linux/crypto/seqiv.c

888 lines
21 KiB
C
Raw Normal View History

/*
* seqiv: Sequence Number IV Generator
*
* This generator generates an IV based on a sequence number by xoring it
* with a salt. This algorithm is mainly useful for CTR and similar modes.
*
* Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/geniv.h>
#include <crypto/internal/skcipher.h>
#include <crypto/null.h>
#include <crypto/rng.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
struct seqniv_request_ctx {
struct scatterlist dst[2];
struct aead_request subreq;
};
struct seqiv_ctx {
spinlock_t lock;
u8 salt[] __attribute__ ((aligned(__alignof__(u32))));
};
struct seqiv_aead_ctx {
/* aead_geniv_ctx must be first the element */
struct aead_geniv_ctx geniv;
struct crypto_blkcipher *null;
u8 salt[] __attribute__ ((aligned(__alignof__(u32))));
};
static void seqiv_free(struct crypto_instance *inst);
static void seqiv_complete2(struct skcipher_givcrypt_request *req, int err)
{
struct ablkcipher_request *subreq = skcipher_givcrypt_reqctx(req);
struct crypto_ablkcipher *geniv;
if (err == -EINPROGRESS)
return;
if (err)
goto out;
geniv = skcipher_givcrypt_reqtfm(req);
memcpy(req->creq.info, subreq->info, crypto_ablkcipher_ivsize(geniv));
out:
kfree(subreq->info);
}
static void seqiv_complete(struct crypto_async_request *base, int err)
{
struct skcipher_givcrypt_request *req = base->data;
seqiv_complete2(req, err);
skcipher_givcrypt_complete(req, err);
}
static void seqiv_aead_complete2(struct aead_givcrypt_request *req, int err)
{
struct aead_request *subreq = aead_givcrypt_reqctx(req);
struct crypto_aead *geniv;
if (err == -EINPROGRESS)
return;
if (err)
goto out;
geniv = aead_givcrypt_reqtfm(req);
memcpy(req->areq.iv, subreq->iv, crypto_aead_ivsize(geniv));
out:
kfree(subreq->iv);
}
static void seqiv_aead_complete(struct crypto_async_request *base, int err)
{
struct aead_givcrypt_request *req = base->data;
seqiv_aead_complete2(req, err);
aead_givcrypt_complete(req, err);
}
static void seqiv_aead_encrypt_complete2(struct aead_request *req, int err)
{
struct aead_request *subreq = aead_request_ctx(req);
struct crypto_aead *geniv;
if (err == -EINPROGRESS)
return;
if (err)
goto out;
geniv = crypto_aead_reqtfm(req);
memcpy(req->iv, subreq->iv, crypto_aead_ivsize(geniv));
out:
kzfree(subreq->iv);
}
static void seqiv_aead_encrypt_complete(struct crypto_async_request *base,
int err)
{
struct aead_request *req = base->data;
seqiv_aead_encrypt_complete2(req, err);
aead_request_complete(req, err);
}
static void seqniv_aead_encrypt_complete2(struct aead_request *req, int err)
{
unsigned int ivsize = 8;
u8 data[20];
if (err == -EINPROGRESS)
return;
/* Swap IV and ESP header back to correct order. */
scatterwalk_map_and_copy(data, req->dst, 0, req->assoclen + ivsize, 0);
scatterwalk_map_and_copy(data + ivsize, req->dst, 0, req->assoclen, 1);
scatterwalk_map_and_copy(data, req->dst, req->assoclen, ivsize, 1);
}
static void seqniv_aead_encrypt_complete(struct crypto_async_request *base,
int err)
{
struct aead_request *req = base->data;
seqniv_aead_encrypt_complete2(req, err);
aead_request_complete(req, err);
}
static void seqniv_aead_decrypt_complete2(struct aead_request *req, int err)
{
u8 data[4];
if (err == -EINPROGRESS)
return;
/* Move ESP header back to correct location. */
scatterwalk_map_and_copy(data, req->dst, 16, req->assoclen - 8, 0);
scatterwalk_map_and_copy(data, req->dst, 8, req->assoclen - 8, 1);
}
static void seqniv_aead_decrypt_complete(struct crypto_async_request *base,
int err)
{
struct aead_request *req = base->data;
seqniv_aead_decrypt_complete2(req, err);
aead_request_complete(req, err);
}
static void seqiv_geniv(struct seqiv_ctx *ctx, u8 *info, u64 seq,
unsigned int ivsize)
{
unsigned int len = ivsize;
if (ivsize > sizeof(u64)) {
memset(info, 0, ivsize - sizeof(u64));
