mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 11:00:52 +00:00
drm/amd/powerplay: Mark functions of ppevvmath.h static
This introduces some warnings due to unused functions, that are deleted in the following commit. Signed-off-by: Nils Wallménius <nils.wallmenius@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
parent
a37cfa8be2
commit
21039ac388
@ -50,55 +50,55 @@ typedef union _fInt {
|
||||
* Function Declarations
|
||||
* -------------------------------------------------------------------------------
|
||||
*/
|
||||
fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
|
||||
fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
|
||||
fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
|
||||
int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
|
||||
static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
|
||||
static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
|
||||
static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
|
||||
static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
|
||||
|
||||
fInt fNegate(fInt); /* Returns -1 * input fInt value */
|
||||
fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
|
||||
fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
|
||||
fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
|
||||
fInt fDivide (fInt A, fInt B); /* Returns A/B */
|
||||
fInt fGetSquare(fInt); /* Returns the square of a fInt number */
|
||||
fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
|
||||
static fInt fNegate(fInt); /* Returns -1 * input fInt value */
|
||||
static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
|
||||
static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
|
||||
static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
|
||||
static fInt fDivide (fInt A, fInt B); /* Returns A/B */
|
||||
static fInt fGetSquare(fInt); /* Returns the square of a fInt number */
|
||||
static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
|
||||
|
||||
int uAbs(int); /* Returns the Absolute value of the Int */
|
||||
fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
|
||||
int uPow(int base, int exponent); /* Returns base^exponent an INT */
|
||||
static int uAbs(int); /* Returns the Absolute value of the Int */
|
||||
static fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
|
||||
static int uPow(int base, int exponent); /* Returns base^exponent an INT */
|
||||
|
||||
void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
|
||||
bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
|
||||
bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
|
||||
static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
|
||||
static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
|
||||
static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
|
||||
|
||||
fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
|
||||
fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
|
||||
static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
|
||||
static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
|
||||
|
||||
/* Fuse decoding functions
|
||||
* -------------------------------------------------------------------------------------
|
||||
*/
|
||||
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
|
||||
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
|
||||
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
|
||||
static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
|
||||
static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
|
||||
static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
|
||||
|
||||
/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
|
||||
* -------------------------------------------------------------------------------------
|
||||
* Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
|
||||
*/
|
||||
fInt Add (int, int); /* Add two INTs and return Sum as FINT */
|
||||
fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
|
||||
fInt Divide (int, int); /* You get the idea... */
|
||||
fInt fNegate(fInt);
|
||||
static fInt Add (int, int); /* Add two INTs and return Sum as FINT */
|
||||
static fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
|
||||
static fInt Divide (int, int); /* You get the idea... */
|
||||
static fInt fNegate(fInt);
|
||||
|
||||
