf2e851f16b3b5558d485 Signed-off-by: 张忠山 <zzs0213@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2013-06-30 17:09:28 +08:00
obj-dirs := $(dir $(multi-objs) $(obj-y))
# Replace multi-part objects by their individual parts, look at local dir only
real-objs-y := $(foreach m, $(filter-out $(subdir-obj-y), $(obj-y)), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))),$($(m:.o=-objs)) $($(m:.o=-y)),$(m))) $(extra-y)
real-objs-m := $(foreach m, $(obj-m), $(if $(strip $($(m:.o=-objs)) $($(m:.o=-y))),$($(m:.o=-objs)) $($(m:.o=-y)),$(m)))
# Add subdir path
extra-y := $(addprefix $(obj)/,$(extra-y))
always := $(addprefix $(obj)/,$(always))
targets := $(addprefix $(obj)/,$(targets))
modorder := $(addprefix $(obj)/,$(modorder))
obj-y := $(addprefix $(obj)/,$(obj-y))
obj-m := $(addprefix $(obj)/,$(obj-m))
lib-y := $(addprefix $(obj)/,$(lib-y))
subdir-obj-y := $(addprefix $(obj)/,$(subdir-obj-y))
real-objs-y := $(addprefix $(obj)/,$(real-objs-y))
real-objs-m := $(addprefix $(obj)/,$(real-objs-m))
single-used-m := $(addprefix $(obj)/,$(single-used-m))
multi-used-y := $(addprefix $(obj)/,$(multi-used-y))
multi-used-m := $(addprefix $(obj)/,$(multi-used-m))
multi-objs-y := $(addprefix $(obj)/,$(multi-objs-y))
multi-objs-m := $(addprefix $(obj)/,$(multi-objs-m))
subdir-ym := $(addprefix $(obj)/,$(subdir-ym))
obj-dirs := $(addprefix $(obj)/,$(obj-dirs))
# These flags are needed for modversions and compiling, so we define them here
# already
# $(modname_flags) #defines KBUILD_MODNAME as the name of the module it will
# end up in (or would, if it gets compiled in)
# Note: Files that end up in two or more modules are compiled without the
# KBUILD_MODNAME definition. The reason is that any made-up name would
# differ in different configs.
name-fix = $(subst $(comma),_,$(subst -,_,$1))
basename_flags = -D"KBUILD_BASENAME=KBUILD_STR($(call name-fix,$(basetarget)))"
modname_flags = $(if $(filter 1,$(words $(modname))),\
-D"KBUILD_MODNAME=KBUILD_STR($(call name-fix,$(modname)))")
orig_c_flags = $(KBUILD_CPPFLAGS) $(KBUILD_CFLAGS) $(KBUILD_SUBDIR_CCFLAGS) \
$(ccflags-y) $(CFLAGS_$(basetarget).o)
_c_flags = $(filter-out $(CFLAGS_REMOVE_$(basetarget).o), $(orig_c_flags))
_a_flags = $(KBUILD_CPPFLAGS) $(KBUILD_AFLAGS) $(KBUILD_SUBDIR_ASFLAGS) \
$(asflags-y) $(AFLAGS_$(basetarget).o)
_cpp_flags = $(KBUILD_CPPFLAGS) $(cppflags-y) $(CPPFLAGS_$(@F))
gcov: add gcov profiling infrastructure Enable the use of GCC's coverage testing tool gcov [1] with the Linux kernel. gcov may be useful for: * debugging (has this code been reached at all?) * test improvement (how do I change my test to cover these lines?) * minimizing kernel configurations (do I need this option if the associated code is never run?) The profiling patch incorporates the following changes: * change kbuild to include profiling flags * provide functions needed by profiling code * present profiling data as files in debugfs Note that on some architectures, enabling gcc's profiling option "-fprofile-arcs" for the entire kernel may trigger compile/link/ run-time problems, some of which are caused by toolchain bugs and others which require adjustment of architecture code. For this reason profiling the entire kernel is initially restricted to those architectures for which it is known to work without changes. This restriction can be lifted once an architecture has been tested and found compatible with gcc's profiling. Profiling of single files or directories is still available on all platforms (see config help text). [1] http://gcc.gnu.org/onlinedocs/gcc/Gcov.html Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Li Wei <W.Li@Sun.COM> Cc: Michael Ellerman <michaele@au1.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Heiko Carstens <heicars2@linux.vnet.ibm.com> Cc: Martin Schwidefsky <mschwid2@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: WANG Cong <xiyou.wangcong@gmail.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 16:28:08 -07:00