len = sizeof(u64);
}
seq = cpu_to_be64(seq);
memcpy(info + ivsize - len, &seq, len);
crypto_xor(info, ctx->salt, ivsize);
}
static int seqiv_givencrypt(struct skcipher_givcrypt_request *req)
{
struct crypto_ablkcipher *geniv = skcipher_givcrypt_reqtfm(req);
struct seqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv);
struct ablkcipher_request *subreq = skcipher_givcrypt_reqctx(req);
crypto_completion_t compl;
void *data;
u8 *info;
unsigned int ivsize;
int err;
ablkcipher_request_set_tfm(subreq, skcipher_geniv_cipher(geniv));
compl = req->creq.base.complete;
data = req->creq.base.data;
info = req->creq.info;
ivsize = crypto_ablkcipher_ivsize(geniv);
if (unlikely(!IS_ALIGNED((unsigned long)info,
crypto_ablkcipher_alignmask(geniv) + 1))) {
info = kmalloc(ivsize, req->creq.base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
GFP_ATOMIC);
if (!info)
return -ENOMEM;
compl = seqiv_complete;
data = req;
}
ablkcipher_request_set_callback(subreq, req->creq.base.flags, compl,
data);
ablkcipher_request_set_crypt(subreq, req->creq.src, req->creq.dst,
req->creq.nbytes, info);
seqiv_geniv(ctx, info, req->seq, ivsize);
memcpy(req->giv, info, ivsize);
err = crypto_ablkcipher_encrypt(subreq);
if (unlikely(info != req->creq.info))
seqiv_complete2(req, err);
return err;
}
static int seqiv_aead_givencrypt(struct aead_givcrypt_request *req)
{
struct crypto_aead *geniv = aead_givcrypt_reqtfm(req);
struct seqiv_ctx *ctx = crypto_aead_ctx(geniv);
struct aead_request *areq = &req->areq;
struct aead_request *subreq = aead_givcrypt_reqctx(req);
crypto_completion_t compl;
void *data;
u8 *info;
unsigned int ivsize;
int err;
aead_request_set_tfm(subreq, aead_geniv_base(geniv));
compl = areq->base.complete;
data = areq->base.data;
info = areq->iv;
ivsize = crypto_aead_ivsize(geniv);
if (unlikely(!IS_ALIGNED((unsigned long)info,
crypto_aead_alignmask(geniv) + 1))) {
info = kmalloc(ivsize, areq->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
GFP_ATOMIC);
if (!info)
return -ENOMEM;
compl = seqiv_aead_complete;
data = req;
}
aead_request_set_callback(subreq, areq->base.flags, compl, data);
aead_request_set_crypt(subreq, areq->src, areq->dst, areq->cryptlen,
info);
aead_request_set_assoc(subreq, areq->assoc, areq->assoclen);
seqiv_geniv(ctx, info, req->seq, ivsize);
memcpy(req->giv, info, ivsize);
err = crypto_aead_encrypt(subreq);
if (unlikely(info != areq->iv))
seqiv_aead_complete2(req, err);
return err;
}
static int seqniv_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
struct seqniv_request_ctx *rctx = aead_request_ctx(req);
struct aead_request *subreq = &rctx->subreq;
struct scatterlist *dst;
crypto_completion_t compl;
void *data;
unsigned int ivsize = 8;
u8 buf[20] __attribute__ ((aligned(__alignof__(u32))));
int err;
if (req->cryptlen < ivsize)
return -EINVAL;
/* ESP AD is at most 12 bytes (ESN). */
if (req->assoclen > 12)
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = seqniv_aead_encrypt_complete;
data = req;
if (req->src != req->dst) {
struct blkcipher_desc desc = {
.tfm = ctx->null,
};
err = crypto_blkcipher_encrypt(&desc, req->dst, req->src,
req->assoclen + req->cryptlen);
if (err)
return err;
}
dst = scatterwalk_ffwd(rctx->dst, req->dst, ivsize);
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, dst, dst,
req->cryptlen - ivsize, req->iv);
aead_request_set_ad(subreq, req->assoclen);
memcpy(buf, req->iv, ivsize);
crypto_xor(buf, ctx->salt, ivsize);
memcpy(req->iv, buf, ivsize);
/* Swap order of IV and ESP AD for ICV generation. */
scatterwalk_map_and_copy(buf + ivsize, req->dst, 0, req->assoclen, 0);
scatterwalk_map_and_copy(buf, req->dst, 0, req->assoclen + ivsize, 1);
err = crypto_aead_encrypt(subreq);
seqniv_aead_encrypt_complete2(req, err);
return err;
}
static int seqiv_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