int uGetScaledDecimal (fInt); /* Internal function */
|
||||
int GetReal (fInt A); /* Internal function */
|
||||
static int uGetScaledDecimal (fInt); /* Internal function */
|
||||
static int GetReal (fInt A); /* Internal function */
|
||||
|
||||
/* Future Additions and Incomplete Functions
|
||||
* -------------------------------------------------------------------------------------
|
||||
*/
|
||||
int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
|
||||
/* Let us say we have 2.126 but can only handle 2 decimal points. We could */
|
||||
/* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
|
||||
static int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
|
||||
/* Let us say we have 2.126 but can only handle 2 decimal points. We could */
|
||||
/* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
|
||||
|
||||
/* -------------------------------------------------------------------------------------
|
||||
* TROUBLESHOOTING INFORMATION
|
||||
@ -115,7 +115,7 @@ int GetRoundedValue(fInt); /* Incomplete function - Usef
|
||||
* START OF CODE
|
||||
* -------------------------------------------------------------------------------------
|
||||
*/
|
||||
fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
|
||||
static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
|
||||
{
|
||||
uint32_t i;
|
||||
bool bNegated = false;
|
||||
@ -154,7 +154,7 @@ fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
|
||||
return solution;
|
||||
}
|
||||
|
||||
fInt fNaturalLog(fInt value)
|
||||
static fInt fNaturalLog(fInt value)
|
||||
{
|
||||
uint32_t i;
|
||||
fInt upper_bound = Divide(8, 1000);
|
||||
@ -179,7 +179,7 @@ fInt fNaturalLog(fInt value)
|
||||
return (fAdd(solution, error_term));
|
||||
}
|
||||
|
||||
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
|
||||
static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
|
||||
{
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
@ -194,7 +194,7 @@ fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t b
|
||||
}
|
||||
|
||||
|
||||
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
|
||||
static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
|
||||
{
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
@ -212,7 +212,7 @@ fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint
|
||||
return f_decoded_value;
|
||||
}
|
||||
|
||||
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
|
||||
static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
|
||||
{
|
||||
fInt fLeakage;
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
@ -225,7 +225,7 @@ fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min,
|
||||
return fLeakage;
|
||||
}
|
||||
|
||||
fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
|
||||
static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
|
||||
{
|
||||
fInt temp;
|
||||
|
||||
@ -237,13 +237,13 @@ fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to m
|
||||
return temp;
|
||||
}
|
||||
|
||||
fInt fNegate(fInt X)
|
||||
static fInt fNegate(fInt X)
|
||||
{
|
||||
fInt CONSTANT_NEGONE = ConvertToFraction(-1);
|
||||
return (fMultiply(X, CONSTANT_NEGONE));
|
||||
}
|
||||
|
||||
fInt Convert_ULONG_ToFraction(uint32_t X)
|
||||
static fInt Convert_ULONG_ToFraction(uint32_t X)
|
||||
{
|
||||
fInt temp;
|
||||
|
||||
@ -255,7 +255,7 @@ fInt Convert_ULONG_ToFraction(uint32_t X)
|
||||
return temp;
|
||||
}
|
||||
|
||||
fInt GetScaledFraction(int X, int factor)
|
||||
static fInt GetScaledFraction(int X, int factor)
|
||||
{
|
||||
int times_shifted, factor_shifted;
|
||||
bool bNEGATED;
|
||||
@ -304,7 +304,7 @@ fInt GetScaledFraction(int X, int factor)
|
||||
}
|
||||
|
||||
/* Addition using two fInts */
|
||||
fInt fAdd (fInt X, fInt Y)
|
||||
static fInt fAdd (fInt X, fInt Y)
|
||||
{
|
||||
fInt Sum;
|
||||
|
||||
@ -314,7 +314,7 @@ fInt fAdd (fInt X, fInt Y)
|
||||
}
|
||||
|
||||
/* Addition using two fInts */
|
||||
fInt fSubtract (fInt X, fInt Y)
|
||||
static fInt fSubtract (fInt X, fInt Y)
|
||||
{
|
||||
fInt Difference;
|
||||
|
||||
@ -323,7 +323,7 @@ fInt fSubtract (fInt X, fInt Y)
|
||||
return Difference;
|
||||
}
|
||||
|
||||
bool Equal(fInt A, fInt B)
|
||||
static bool Equal(fInt A, fInt B)
|
||||
{
|
||||
if (A.full == B.full)
|
||||
return true;
|
||||
@ -331,7 +331,7 @@ bool Equal(fInt A, fInt B)
