linux/drivers/media/dvb/frontends/tda10086.c

741 lines
18 KiB
C
Raw Normal View History

/*
Driver for Philips tda10086 DVBS Demodulator
(c) 2006 Andrew de Quincey
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "tda10086.h"
#define SACLK 96000000
struct tda10086_state {
struct i2c_adapter* i2c;
const struct tda10086_config* config;
struct dvb_frontend frontend;
/* private demod data */
u32 frequency;
u32 symbol_rate;
};
static int debug = 0;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "tda10086: " args); \
} while (0)
static int tda10086_write_byte(struct tda10086_state *state, int reg, int data)
{
int ret;
u8 b0[] = { reg, data };
struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 };
msg.addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
return (ret != 1) ? ret : 0;
}
static int tda10086_read_byte(struct tda10086_state *state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
msg[0].addr = state->config->demod_address;
msg[1].addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return ret;
}
return b1[0];
}
static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data)
{
int val;
// read a byte and check
val = tda10086_read_byte(state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda10086_write_byte(state, reg, val);
}
static int tda10086_init(struct dvb_frontend* fe)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
// reset
tda10086_write_byte(state, 0x00, 0x00);
msleep(10);
// misc setup
tda10086_write_byte(state, 0x01, 0x94);
tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP
tda10086_write_byte(state, 0x03, 0x64);
tda10086_write_byte(state, 0x04, 0x43);
tda10086_write_byte(state, 0x0c, 0x0c);
tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold
tda10086_write_byte(state, 0x20, 0x89); // misc
tda10086_write_byte(state, 0x30, 0x04); // acquisition period length
tda10086_write_byte(state, 0x32, 0x00); // irq off
tda10086_write_byte(state, 0x31, 0x56); // setup AFC
// setup PLL (assumes 16Mhz XIN)
tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup
tda10086_write_byte(state, 0x3a, 0x0b); // M=12
tda10086_write_byte(state, 0x3b, 0x01); // P=2
tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL
// setup TS interface
tda10086_write_byte(state, 0x11, 0x81);
tda10086_write_byte(state, 0x12, 0x81);
tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST
tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use
tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use
tda10086_write_byte(state, 0x10, 0x2a);
// setup ADC
tda10086_write_byte(state, 0x58, 0x61); // ADC setup
tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC
// setup AGC
tda10086_write_byte(state, 0x05, 0x0B);
tda10086_write_byte(state, 0x37, 0x63);
tda10086_write_byte(state, 0x3f, 0x03); // NOTE: flydvb uses 0x0a and varies it
tda10086_write_byte(state, 0x40, 0x64);
tda10086_write_byte(state, 0x41, 0x4f);
tda10086_write_byte(state, 0x42, 0x43);
// setup viterbi
tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK
// setup carrier recovery
tda10086_write_byte(state, 0x3d, 0x80);
// setup SEC
tda10086_write_byte(state, 0x36, 0x00); // all SEC off
tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000))); // } tone frequency
tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // }
return 0;
}
static void tda10086_diseqc_wait(struct tda10086_state *state)
{
unsigned long timeout = jiffies + msecs_to_jiffies(200);
while (!(tda10086_read_byte(state, 0x50) & 0x01)) {
if(time_after(jiffies, timeout)) {
printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
break;
}
msleep(10);
}
}
static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