struct aead_request *subreq = aead_request_ctx(req);
crypto_completion_t compl;
void *data;
u8 *info;
unsigned int ivsize = 8;
int err;
if (req->cryptlen < ivsize)
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = req->base.complete;
data = req->base.data;
info = req->iv;
if (req->src != req->dst) {
struct blkcipher_desc desc = {
.tfm = ctx->null,
};
err = crypto_blkcipher_encrypt(&desc, req->dst, req->src,
req->assoclen + req->cryptlen);
if (err)
return err;
}
if (unlikely(!IS_ALIGNED((unsigned long)info,
crypto_aead_alignmask(geniv) + 1))) {
info = kmalloc(ivsize, req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
GFP_ATOMIC);
if (!info)
return -ENOMEM;
memcpy(info, req->iv, ivsize);
compl = seqiv_aead_encrypt_complete;
data = req;
}
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, req->dst, req->dst,
req->cryptlen - ivsize, info);
aead_request_set_ad(subreq, req->assoclen + ivsize);
crypto_xor(info, ctx->salt, ivsize);
scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);
err = crypto_aead_encrypt(subreq);
if (unlikely(info != req->iv))
seqiv_aead_encrypt_complete2(req, err);
return err;
}
static int seqniv_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
struct seqniv_request_ctx *rctx = aead_request_ctx(req);
struct aead_request *subreq = &rctx->subreq;
struct scatterlist *dst;
crypto_completion_t compl;
void *data;
unsigned int ivsize = 8;
u8 buf[20];
int err;
if (req->cryptlen < ivsize + crypto_aead_authsize(geniv))
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = req->base.complete;
data = req->base.data;
if (req->assoclen > 12)
return -EINVAL;
else if (req->assoclen > 8) {
compl = seqniv_aead_decrypt_complete;
data = req;
}
if (req->src != req->dst) {
struct blkcipher_desc desc = {
.tfm = ctx->null,
};
err = crypto_blkcipher_encrypt(&desc, req->dst, req->src,
req->assoclen + req->cryptlen);
if (err)
return err;
}
/* Move ESP AD forward for ICV generation. */
scatterwalk_map_and_copy(buf, req->dst, 0, req->assoclen + ivsize, 0);
memcpy(req->iv, buf + req->assoclen, ivsize);
scatterwalk_map_and_copy(buf, req->dst, ivsize, req->assoclen, 1);
dst = scatterwalk_ffwd(rctx->dst, req->dst, ivsize);
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, dst, dst,
req->cryptlen - ivsize, req->iv);
aead_request_set_ad(subreq, req->assoclen);
err = crypto_aead_decrypt(subreq);
if (req->assoclen > 8)
seqniv_aead_decrypt_complete2(req, err);
return err;
}
static int seqiv_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
struct aead_request *subreq = aead_request_ctx(req);
crypto_completion_t compl;
void *data;
unsigned int ivsize = 8;
if (req->cryptlen < ivsize + crypto_aead_authsize(geniv))
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = req->base.complete;
data = req->base.data;
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen - ivsize, req->iv);
aead_request_set_ad(subreq, req->assoclen + ivsize);
scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
if (req->src != req->dst)
scatterwalk_map_and_copy(req->iv, req->dst,
req->assoclen, ivsize, 1);
return crypto_aead_decrypt(subreq);
}
static int seqiv_givencrypt_first(struct skcipher_givcrypt_request *req)
{
struct crypto_ablkcipher *geniv = skcipher_givcrypt_reqtfm(req);
struct seqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv);
int err = 0;
spin_lock_bh(&ctx->lock);
if (crypto_ablkcipher_crt(geniv)->givencrypt != seqiv_givencrypt_first)
goto unlock;
crypto_ablkcipher_crt(geniv)->givencrypt = seqiv_givencrypt;
err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
crypto_ablkcipher_ivsize(geniv));
unlock:
spin_unlock_bh(&ctx->lock);
if (err)
return err;
return seqiv_givencrypt(req);
}
static int seqiv_aead_givencrypt_first(struct aead_givcrypt_request *req)
{
struct crypto_aead *geniv = aead_givcrypt_reqtfm(req);
struct seqiv_ctx *ctx = crypto_aead_ctx(geniv);