#
# Enable gcov profiling flags for a file, directory or for all files depending
# on variables GCOV_PROFILE_obj.o, GCOV_PROFILE and CONFIG_GCOV_PROFILE_ALL
# (in this order)
#
ifeq ($(CONFIG_GCOV_KERNEL),y)
_c_flags += $(if $(patsubst n%,, \
$(GCOV_PROFILE_$(basetarget).o)$(GCOV_PROFILE)$(CONFIG_GCOV_PROFILE_ALL)), \
$(CFLAGS_GCOV))
endif
kasan: add kernel address sanitizer infrastructure Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides fast and comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-time instrumentation for checking every memory access, therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with putting symbol aliases into the wrong section, which breaks kasan instrumentation of globals. This patch only adds infrastructure for kernel address sanitizer. It's not available for use yet. The idea and some code was borrowed from [1]. Basic idea: The main idea of KASAN is to use shadow memory to record whether each byte of memory is safe to access or not, and use compiler's instrumentation to check the shadow memory on each memory access. Address sanitizer uses 1/8 of the memory addressable in kernel for shadow memory and uses direct mapping with a scale and offset to translate a memory address to its corresponding shadow address. Here is function to translate address to corresponding shadow address: unsigned long kasan_mem_to_shadow(unsigned long addr) { return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } where KASAN_SHADOW_SCALE_SHIFT = 3. So for every 8 bytes there is one corresponding byte of shadow memory. The following encoding used for each shadow byte: 0 means that all 8 bytes of the corresponding memory region are valid for access; k (1 <= k <= 7) means that the first k bytes are valid for access, and other (8 - k) bytes are not; Any negative value indicates that the entire 8-bytes are inaccessible. Different negative values used to distinguish between different kinds of inaccessible memory (redzones, freed memory) (see mm/kasan/kasan.h). To be able to detect accesses to bad memory we need a special compiler. Such compiler inserts a specific function calls (__asan_load*(addr), __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16. These functions check whether memory region is valid to access or not by checking corresponding shadow memory. If access is not valid an error printed. Historical background of the address sanitizer from Dmitry Vyukov: "We've developed the set of tools, AddressSanitizer (Asan), ThreadSanitizer and MemorySanitizer, for user space. We actively use them for testing inside of Google (continuous testing, fuzzing, running prod services). To date the tools have found more than 10'000 scary bugs in Chromium, Google internal codebase and various open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and lots of others): [2] [3] [4]. The tools are part of both gcc and clang compilers. We have not yet done massive testing under the Kernel AddressSanitizer (it's kind of chicken and egg problem, you need it to be upstream to start applying it extensively). To date it has found about 50 bugs. Bugs that we've found in upstream kernel are listed in [5]. We've also found ~20 bugs in out internal version of the kernel. Also people from Samsung and Oracle have found some. [...] As others noted, the main feature of AddressSanitizer is its performance due to inline compiler instrumentation and simple linear shadow memory. User-space Asan has ~2x slowdown on computational programs and ~2x memory consumption increase. Taking