switch(tone) {
case SEC_TONE_OFF:
tda10086_write_byte(state, 0x36, 0x00);
break;
case SEC_TONE_ON:
tda10086_write_byte(state, 0x36, 0x01);
break;
}
return 0;
}
static int tda10086_send_master_cmd (struct dvb_frontend* fe,
struct dvb_diseqc_master_cmd* cmd)
{
struct tda10086_state* state = fe->demodulator_priv;
int i;
u8 oldval;
dprintk ("%s\n", __FUNCTION__);
if (cmd->msg_len > 6)
return -EINVAL;
oldval = tda10086_read_byte(state, 0x36);
for(i=0; i< cmd->msg_len; i++) {
tda10086_write_byte(state, 0x48+i, cmd->msg[i]);
}
tda10086_write_byte(state, 0x36, 0x08 | ((cmd->msg_len + 1) << 4));
tda10086_diseqc_wait(state);
tda10086_write_byte(state, 0x36, oldval);
return 0;
}
static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
struct tda10086_state* state = fe->demodulator_priv;
u8 oldval = tda10086_read_byte(state, 0x36);
dprintk ("%s\n", __FUNCTION__);
switch(minicmd) {
case SEC_MINI_A:
tda10086_write_byte(state, 0x36, 0x04);
break;
case SEC_MINI_B:
tda10086_write_byte(state, 0x36, 0x06);
break;
}
tda10086_diseqc_wait(state);
tda10086_write_byte(state, 0x36, oldval);
return 0;
}
static int tda10086_set_inversion(struct tda10086_state *state,
struct dvb_frontend_parameters *fe_params)
{
u8 invval = 0x80;
dprintk ("%s %i %i\n", __FUNCTION__, fe_params->inversion, state->config->invert);
switch(fe_params->inversion) {
case INVERSION_OFF:
if (state->config->invert)
invval = 0x40;
break;
case INVERSION_ON:
if (!state->config->invert)
invval = 0x40;
break;
case INVERSION_AUTO:
invval = 0x00;
break;
}
tda10086_write_mask(state, 0x0c, 0xc0, invval);
return 0;
}
static int tda10086_set_symbol_rate(struct tda10086_state *state,
struct dvb_frontend_parameters *fe_params)
{
u8 dfn = 0;
u8 afs = 0;
u8 byp = 0;
u8 reg37 = 0x43;
u8 reg42 = 0x43;
u64 big;
u32 tmp;
u32 bdr;
u32 bdri;
u32 symbol_rate = fe_params->u.qpsk.symbol_rate;
dprintk ("%s %i\n", __FUNCTION__, symbol_rate);
// setup the decimation and anti-aliasing filters..
if (symbol_rate < (u32) (SACLK * 0.0137)) {
dfn=4;
afs=1;
} else if (symbol_rate < (u32) (SACLK * 0.0208)) {
dfn=4;
afs=0;
} else if (symbol_rate < (u32) (SACLK * 0.0270)) {
dfn=3;
afs=1;
} else if (symbol_rate < (u32) (SACLK * 0.0416)) {
dfn=3;
afs=0;
} else if (symbol_rate < (u32) (SACLK * 0.0550)) {
dfn=2;
afs=1;
} else if (symbol_rate < (u32) (SACLK * 0.0833)) {
dfn=2;
afs=0;
} else if (symbol_rate < (u32) (SACLK * 0.1100)) {
dfn=1;
afs=1;
} else if (symbol_rate < (u32) (SACLK * 0.1666)) {
dfn=1;
afs=0;
} else if (symbol_rate < (u32) (SACLK * 0.2200)) {
dfn=0;
afs=1;
} else if (symbol_rate < (u32) (SACLK * 0.3333)) {
dfn=0;
afs=0;
} else {
reg37 = 0x63;
reg42 = 0x4f;
byp=1;
}
// calculate BDR
big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<<dfn);
big += ((SACLK/1000ULL)-1ULL);
do_div(big, (SACLK/1000ULL));
bdr = big & 0xfffff;
// calculate BDRI
tmp = (1<<dfn)*(symbol_rate/1000);
bdri = ((32 * (SACLK/1000)) + (tmp-1)) / tmp;
tda10086_write_byte(state, 0x21, (afs << 7) | dfn);
tda10086_write_mask(state, 0x20, 0x08, byp << 3);
tda10086_write_byte(state, 0x06, bdr);
tda10086_write_byte(state, 0x07, bdr >> 8);
tda10086_write_byte(state, 0x08, bdr >> 16);
tda10086_write_byte(state, 0x09, bdri);
tda10086_write_byte(state, 0x37, reg37);
tda10086_write_byte(state, 0x42, reg42);
return 0;
}
static int tda10086_set_fec(struct tda10086_state *state,
struct dvb_frontend_parameters *fe_params)
{
u8 fecval;
dprintk ("%s %i\n", __FUNCTION__, fe_params->u.qpsk.fec_inner);
switch(fe_params->u.qpsk.fec_inner) {
case FEC_1_2:
fecval = 0x00;
break;
case FEC_2_3:
fecval = 0x01;
break;
case FEC_3_4:
fecval = 0x02;
break;
case FEC_4_5:
fecval = 0x03;
break;