int err = 0;
spin_lock_bh(&ctx->lock);
if (crypto_aead_crt(geniv)->givencrypt != seqiv_aead_givencrypt_first)
goto unlock;
crypto_aead_crt(geniv)->givencrypt = seqiv_aead_givencrypt;
err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
crypto_aead_ivsize(geniv));
unlock:
spin_unlock_bh(&ctx->lock);
if (err)
return err;
return seqiv_aead_givencrypt(req);
}
static int seqniv_aead_encrypt_first(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
int err = 0;
spin_lock_bh(&ctx->geniv.lock);
if (geniv->encrypt != seqniv_aead_encrypt_first)
goto unlock;
geniv->encrypt = seqniv_aead_encrypt;
err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
crypto_aead_ivsize(geniv));
unlock:
spin_unlock_bh(&ctx->geniv.lock);
if (err)
return err;
return seqniv_aead_encrypt(req);
}
static int seqiv_aead_encrypt_first(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
int err = 0;
spin_lock_bh(&ctx->geniv.lock);
if (geniv->encrypt != seqiv_aead_encrypt_first)
goto unlock;
geniv->encrypt = seqiv_aead_encrypt;
err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
crypto_aead_ivsize(geniv));
unlock:
spin_unlock_bh(&ctx->geniv.lock);
if (err)
return err;
return seqiv_aead_encrypt(req);
}
static int seqiv_init(struct crypto_tfm *tfm)
{
struct crypto_ablkcipher *geniv = __crypto_ablkcipher_cast(tfm);
struct seqiv_ctx *ctx = crypto_ablkcipher_ctx(geniv);
spin_lock_init(&ctx->lock);
tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request);
return skcipher_geniv_init(tfm);
}
static int seqiv_old_aead_init(struct crypto_tfm *tfm)
{
struct crypto_aead *geniv = __crypto_aead_cast(tfm);
struct seqiv_ctx *ctx = crypto_aead_ctx(geniv);
spin_lock_init(&ctx->lock);
crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
sizeof(struct aead_request));
return aead_geniv_init(tfm);
}
static int seqiv_aead_init_common(struct crypto_tfm *tfm, unsigned int reqsize)
{
struct crypto_aead *geniv = __crypto_aead_cast(tfm);
struct seqiv_aead_ctx *ctx = crypto_aead_ctx(geniv);
int err;
spin_lock_init(&ctx->geniv.lock);
crypto_aead_set_reqsize(geniv, sizeof(struct aead_request));
ctx->null = crypto_get_default_null_skcipher();
err = PTR_ERR(ctx->null);
if (IS_ERR(ctx->null))
goto out;
err = aead_geniv_init(tfm);
if (err)
goto drop_null;
ctx->geniv.child = geniv->child;
geniv->child = geniv;
out:
return err;
drop_null:
crypto_put_default_null_skcipher();
goto out;
}
static int seqiv_aead_init(struct crypto_tfm *tfm)
{
return seqiv_aead_init_common(tfm, sizeof(struct aead_request));
}
static int seqniv_aead_init(struct crypto_tfm *tfm)
{
return seqiv_aead_init_common(tfm, sizeof(struct seqniv_request_ctx));
}
static void seqiv_aead_exit(struct crypto_tfm *tfm)
{
struct seqiv_aead_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_aead(ctx->geniv.child);
crypto_put_default_null_skcipher();
}
static int seqiv_ablkcipher_create(struct crypto_template *tmpl,
struct rtattr **tb)
{
struct crypto_instance *inst;
int err;
inst = skcipher_geniv_alloc(tmpl, tb, 0, 0);
if (IS_ERR(inst))
return PTR_ERR(inst);
err = -EINVAL;
if (inst->alg.cra_ablkcipher.ivsize < sizeof(u64))
goto free_inst;
inst->alg.cra_ablkcipher.givencrypt = seqiv_givencrypt_first;
inst->alg.cra_init = seqiv_init;
inst->alg.cra_exit = skcipher_geniv_exit;
inst->alg.cra_ctxsize += inst->alg.cra_ablkcipher.ivsize;
inst->alg.cra_ctxsize += sizeof(struct seqiv_ctx);
inst->alg.cra_alignmask |= __alignof__(u32) - 1;
err = crypto_register_instance(tmpl, inst);
if (err)
goto free_inst;
out:
return err;
free_inst:
skcipher_geniv_free(inst);
goto out;
}
static int seqiv_old_aead_create(struct crypto_template *tmpl,
struct aead_instance *aead)
{
struct crypto_instance *inst = aead_crypto_instance(aead);
int err = -EINVAL;
if (inst->alg.cra_aead.ivsize < sizeof(u64))
goto free_inst;
inst->alg.cra_aead.givencrypt = seqiv_aead_givencrypt_first;