into account that kernel usually consumes only small fraction of CPU and memory when running real user-space programs, I would expect that kernel Asan will have ~10-30% slowdown and similar memory consumption increase (when we finish all tuning). I agree that Asan can well replace kmemcheck. We have plans to start working on Kernel MemorySanitizer that finds uses of unitialized memory. Asan+Msan will provide feature-parity with kmemcheck. As others noted, Asan will unlikely replace debug slab and pagealloc that can be enabled at runtime. Asan uses compiler instrumentation, so even if it is disabled, it still incurs visible overheads. Asan technology is easily portable to other architectures. Compiler instrumentation is fully portable. Runtime has some arch-dependent parts like shadow mapping and atomic operation interception. They are relatively easy to port." Comparison with other debugging features: ======================================== KMEMCHECK: - KASan can do almost everything that kmemcheck can. KASan uses compile-time instrumentation, which makes it significantly faster than kmemcheck. The only advantage of kmemcheck over KASan is detection of uninitialized memory reads. Some brief performance testing showed that kasan could be x500-x600 times faster than kmemcheck: $ netperf -l 30 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec no debug: 87380 16384 16384 30.00 41624.72 kasan inline: 87380 16384 16384 30.00 12870.54 kasan outline: 87380 16384 16384 30.00 10586.39 kmemcheck: 87380 16384 16384 30.03 20.23 - Also kmemcheck couldn't work on several CPUs. It always sets number of CPUs to 1. KASan doesn't have such limitation. DEBUG_PAGEALLOC: - KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page granularity level, so it able to find more bugs. SLUB_DEBUG (poisoning, redzones): - SLUB_DEBUG has lower overhead than KASan. - SLUB_DEBUG in most cases are not able to detect bad reads, KASan able to detect both reads and writes. - In some cases (e.g. redzone overwritten) SLUB_DEBUG detect bugs only on allocation/freeing of object. KASan catch bugs right before it will happen, so we always know exact place of first bad read/write. [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies Based on work by Andrey Konovalov. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Michal Marek <mmarek@suse.cz> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 14:39:17 -08:00
#
# Enable address sanitizer flags for kernel except some files or directories
# we don't want to check (depends on variables KASAN_SANITIZE_obj.o, KASAN_SANITIZE)
#
ifeq ($(CONFIG_KASAN),y)
_c_flags += $(if $(patsubst n%,, \
$(KASAN_SANITIZE_$(basetarget).o)$(KASAN_SANITIZE)y), \
$(CFLAGS_KASAN))
endif
# If building the kernel in a separate objtree expand all occurrences
# of -Idir to -I$(srctree)/dir except for absolute paths (starting with '/').
ifeq ($(KBUILD_SRC),)
__c_flags = $(_c_flags)
__a_flags = $(_a_flags)
__cpp_flags = $(_cpp_flags)
else
# -I$(obj) locates generated .h files
# $(call addtree,-I$(obj)) locates .h files in srctree, from generated .c files
# and locates generated .h files
# FIXME: Replace both with specific CFLAGS* statements in the makefiles
__c_flags = $(call addtree,-I$(obj)) $(call flags,_c_flags)
__a_flags = $(call flags,_a_flags)
__cpp_flags = $(call flags,_cpp_flags)
endif
c_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
$(__c_flags) $(modkern_cflags) \
-D"KBUILD_STR(s)=\#s" $(basename_flags) $(modname_flags)
a_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
$(__a_flags) $(modkern_aflags)
cpp_flags = -Wp,-MD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
$(__cpp_flags)
ld_flags = $(LDFLAGS) $(ldflags-y)
dtc_cpp_flags = -Wp,-MD,$(depfile).pre.tmp -nostdinc \