case FEC_5_6:
fecval = 0x04;
break;
case FEC_6_7:
fecval = 0x05;
break;
case FEC_7_8:
fecval = 0x06;
break;
case FEC_8_9:
fecval = 0x07;
break;
case FEC_AUTO:
fecval = 0x08;
break;
default:
return -1;
}
tda10086_write_byte(state, 0x0d, fecval);
return 0;
}
static int tda10086_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fe_params)
{
struct tda10086_state *state = fe->demodulator_priv;
int ret;
u32 freq = 0;
int freqoff;
dprintk ("%s\n", __FUNCTION__);
// set params
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, fe_params);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (fe->ops.tuner_ops.get_frequency)
fe->ops.tuner_ops.get_frequency(fe, &freq);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
// calcluate the frequency offset (in *Hz* not kHz)
freqoff = fe_params->frequency - freq;
freqoff = ((1<<16) * freqoff) / (SACLK/1000);
tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f));
tda10086_write_byte(state, 0x3e, freqoff);
if ((ret = tda10086_set_inversion(state, fe_params)) < 0)
return ret;
if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0)
return ret;
if ((ret = tda10086_set_fec(state, fe_params)) < 0)
return ret;
// soft reset + disable TS output until lock
tda10086_write_mask(state, 0x10, 0x40, 0x40);
tda10086_write_mask(state, 0x00, 0x01, 0x00);
state->symbol_rate = fe_params->u.qpsk.symbol_rate;
state->frequency = fe_params->frequency;
return 0;
}
static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
{
struct tda10086_state* state = fe->demodulator_priv;
u8 val;
int tmp;
u64 tmp64;
dprintk ("%s\n", __FUNCTION__);
// calculate the updated frequency (note: we convert from Hz->kHz)
tmp64 = tda10086_read_byte(state, 0x52);
tmp64 |= (tda10086_read_byte(state, 0x51) << 8);
if (tmp64 & 0x8000)
tmp64 |= 0xffffffffffff0000ULL;
tmp64 = (tmp64 * (SACLK/1000ULL));
do_div(tmp64, (1ULL<<15) * (1ULL<<1));
fe_params->frequency = (int) state->frequency + (int) tmp64;
// the inversion
val = tda10086_read_byte(state, 0x0c);
if (val & 0x80) {
switch(val & 0x40) {
case 0x00:
fe_params->inversion = INVERSION_OFF;
if (state->config->invert)
fe_params->inversion = INVERSION_ON;
break;
default:
fe_params->inversion = INVERSION_ON;
if (state->config->invert)
fe_params->inversion = INVERSION_OFF;
break;
}
} else {
tda10086_read_byte(state, 0x0f);
switch(val & 0x02) {
case 0x00:
fe_params->inversion = INVERSION_OFF;
if (state->config->invert)
fe_params->inversion = INVERSION_ON;
break;
default:
fe_params->inversion = INVERSION_ON;
if (state->config->invert)
fe_params->inversion = INVERSION_OFF;
break;
}
}
// calculate the updated symbol rate
tmp = tda10086_read_byte(state, 0x1d);
if (tmp & 0x80)
tmp |= 0xffffff00;
tmp = (tmp * 480 * (1<<1)) / 128;
tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000);
fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp;
// the FEC
val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4;
switch(val) {
case 0x00:
fe_params->u.qpsk.fec_inner = FEC_1_2;
break;
case 0x01:
fe_params->u.qpsk.fec_inner = FEC_2_3;
break;
case 0x02:
fe_params->u.qpsk.fec_inner = FEC_3_4;
break;
case 0x03:
fe_params->u.qpsk.fec_inner = FEC_4_5;
break;
case 0x04:
fe_params->u.qpsk.fec_inner = FEC_5_6;
break;
case 0x05:
fe_params->u.qpsk.fec_inner = FEC_6_7;
break;
case 0x06:
fe_params->u.qpsk.fec_inner = FEC_7_8;
break;
case 0x07:
fe_params->u.qpsk.fec_inner = FEC_8_9;
break;
}
return 0;
}
static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status)
{
struct tda10086_state* state = fe->demodulator_priv;
u8 val;
dprintk ("%s\n", __FUNCTION__);
val = tda10086_read_byte(state, 0x0e);
*fe_status = 0;
if (val & 0x01)