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GreaterThan(fInt A, fInt B)
|
||||
static bool GreaterThan(fInt A, fInt B)
|
||||
{
|
||||
if (A.full > B.full)
|
||||
return true;
|
||||
@ -339,7 +339,7 @@ bool GreaterThan(fInt A, fInt B)
|
||||
return false;
|
||||
}
|
||||
|
||||
fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
|
||||
static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
|
||||
{
|
||||
fInt Product;
|
||||
int64_t tempProduct;
|
||||
@ -363,7 +363,7 @@ fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
|
||||
return Product;
|
||||
}
|
||||
|
||||
fInt fDivide (fInt X, fInt Y)
|
||||
static fInt fDivide (fInt X, fInt Y)
|
||||
{
|
||||
fInt fZERO, fQuotient;
|
||||
int64_t longlongX, longlongY;
|
||||
@ -384,7 +384,7 @@ fInt fDivide (fInt X, fInt Y)
|
||||
return fQuotient;
|
||||
}
|
||||
|
||||
int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
|
||||
static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
|
||||
{
|
||||
fInt fullNumber, scaledDecimal, scaledReal;
|
||||
|
||||
@ -397,13 +397,13 @@ int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to ch
|
||||
return fullNumber.full;
|
||||
}
|
||||
|
||||
fInt fGetSquare(fInt A)
|
||||
static fInt fGetSquare(fInt A)
|
||||
{
|
||||
return fMultiply(A,A);
|
||||
}
|
||||
|
||||
/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
|
||||
fInt fSqrt(fInt num)
|
||||
static fInt fSqrt(fInt num)
|
||||
{
|
||||
fInt F_divide_Fprime, Fprime;
|
||||
fInt test;
|
||||
@ -460,7 +460,7 @@ fInt fSqrt(fInt num)
|
||||
return (x_new);
|
||||
}
|
||||
|
||||
void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
||||
static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
||||
{
|
||||
fInt *pRoots = &Roots[0];
|
||||
fInt temp, root_first, root_second;
|
||||
@ -499,7 +499,7 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
||||
*/
|
||||
|
||||
/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
|
||||
fInt Add (int X, int Y)
|
||||
static fInt Add (int X, int Y)
|
||||
{
|
||||
fInt A, B, Sum;
|
||||
|
||||
@ -512,13 +512,13 @@ fInt Add (int X, int Y)
|
||||
}
|
||||
|
||||
/* Conversion Functions */
|
||||
int GetReal (fInt A)
|
||||
static int GetReal (fInt A)
|
||||
{
|
||||
return (A.full >> SHIFT_AMOUNT);
|
||||
}
|
||||
|
||||
/* Temporarily Disabled */
|
||||
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
||||
static int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
||||
{
|
||||
/* ROUNDING TEMPORARLY DISABLED
|
||||
int temp = A.full;
|
||||
@ -531,7 +531,7 @@ int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
||||
return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
|
||||
}
|
||||
|
||||
fInt Multiply (int X, int Y)
|
||||
static fInt Multiply (int X, int Y)
|
||||
{
|
||||
fInt A, B, Product;
|
||||
|
||||
@ -543,7 +543,7 @@ fInt Multiply (int X, int Y)
|
||||
return Product;
|
||||
}
|
||||
|
||||
fInt Divide (int X, int Y)
|
||||
static fInt Divide (int X, int Y)
|
||||
{
|
||||
fInt A, B, Quotient;
|
||||
|
||||
@ -555,7 +555,7 @@ fInt Divide (int X, int Y)
|
||||
return Quotient;
|
||||
}
|
||||
|
||||
int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
|
||||
static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
|
||||
{
|
||||
int dec[PRECISION];
|
||||
int i, scaledDecimal = 0, tmp = A.partial.decimal;
|
||||
@ -570,7 +570,7 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege
|
||||
return scaledDecimal;
|
||||
}
|
||||
|
||||
int uPow(int base, int power)
|
||||
static int uPow(int base, int power)
|
||||
{
|
||||
if (power == 0)
|
||||
return 1;
|
||||
@ -578,7 +578,7 @@ int uPow(int base, int power)
|
||||
return (base)*uPow(base, power - 1);
|
||||
}
|
||||
|
||||
fInt fAbs(fInt A)
|
||||
static fInt fAbs(fInt A)
|
||||
{
|
||||
if (A.partial.real < 0)
|
||||
return (fMultiply(A, ConvertToFraction(-1)));
|
||||
@ -586,7 +586,7 @@ fInt fAbs(fInt A)
|
||||
return A;
|
||||
}
|
||||
|
||||
int uAbs(int X)
|
||||
static int uAbs(int X)
|
||||
{
|
||||
if (X < 0)
|
||||
return (X * -1);
|
||||
@ -594,7 +594,7 @@ int uAbs(int X)
|
||||
return X;
|
||||
}
|
||||
|
||||
fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
|
||||
static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
|
||||
{
|
||||
fInt solution;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user