inst->alg.cra_init = seqiv_old_aead_init;
inst->alg.cra_exit = aead_geniv_exit;
inst->alg.cra_ctxsize = inst->alg.cra_aead.ivsize;
inst->alg.cra_ctxsize += sizeof(struct seqiv_ctx);
err = crypto_register_instance(tmpl, inst);
if (err)
goto free_inst;
out:
return err;
free_inst:
aead_geniv_free(aead);
goto out;
}
static int seqiv_aead_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct aead_instance *inst;
struct crypto_aead_spawn *spawn;
struct aead_alg *alg;
int err;
inst = aead_geniv_alloc(tmpl, tb, 0, 0);
if (IS_ERR(inst))
return PTR_ERR(inst);
inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
if (inst->alg.base.cra_aead.encrypt)
return seqiv_old_aead_create(tmpl, inst);
spawn = aead_instance_ctx(inst);
alg = crypto_spawn_aead_alg(spawn);
if (alg->base.cra_aead.encrypt)
goto done;
err = -EINVAL;
if (inst->alg.ivsize != sizeof(u64))
goto free_inst;
inst->alg.encrypt = seqiv_aead_encrypt_first;
inst->alg.decrypt = seqiv_aead_decrypt;
inst->alg.base.cra_init = seqiv_aead_init;
inst->alg.base.cra_exit = seqiv_aead_exit;
inst->alg.base.cra_ctxsize = sizeof(struct seqiv_aead_ctx);
inst->alg.base.cra_ctxsize += inst->alg.base.cra_aead.ivsize;
done:
err = aead_register_instance(tmpl, inst);
if (err)
goto free_inst;
out:
return err;
free_inst:
aead_geniv_free(inst);
goto out;
}
static int seqiv_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_attr_type *algt;
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
err = crypto_get_default_rng();
if (err)
return err;
if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & CRYPTO_ALG_TYPE_MASK)
err = seqiv_ablkcipher_create(tmpl, tb);
else
err = seqiv_aead_create(tmpl, tb);
if (err)
crypto_put_default_rng();
return err;
}
static int seqniv_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct aead_instance *inst;
struct crypto_aead_spawn *spawn;
struct aead_alg *alg;
int err;
err = crypto_get_default_rng();
if (err)
return err;
inst = aead_geniv_alloc(tmpl, tb, 0, 0);
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto put_rng;
spawn = aead_instance_ctx(inst);
alg = crypto_spawn_aead_alg(spawn);
if (alg->base.cra_aead.encrypt)
goto done;
err = -EINVAL;
if (inst->alg.ivsize != sizeof(u64))
goto free_inst;
inst->alg.encrypt = seqniv_aead_encrypt_first;
inst->alg.decrypt = seqniv_aead_decrypt;
inst->alg.base.cra_init = seqniv_aead_init;
inst->alg.base.cra_exit = seqiv_aead_exit;
inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
inst->alg.base.cra_ctxsize = sizeof(struct seqiv_aead_ctx);
inst->alg.base.cra_ctxsize += inst->alg.ivsize;
done:
err = aead_register_instance(tmpl, inst);
if (err)
goto free_inst;
out:
return err;
free_inst:
aead_geniv_free(inst);
put_rng:
crypto_put_default_rng();
goto out;
}
static void seqiv_free(struct crypto_instance *inst)
{
if ((inst->alg.cra_flags ^ CRYPTO_ALG_TYPE_AEAD) & CRYPTO_ALG_TYPE_MASK)
skcipher_geniv_free(inst);
else
aead_geniv_free(aead_instance(inst));
crypto_put_default_rng();
}
static struct crypto_template seqiv_tmpl = {
.name = "seqiv",
.create = seqiv_create,
.free = seqiv_free,
.module = THIS_MODULE,
};
static struct crypto_template seqniv_tmpl = {
.name = "seqniv",
.create = seqniv_create,
.free = seqiv_free,
.module = THIS_MODULE,
};
static int __init seqiv_module_init(void)
{
int err;
err = crypto_register_template(&seqiv_tmpl);
if (err)
goto out;
err = crypto_register_template(&seqniv_tmpl);
if (err)
goto out_undo_niv;
out:
return err;
out_undo_niv:
crypto_unregister_template(&seqiv_tmpl);
goto out;
}
static void __exit seqiv_module_exit(void)
{
crypto_unregister_template(&seqniv_tmpl);
crypto_unregister_template(&seqiv_tmpl);
}
module_init(seqiv_module_init);
module_exit(seqiv_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Sequence Number IV Generator");
MODULE_ALIAS_CRYPTO("seqiv");
MODULE_ALIAS_CRYPTO("seqniv");