mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-28 12:25:31 +00:00
sched/deadline: Improve the tracking of active utilization
This patch implements a more theoretically sound algorithm for tracking active utilization: instead of decreasing it when a task blocks, use a timer (the "inactive timer", named after the "Inactive" task state of the GRUB algorithm) to decrease the active utilization at the so called "0-lag time". Tested-by: Claudio Scordino <claudio@evidence.eu.com> Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/1495138417-6203-3-git-send-email-luca.abeni@santannapisa.it Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
e36d8677bf
commit
209a0cbda7
@ -445,16 +445,33 @@ struct sched_dl_entity {
|
||||
*
|
||||
* @dl_yielded tells if task gave up the CPU before consuming
|
||||
* all its available runtime during the last job.
|
||||
*
|
||||
* @dl_non_contending tells if the task is inactive while still
|
||||
* contributing to the active utilization. In other words, it
|
||||
* indicates if the inactive timer has been armed and its handler
|
||||
* has not been executed yet. This flag is useful to avoid race
|
||||
* conditions between the inactive timer handler and the wakeup
|
||||
* code.
|
||||
*/
|
||||
int dl_throttled;
|
||||
int dl_boosted;
|
||||
int dl_yielded;
|
||||
int dl_non_contending;
|
||||
|
||||
/*
|
||||
* Bandwidth enforcement timer. Each -deadline task has its
|
||||
* own bandwidth to be enforced, thus we need one timer per task.
|
||||
*/
|
||||
struct hrtimer dl_timer;
|
||||
|
||||
/*
|
||||
* Inactive timer, responsible for decreasing the active utilization
|
||||
* at the "0-lag time". When a -deadline task blocks, it contributes
|
||||
* to GRUB's active utilization until the "0-lag time", hence a
|
||||
* timer is needed to decrease the active utilization at the correct
|
||||
* time.
|
||||
*/
|
||||
struct hrtimer inactive_timer;
|
||||
};
|
||||
|
||||
union rcu_special {
|
||||
|
@ -2153,6 +2153,7 @@ void __dl_clear_params(struct task_struct *p)
|
||||
|
||||
dl_se->dl_throttled = 0;
|
||||
dl_se->dl_yielded = 0;
|
||||
dl_se->dl_non_contending = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2184,6 +2185,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
|
||||
|
||||
RB_CLEAR_NODE(&p->dl.rb_node);
|
||||
init_dl_task_timer(&p->dl);
|
||||
init_dl_inactive_task_timer(&p->dl);
|
||||
__dl_clear_params(p);
|
||||
|
||||
INIT_LIST_HEAD(&p->rt.run_list);
|
||||
@ -2506,6 +2508,7 @@ static int dl_overflow(struct task_struct *p, int policy,
|
||||
!__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
|
||||
__dl_clear(dl_b, p->dl.dl_bw);
|
||||
__dl_add(dl_b, new_bw);
|
||||
dl_change_utilization(p, new_bw);
|
||||
err = 0;
|
||||
} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
|
||||
__dl_clear(dl_b, p->dl.dl_bw);
|
||||
|
@ -65,6 +65,161 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
||||
dl_rq->running_bw = 0;
|
||||
}
|
||||
|
||||
void dl_change_utilization(struct task_struct *p, u64 new_bw)
|
||||
{
|
||||
if (task_on_rq_queued(p))
|
||||
return;
|
||||
|
||||
if (!p->dl.dl_non_contending)
|
||||
return;
|
||||
|
||||
sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
}
|
||||
|
||||
/*
|
||||
* The utilization of a task cannot be immediately removed from
|
||||
* the rq active utilization (running_bw) when the task blocks.
|
||||
* Instead, we have to wait for the so called "0-lag time".
|
||||
*
|
||||
* If a task blocks before the "0-lag time", a timer (the inactive
|
||||
* timer) is armed, and running_bw is decreased when the timer
|
||||
* fires.
|
||||
*
|
||||
* If the task wakes up again before the inactive timer fires,
|
||||
* the timer is cancelled, whereas if the task wakes up after the
|
||||
* inactive timer fired (and running_bw has been decreased) the
|
||||
* task's utilization has to be added to running_bw again.
|
||||
* A flag in the deadline scheduling entity (dl_non_contending)
|
||||
* is used to avoid race conditions between the inactive timer handler
|
||||
* and task wakeups.
|
||||
*
|
||||
* The following diagram shows how running_bw is updated. A task is
|
||||
* "ACTIVE" when its utilization contributes to running_bw; an
|
||||
* "ACTIVE contending" task is in the TASK_RUNNING state, while an
|
||||
* "ACTIVE non contending" task is a blocked task for which the "0-lag time"
|
||||
* has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
|
||||
* time already passed, which does not contribute to running_bw anymore.
