KVM: x86: introduce get_kvmclock_ns

Introduce a function that reads the exact nanoseconds value that is
provided to the guest in kvmclock.  This crystallizes the notion of
kvmclock as a thin veneer over a stable TSC, that the guest will
(hopefully) convert with NTP.  In other words, kvmclock is *not* a
paravirtualized host-to-guest NTP.

Drop the get_kernel_ns() function, that was used both to get the base
value of the master clock and to get the current value of kvmclock.
The former use is replaced by ktime_get_boot_ns(), the latter is
the purpose of get_kernel_ns().

This also allows KVM to provide a Hyper-V time reference counter that
is synchronized with the time that is computed from the TSC page.

Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2016-09-01 14:21:03 +02:00
parent 67198ac3f3
commit 108b249c45
6 changed files with 43 additions and 22 deletions

View File

@ -129,7 +129,7 @@ static notrace cycle_t vread_pvclock(int *mode)
return 0; return 0;
} }
ret = __pvclock_read_cycles(pvti); ret = __pvclock_read_cycles(pvti, rdtsc_ordered());
} while (pvclock_read_retry(pvti, version)); } while (pvclock_read_retry(pvti, version));
/* refer to vread_tsc() comment for rationale */ /* refer to vread_tsc() comment for rationale */

View File

@ -87,9 +87,10 @@ static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift)
} }
static __always_inline static __always_inline
cycle_t __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src) cycle_t __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src,
u64 tsc)
{ {
u64 delta = rdtsc_ordered() - src->tsc_timestamp; u64 delta = tsc - src->tsc_timestamp;
cycle_t offset = pvclock_scale_delta(delta, src->tsc_to_system_mul, cycle_t offset = pvclock_scale_delta(delta, src->tsc_to_system_mul,
src->tsc_shift); src->tsc_shift);
return src->system_time + offset; return src->system_time + offset;

View File

@ -80,7 +80,7 @@ cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src)
do { do {
version = pvclock_read_begin(src); version = pvclock_read_begin(src);
ret = __pvclock_read_cycles(src); ret = __pvclock_read_cycles(src, rdtsc_ordered());
flags = src->flags; flags = src->flags;
} while (pvclock_read_retry(src, version)); } while (pvclock_read_retry(src, version));

View File

@ -386,7 +386,7 @@ static void synic_init(struct kvm_vcpu_hv_synic *synic)
static u64 get_time_ref_counter(struct kvm *kvm) static u64 get_time_ref_counter(struct kvm *kvm)
{ {
return div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); return div_u64(get_kvmclock_ns(kvm), 100);
} }
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,