*fe_status |= FE_HAS_SIGNAL;
if (val & 0x02)
*fe_status |= FE_HAS_CARRIER;
if (val & 0x04)
*fe_status |= FE_HAS_VITERBI;
if (val & 0x08)
*fe_status |= FE_HAS_SYNC;
if (val & 0x10)
*fe_status |= FE_HAS_LOCK;
return 0;
}
static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
{
struct tda10086_state* state = fe->demodulator_priv;
u8 _str;
dprintk ("%s\n", __FUNCTION__);
_str = tda10086_read_byte(state, 0x43);
*signal = (_str << 8) | _str;
return 0;
}
static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr)
{
struct tda10086_state* state = fe->demodulator_priv;
u8 _snr;
dprintk ("%s\n", __FUNCTION__);
_snr = tda10086_read_byte(state, 0x1c);
*snr = (_snr << 8) | _snr;
return 0;
}
static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
// read it
*ucblocks = tda10086_read_byte(state, 0x18) & 0x7f;
// reset counter
tda10086_write_byte(state, 0x18, 0x00);
tda10086_write_byte(state, 0x18, 0x80);
return 0;
}
static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
// read it
*ber = 0;
*ber |= tda10086_read_byte(state, 0x15);
*ber |= tda10086_read_byte(state, 0x16) << 8;
*ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16;
return 0;
}
static int tda10086_sleep(struct dvb_frontend* fe)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
tda10086_write_mask(state, 0x00, 0x08, 0x08);
return 0;
}
static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct tda10086_state* state = fe->demodulator_priv;
dprintk ("%s\n", __FUNCTION__);
if (enable) {
tda10086_write_mask(state, 0x00, 0x10, 0x10);
} else {
tda10086_write_mask(state, 0x00, 0x10, 0x00);
}
return 0;
}
static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
fesettings->min_delay_ms = 50;
fesettings->step_size = 2000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1500;
fesettings->max_drift = 9000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 500;
fesettings->max_drift = 7000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 14 * fesettings->step_size;
} else {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 18 * fesettings->step_size;
}
return 0;
}
static void tda10086_release(struct dvb_frontend* fe)
{
struct tda10086_state *state = fe->demodulator_priv;
tda10086_sleep(fe);
kfree(state);
}
static struct dvb_frontend_ops tda10086_ops = {
.info = {
.name = "Philips TDA10086 DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 125, /* kHz for QPSK frontends */
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK
},
.release = tda10086_release,
.init = tda10086_init,
.sleep = tda10086_sleep,
.i2c_gate_ctrl = tda10086_i2c_gate_ctrl,
.set_frontend = tda10086_set_frontend,
.get_frontend = tda10086_get_frontend,
.get_tune_settings = tda10086_get_tune_settings,
.read_status = tda10086_read_status,
.read_ber = tda10086_read_ber,
.read_signal_strength = tda10086_read_signal_strength,
.read_snr = tda10086_read_snr,
.read_ucblocks = tda10086_read_ucblocks,
.diseqc_send_master_cmd = tda10086_send_master_cmd,
.diseqc_send_burst = tda10086_send_burst,
.set_tone = tda10086_set_tone,
};
struct dvb_frontend* tda10086_attach(const struct tda10086_config* config,
struct i2c_adapter* i2c)
{
struct tda10086_state *state;
dprintk ("%s\n", __FUNCTION__);
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->config = config;
state->i2c = i2c;
/* check if the demod is there */
if (tda10086_read_byte(state, 0x1e) != 0xe1) {
kfree(state);
return NULL;
}
/* create dvb_frontend */
memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
}
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator");
MODULE_AUTHOR("Andrew de Quincey");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(tda10086_attach);