|
||||
* +------------------+
|
||||
* wakeup | ACTIVE |
|
||||
* +------------------>+ contending |
|
||||
* | add_running_bw | |
|
||||
* | +----+------+------+
|
||||
* | | ^
|
||||
* | dequeue | |
|
||||
* +--------+-------+ | |
|
||||
* | | t >= 0-lag | | wakeup
|
||||
* | INACTIVE |<---------------+ |
|
||||
* | | sub_running_bw | |
|
||||
* +--------+-------+ | |
|
||||
* ^ | |
|
||||
* | t < 0-lag | |
|
||||
* | | |
|
||||
* | V |
|
||||
* | +----+------+------+
|
||||
* | sub_running_bw | ACTIVE |
|
||||
* +-------------------+ |
|
||||
* inactive timer | non contending |
|
||||
* fired +------------------+
|
||||
*
|
||||
* The task_non_contending() function is invoked when a task
|
||||
* blocks, and checks if the 0-lag time already passed or
|
||||
* not (in the first case, it directly updates running_bw;
|
||||
* in the second case, it arms the inactive timer).
|
||||
*
|
||||
* The task_contending() function is invoked when a task wakes
|
||||
* up, and checks if the task is still in the "ACTIVE non contending"
|
||||
* state or not (in the second case, it updates running_bw).
|
||||
*/
|
||||
static void task_non_contending(struct task_struct *p)
|
||||
{
|
||||
struct sched_dl_entity *dl_se = &p->dl;
|
||||
struct hrtimer *timer = &dl_se->inactive_timer;
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
struct rq *rq = rq_of_dl_rq(dl_rq);
|
||||
s64 zerolag_time;
|
||||
|
||||
/*
|
||||
* If this is a non-deadline task that has been boosted,
|
||||
* do nothing
|
||||
*/
|
||||
if (dl_se->dl_runtime == 0)
|
||||
return;
|
||||
|
||||
WARN_ON(hrtimer_active(&dl_se->inactive_timer));
|
||||
WARN_ON(dl_se->dl_non_contending);
|
||||
|
||||
zerolag_time = dl_se->deadline -
|
||||
div64_long((dl_se->runtime * dl_se->dl_period),
|
||||
dl_se->dl_runtime);
|
||||
|
||||
/*
|
||||
* Using relative times instead of the absolute "0-lag time"
|
||||
* allows to simplify the code
|
||||
*/
|
||||
zerolag_time -= rq_clock(rq);
|
||||
|
||||
/*
|
||||
* If the "0-lag time" already passed, decrease the active
|
||||
* utilization now, instead of starting a timer
|
||||
*/
|
||||
if (zerolag_time < 0) {
|
||||
if (dl_task(p))
|
||||
sub_running_bw(dl_se->dl_bw, dl_rq);
|
||||
if (!dl_task(p) || p->state == TASK_DEAD)
|
||||
__dl_clear_params(p);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
dl_se->dl_non_contending = 1;
|
||||
get_task_struct(p);
|
||||
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
|
||||
}
|
||||
|
||||
static void task_contending(struct sched_dl_entity *dl_se)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
|
||||
/*
|
||||
* If this is a non-deadline task that has been boosted,
|
||||
* do nothing
|
||||
*/
|
||||
if (dl_se->dl_runtime == 0)
|
||||
return;
|
||||
|
||||
if (dl_se->dl_non_contending) {
|
||||
dl_se->dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
|
||||
put_task_struct(dl_task_of(dl_se));
|
||||
} else {
|
||||
/*
|
||||
* Since "dl_non_contending" is not set, the
|
||||
* task's utilization has already been removed from
|
||||
* active utilization (either when the task blocked,
|
||||
* when the "inactive timer" fired).
|
||||
* So, add it back.
|
||||
*/
|
||||
add_running_bw(dl_se->dl_bw, dl_rq);
|
||||
}
|
||||
}
|
||||
|
||||
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
|
||||
{
|
||||
struct sched_dl_entity *dl_se = &p->dl;
|
||||
@ -617,10 +772,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
|
||||
* The task might have changed its scheduling policy to something
|
||||
* different than SCHED_DEADLINE (through switched_from_dl()).
|
||||
*/
|
||||
if (!dl_task(p)) {
|
||||
__dl_clear_params(p);
|
||||
if (!dl_task(p))
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
/*
|
||||
* The task might have been boosted by someone else and might be in the
|
||||
@ -839,6 +992,49 @@ throttle:
|
||||
}
|
||||
}
|
||||
|
||||
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
|
||||
{
|
||||
struct sched_dl_entity *dl_se = container_of(timer,
|
||||
struct sched_dl_entity,
|
||||
inactive_timer);
|
||||
struct task_struct *p = dl_task_of(dl_se);
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
rq = task_rq_lock(p, &rf);
|
||||
|
||||
if (!dl_task(p) || p->state == TASK_DEAD) {
|
||||
if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
|
||||
sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
|
||||
dl_se->dl_non_contending = 0;
|
||||
}
|
||||
__dl_clear_params(p);
|
||||
|
||||
goto unlock;
|
||||
}
|
||||
if (dl_se->dl_non_contending == 0)
|
||||
goto unlock;
|
||||
|
||||
sched_clock_tick();
|
||||
update_rq_clock(rq);
|
||||
|
||||
sub_running_bw(dl_se->dl_bw, &rq->dl);
|
||||
dl_se->dl_non_contending = 0;
|
||||
unlock:
|
||||
task_rq_unlock(rq, p, &rf);
|
||||
put_task_struct(p);
|
||||
|
||||
return HRTIMER_NORESTART;
|
||||
}
|
||||
|
||||
void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
|
||||
{
|
||||
struct hrtimer *timer = &dl_se->inactive_timer;
|
||||
|
||||
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
timer->function = inactive_task_timer;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
|
||||
@ -971,9 +1167,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
|
||||
* we want a replenishment of its runtime.