-I$(srctree)/arch/$(SRCARCH)/boot/dts \
kbuild: create an "include chroot" for DT bindings The recent dtc+cpp support allows header files and C pre-processor defines/macros to be used when compiling device tree files. These headers will typically define various constants that are part of the device tree bindings. The original patch which set up the dtc+cpp include path only considered using those headers from device tree files. However, most are also useful for kernel code which needs to interpret the device tree. In both the DT files and the kernel, I'd like to include the DT-related headers in the same way, for example, <dt-bindings/gpio/tegra-gpio.h>. That will simplify any text which discusses the DT header locations. Creating a <dt-bindings/> for kernel source to use is as simple as placing files into include/dt-bindings/. However, when compiling DT files, the include path should be restricted so that only the dt-bindings path is available; arbitrary kernel headers shouldn't be exposed. For this reason, create a specific include directory for use by dtc+cpp, and symlink dt-bindings from there to the actual location of include/dt-bindings/. For want of a better location, place this "include chroot" into the existing dts/ directory. arch/*/boot/dts/include/dt-bindings -> ../../../../../include/dt-bindings Some headers used by device tree files may not be useful to the kernel; they may be used simply to aid in constructing the DT file (e.g. macros to create a node), but not define any information that the kernel needs to share. These may be placed directly into arch/*/boot/dts/ along with the DT files themselves. Acked-by: Michal Marek <mmarek@suse.cz> Acked-by: Shawn Guo <shawn.guo@linaro.org> Acked-by: Rob Herring <rob.herring@calxeda.com> Signed-off-by: Stephen Warren <swarren@nvidia.com>
2013-02-20 13:39:41 -07:00
-I$(srctree)/arch/$(SRCARCH)/boot/dts/include \
-I$(srctree)/drivers/of/testcase-data \
-undef -D__DTS__
# Finds the multi-part object the current object will be linked into
modname-multi = $(sort $(foreach m,$(multi-used),\
$(if $(filter $(subst $(obj)/,,$*.o), $($(m:.o=-objs)) $($(m:.o=-y))),$(m:.o=))))
# Useful for describing the dependency of composite objects
# Usage:
# $(call multi_depend, multi_used_targets, suffix_to_remove, suffix_to_add)
define multi_depend
$(foreach m, $(notdir $1), \
$(eval $(obj)/$m: \
$(addprefix $(obj)/, $(foreach s, $3, $($(m:%$(strip $2)=%$(s)))))))
endef
ifdef REGENERATE_PARSERS
# GPERF
# ---------------------------------------------------------------------------
quiet_cmd_gperf = GPERF $@
cmd_gperf = gperf -t --output-file $@ -a -C -E -g -k 1,3,$$ -p -t $<
.PRECIOUS: $(src)/%.hash.c_shipped
$(src)/%.hash.c_shipped: $(src)/%.gperf
$(call cmd,gperf)
# LEX
# ---------------------------------------------------------------------------
LEX_PREFIX = $(if $(LEX_PREFIX_${baseprereq}),$(LEX_PREFIX_${baseprereq}),yy)
quiet_cmd_flex = LEX $@
cmd_flex = flex -o$@ -L -P $(LEX_PREFIX) $<
.PRECIOUS: $(src)/%.lex.c_shipped
$(src)/%.lex.c_shipped: $(src)/%.l
$(call cmd,flex)
# YACC
# ---------------------------------------------------------------------------
YACC_PREFIX = $(if $(YACC_PREFIX_${baseprereq}),$(YACC_PREFIX_${baseprereq}),yy)
quiet_cmd_bison = YACC $@
cmd_bison = bison -o$@ -t -l -p $(YACC_PREFIX) $<
.PRECIOUS: $(src)/%.tab.c_shipped
$(src)/%.tab.c_shipped: $(src)/%.y
$(call cmd,bison)
quiet_cmd_bison_h = YACC $@
cmd_bison_h = bison -o/dev/null --defines=$@ -t -l -p $(YACC_PREFIX) $<
.PRECIOUS: $(src)/%.tab.h_shipped
$(src)/%.tab.h_shipped: $(src)/%.y
$(call cmd,bison_h)
endif
# Shipped files
# ===========================================================================
quiet_cmd_shipped = SHIPPED $@
cmd_shipped = cat $< > $@