View File

@ -1431,7 +1431,7 @@ void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
offset = kvm_compute_tsc_offset(vcpu, data); offset = kvm_compute_tsc_offset(vcpu, data);
ns = get_kernel_ns(); ns = ktime_get_boot_ns();
elapsed = ns - kvm->arch.last_tsc_nsec; elapsed = ns - kvm->arch.last_tsc_nsec;
if (vcpu->arch.virtual_tsc_khz) { if (vcpu->arch.virtual_tsc_khz) {
@ -1722,6 +1722,34 @@ static void kvm_gen_update_masterclock(struct kvm *kvm)
#endif #endif
} }
static u64 __get_kvmclock_ns(struct kvm *kvm)
{
struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, 0);
struct kvm_arch *ka = &kvm->arch;
s64 ns;
if (vcpu->arch.hv_clock.flags & PVCLOCK_TSC_STABLE_BIT) {
u64 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
ns = __pvclock_read_cycles(&vcpu->arch.hv_clock, tsc);
} else {
ns = ktime_get_boot_ns() + ka->kvmclock_offset;
}
return ns;
}
u64 get_kvmclock_ns(struct kvm *kvm)
{
unsigned long flags;
s64 ns;
local_irq_save(flags);
ns = __get_kvmclock_ns(kvm);
local_irq_restore(flags);
return ns;
}
static void kvm_setup_pvclock_page(struct kvm_vcpu *v) static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
{ {
struct kvm_vcpu_arch *vcpu = &v->arch; struct kvm_vcpu_arch *vcpu = &v->arch;
@ -1811,7 +1839,7 @@ static int kvm_guest_time_update(struct kvm_vcpu *v)
} }
if (!use_master_clock) { if (!use_master_clock) {
host_tsc = rdtsc(); host_tsc = rdtsc();
kernel_ns = get_kernel_ns(); kernel_ns = ktime_get_boot_ns();
} }
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
@ -4054,7 +4082,6 @@ long kvm_arch_vm_ioctl(struct file *filp,
case KVM_SET_CLOCK: { case KVM_SET_CLOCK: {
struct kvm_clock_data user_ns; struct kvm_clock_data user_ns;
u64 now_ns; u64 now_ns;
s64 delta;
r = -EFAULT; r = -EFAULT;
if (copy_from_user(&user_ns, argp, sizeof(user_ns))) if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
@ -4066,10 +4093,9 @@ long kvm_arch_vm_ioctl(struct file *filp,
r = 0; r = 0;
local_irq_disable(); local_irq_disable();
now_ns = get_kernel_ns(); now_ns = __get_kvmclock_ns(kvm);
delta = user_ns.clock - now_ns; kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
local_irq_enable(); local_irq_enable();
kvm->arch.kvmclock_offset = delta;
kvm_gen_update_masterclock(kvm); kvm_gen_update_masterclock(kvm);
break; break;
} }
@ -4077,10 +4103,8 @@ long kvm_arch_vm_ioctl(struct file *filp,
struct kvm_clock_data user_ns; struct kvm_clock_data user_ns;
u64 now_ns; u64 now_ns;
local_irq_disable(); now_ns = get_kvmclock_ns(kvm);
now_ns = get_kernel_ns(); user_ns.clock = now_ns;
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
local_irq_enable();
user_ns.flags = 0; user_ns.flags = 0;
memset(&user_ns.pad, 0, sizeof(user_ns.pad)); memset(&user_ns.pad, 0, sizeof(user_ns.pad));
@ -7544,7 +7568,7 @@ int kvm_arch_hardware_enable(void)
* before any KVM threads can be running. Unfortunately, we can't * before any KVM threads can be running. Unfortunately, we can't
* bring the TSCs fully up to date with real time, as we aren't yet far * bring the TSCs fully up to date with real time, as we aren't yet far
* enough into CPU bringup that we know how much real time has actually * enough into CPU bringup that we know how much real time has actually
* elapsed; our helper function, get_kernel_ns() will be using boot * elapsed; our helper function, ktime_get_boot_ns() will be using boot
* variables that haven't been updated yet. * variables that haven't been updated yet.
* *
* So we simply find the maximum observed TSC above, then record the * So we simply find the maximum observed TSC above, then record the
@ -7779,7 +7803,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
mutex_init(&kvm->arch.apic_map_lock); mutex_init(&kvm->arch.apic_map_lock);
spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
kvm->arch.kvmclock_offset = -get_kernel_ns(); kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
pvclock_update_vm_gtod_copy(kvm); pvclock_update_vm_gtod_copy(kvm);
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);

View File

@ -148,11 +148,6 @@ static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
return kvm_register_write(vcpu, reg, val); return kvm_register_write(vcpu, reg, val);
} }
static inline u64 get_kernel_ns(void)
{
return ktime_get_boot_ns();
}
static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
{ {
return !(kvm->arch.disabled_quirks & quirk); return !(kvm->arch.disabled_quirks & quirk);
@ -164,6 +159,7 @@ void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr); void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
u64 get_kvmclock_ns(struct kvm *kvm);
int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
gva_t addr, void *val, unsigned int bytes, gva_t addr, void *val, unsigned int bytes,