|
||||
*/
|
||||
if (flags & ENQUEUE_WAKEUP) {
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
|
||||
add_running_bw(dl_se->dl_bw, dl_rq);
|
||||
task_contending(dl_se);
|
||||
update_dl_entity(dl_se, pi_se);
|
||||
} else if (flags & ENQUEUE_REPLENISH) {
|
||||
replenish_dl_entity(dl_se, pi_se);
|
||||
@ -1042,7 +1236,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
* add_running_bw().
|
||||
*/
|
||||
if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
|
||||
add_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
if (flags & ENQUEUE_WAKEUP)
|
||||
task_contending(&p->dl);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1067,7 +1263,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
|
||||
/*
|
||||
* This check allows to decrease the active utilization in two cases:
|
||||
* This check allows to start the inactive timer (or to immediately
|
||||
* decrease the active utilization, if needed) in two cases:
|
||||
* when the task blocks and when it is terminating
|
||||
* (p->state == TASK_DEAD). We can handle the two cases in the same
|
||||
* way, because from GRUB's point of view the same thing is happening
|
||||
@ -1075,7 +1272,7 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
||||
* or "inactive")
|
||||
*/
|
||||
if (flags & DEQUEUE_SLEEP)
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
task_non_contending(p);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1153,6 +1350,35 @@ out:
|
||||
return cpu;
|
||||
}
|
||||
|
||||
static void migrate_task_rq_dl(struct task_struct *p)
|
||||
{
|
||||
struct rq *rq;
|
||||
|
||||
if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
|
||||
return;
|
||||
|
||||
rq = task_rq(p);
|
||||
/*
|
||||
* Since p->state == TASK_WAKING, set_task_cpu() has been called
|
||||
* from try_to_wake_up(). Hence, p->pi_lock is locked, but
|
||||
* rq->lock is not... So, lock it
|
||||
*/
|
||||
raw_spin_lock(&rq->lock);
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
/*
|
||||
@ -1794,13 +2020,23 @@ void __init init_sched_dl_class(void)
|
||||
static void switched_from_dl(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
/*
|
||||
* Start the deadline timer; if we switch back to dl before this we'll
|
||||
* continue consuming our current CBS slice. If we stay outside of
|
||||
* SCHED_DEADLINE until the deadline passes, the timer will reset the
|
||||
* task.
|
||||
* task_non_contending() can start the "inactive timer" (if the 0-lag
|
||||
* time is in the future). If the task switches back to dl before
|
||||
* the "inactive timer" fires, it can continue to consume its current
|
||||
* runtime using its current deadline. If it stays outside of
|
||||
* SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
|
||||
* will reset the task parameters.
|
||||
*/
|
||||
if (!start_dl_timer(p))
|
||||
__dl_clear_params(p);
|
||||
if (task_on_rq_queued(p) && p->dl.dl_runtime)
|
||||
task_non_contending(p);
|
||||
|
||||
/*
|
||||
* We cannot use inactive_task_timer() to invoke sub_running_bw()
|
||||
* at the 0-lag time, because the task could have been migrated
|
||||
* while SCHED_OTHER in the meanwhile.
|
||||
*/
|
||||
if (p->dl.dl_non_contending)
|
||||
p->dl.dl_non_contending = 0;
|
||||
|
||||
/*
|
||||
* Since this might be the only -deadline task on the rq,
|
||||
@ -1819,6 +2055,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
|
||||
*/
|
||||
static void switched_to_dl(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
|
||||
/* If p is not queued we will update its parameters at next wakeup. */
|
||||
if (!task_on_rq_queued(p))
|
||||
@ -1893,6 +2131,7 @@ const struct sched_class dl_sched_class = {
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
.select_task_rq = select_task_rq_dl,
|
||||
.migrate_task_rq = migrate_task_rq_dl,
|
||||
.set_cpus_allowed = set_cpus_allowed_dl,
|
||||
.rq_online = rq_online_dl,
|
||||
.rq_offline = rq_offline_dl,
|
||||
|
@ -244,6 +244,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
|
||||
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
|
||||
}
|
||||
|
||||
void dl_change_utilization(struct task_struct *p, u64 new_bw);
|
||||
extern void init_dl_bw(struct dl_bw *dl_b);
|
||||
|
||||
#ifdef CONFIG_CGROUP_SCHED
|
||||
@ -1493,6 +1494,7 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime
|
||||
extern struct dl_bandwidth def_dl_bandwidth;
|
||||
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
|
||||
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
|
||||
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
|
||||
|
||||
unsigned long to_ratio(u64 period, u64 runtime);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user