$(obj)/%: $(src)/%_shipped
$(call cmd,shipped)
# Commands useful for building a boot image
# ===========================================================================
#
# Use as following:
#
# target: source(s) FORCE
# $(if_changed,ld/objcopy/gzip)
#
# and add target to extra-y so that we know we have to
# read in the saved command line
# Linking
# ---------------------------------------------------------------------------
quiet_cmd_ld = LD $@
cmd_ld = $(LD) $(LDFLAGS) $(ldflags-y) $(LDFLAGS_$(@F)) \
$(filter-out FORCE,$^) -o $@
# Objcopy
# ---------------------------------------------------------------------------
quiet_cmd_objcopy = OBJCOPY $@
cmd_objcopy = $(OBJCOPY) $(OBJCOPYFLAGS) $(OBJCOPYFLAGS_$(@F)) $< $@
# Gzip
# ---------------------------------------------------------------------------
quiet_cmd_gzip = GZIP $@
cmd_gzip = (cat $(filter-out FORCE,$^) | gzip -n -f -9 > $@) || \
(rm -f $@ ; false)
# DTC
# ---------------------------------------------------------------------------
# Generate an assembly file to wrap the output of the device tree compiler
quiet_cmd_dt_S_dtb= DTB $@
cmd_dt_S_dtb= \
( \
echo '\#include <asm-generic/vmlinux.lds.h>'; \
echo '.section .dtb.init.rodata,"a"'; \
echo '.balign STRUCT_ALIGNMENT'; \
echo '.global __dtb_$(*F)_begin'; \
echo '__dtb_$(*F)_begin:'; \
echo '.incbin "$<" '; \
echo '__dtb_$(*F)_end:'; \
echo '.global __dtb_$(*F)_end'; \
echo '.balign STRUCT_ALIGNMENT'; \
) > $@
$(obj)/%.dtb.S: $(obj)/%.dtb
$(call cmd,dt_S_dtb)
quiet_cmd_dtc = DTC $@
cmd_dtc = $(CPP) $(dtc_cpp_flags) -x assembler-with-cpp -o $(dtc-tmp) $< ; \
$(objtree)/scripts/dtc/dtc -O dtb -o $@ -b 0 \
-i $(dir $<) $(DTC_FLAGS) \
-d $(depfile).dtc.tmp $(dtc-tmp) ; \
cat $(depfile).pre.tmp $(depfile).dtc.tmp > $(depfile)
$(obj)/%.dtb: $(src)/%.dts FORCE
$(call if_changed_dep,dtc)
dtc-tmp = $(subst $(comma),_,$(dot-target).dts.tmp)
# Bzip2
# ---------------------------------------------------------------------------
# Bzip2 and LZMA do not include size in file... so we have to fake that;
# append the size as a 32-bit littleendian number as gzip does.
size_append = printf $(shell \
dec_size=0; \
for F in $1; do \
fsize=$$(stat -c "%s" $$F); \
dec_size=$$(expr $$dec_size + $$fsize); \
done; \
printf "%08x\n" $$dec_size | \
sed 's/\(..\)/\1 /g' | { \
read ch0 ch1 ch2 ch3; \
for ch in $$ch3 $$ch2 $$ch1 $$ch0; do \
printf '%s%03o' '\\' $$((0x$$ch)); \
done; \
} \
)
quiet_cmd_bzip2 = BZIP2 $@
cmd_bzip2 = (cat $(filter-out FORCE,$^) | \
bzip2 -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
(rm -f $@ ; false)
# Lzma
# ---------------------------------------------------------------------------
quiet_cmd_lzma = LZMA $@
cmd_lzma = (cat $(filter-out FORCE,$^) | \
lzma -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
(rm -f $@ ; false)
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 14:42:42 -08:00
quiet_cmd_lzo = LZO $@
lib: add support for LZO-compressed kernels This patch series adds generic support for creating and extracting LZO-compressed kernel images, as well as support for using such images on the x86 and ARM architectures, and support for creating and using LZO-compressed initrd and initramfs images. Russell King said: : Testing on a Cortex A9 model: : - lzo decompressor is 65% of the time gzip takes to decompress a kernel : - lzo kernel is 9% larger than a gzip kernel : : which I'm happy to say confirms your figures when comparing the two. : : However, when comparing your new gzip code to the old gzip code: : - new is 99% of the size of the old code : - new takes 42% of the time to decompress than the old code : : What this means is that for a proper comparison, the results get even better: : - lzo is 7.5% larger than the old gzip'd kernel image : - lzo takes 28% of the time that the old gzip code took : : So the expense seems definitely worth the effort. The only reason I : can think of ever using gzip would be if you needed the additional : compression (eg, because you have limited flash to store the image.) : : I would argue that the default for ARM should therefore be LZO. This patch: The lzo compressor is worse than gzip at compression, but faster at extraction. Here are some figures for an ARM board I'm working on: Uncompressed size: 3.24Mo gzip 1.61Mo 0.72s lzo 1.75Mo 0.48s So for a compression ratio that is still relatively close to gzip, it's much faster to extract, at least in that case. This part contains: - Makefile routine to support lzo compression - Fixes to the existing lzo compressor so that it can be used in compressed kernels - wrapper around the existing lzo1x_decompress, as it only extracts one block at a time, while we need to extract a whole file here - config dialog for kernel compression [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: cleanup] Signed-off-by: Albin Tonnerre <albin.tonnerre@free-electrons.com> Tested-by: Wu Zhangjin <wuzhangjin@gmail.com> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Tested-by: Russell King <rmk@arm.linux.org.uk> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-08 14:42:42 -08:00
cmd_lzo = (cat $(filter-out FORCE,$^) | \
lzop -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
(rm -f $@ ; false)
quiet_cmd_lz4 = LZ4 $@
cmd_lz4 = (cat $(filter-out FORCE,$^) | \
lz4c -l -c1 stdin stdout && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
(rm -f $@ ; false)
# U-Boot mkimage
# ---------------------------------------------------------------------------
MKIMAGE := $(srctree)/scripts/mkuboot.sh
# SRCARCH just happens to match slightly more than ARCH (on sparc), so reduces
# the number of overrides in arch makefiles
UIMAGE_ARCH ?= $(SRCARCH)
UIMAGE_COMPRESSION ?= $(if $(2),$(2),none)
UIMAGE_OPTS-y ?=
UIMAGE_TYPE ?= kernel
UIMAGE_LOADADDR ?= arch_must_set_this
UIMAGE_ENTRYADDR ?= $(UIMAGE_LOADADDR)
UIMAGE_NAME ?= 'Linux-$(KERNELRELEASE)'
UIMAGE_IN ?= $<
UIMAGE_OUT ?= $@
quiet_cmd_uimage = UIMAGE $(UIMAGE_OUT)
cmd_uimage = $(CONFIG_SHELL) $(MKIMAGE) -A $(UIMAGE_ARCH) -O linux \
-C $(UIMAGE_COMPRESSION) $(UIMAGE_OPTS-y) \
-T $(UIMAGE_TYPE) \
-a $(UIMAGE_LOADADDR) -e $(UIMAGE_ENTRYADDR) \
-n $(UIMAGE_NAME) -d $(UIMAGE_IN) $(UIMAGE_OUT)
# XZ
# ---------------------------------------------------------------------------
# Use xzkern to compress the kernel image and xzmisc to compress other things.
#
# xzkern uses a big LZMA2 dictionary since it doesn't increase memory usage
# of the kernel decompressor. A BCJ filter is used if it is available for
# the target architecture. xzkern also appends uncompressed size of the data
# using size_append. The .xz format has the size information available at
# the end of the file too, but it's in more complex format and it's good to
# avoid changing the part of the boot code that reads the uncompressed size.
# Note that the bytes added by size_append will make the xz tool think that
# the file is corrupt. This is expected.
#
# xzmisc doesn't use size_append, so it can be used to create normal .xz
# files. xzmisc uses smaller LZMA2 dictionary than xzkern, because a very
# big dictionary would increase the memory usage too much in the multi-call
# decompression mode. A BCJ filter isn't used either.
quiet_cmd_xzkern = XZKERN $@
cmd_xzkern = (cat $(filter-out FORCE,$^) | \
sh $(srctree)/scripts/xz_wrap.sh && \
$(call size_append, $(filter-out FORCE,$^))) > $@ || \
(rm -f $@ ; false)
quiet_cmd_xzmisc = XZMISC $@
cmd_xzmisc = (cat $(filter-out FORCE,$^) | \
xz --check=crc32 --lzma2=dict=1MiB) > $@ || \
(rm -f $@ ; false)