mm: free compound page with correct order

Compound page should be freed by put_page() or free_pages() with correct
order.  Not doing so will cause tail pages leaked.

The compound order can be obtained by compound_order() or use
HPAGE_PMD_ORDER in our case.  Some people would argue the latter is
faster but I prefer the former which is more general.

This bug was observed not just on our servers (the worst case we saw is
11G leaked on a 48G machine) but also on our workstations running Ubuntu
based distro.

  $ cat /proc/vmstat  | grep thp_zero_page_alloc
  thp_zero_page_alloc 55
  thp_zero_page_alloc_failed 0

This means there is (thp_zero_page_alloc - 1) * (2M - 4K) memory leaked.

Fixes: 97ae17497e ("thp: implement refcounting for huge zero page")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: <stable@vger.kernel.org>	[3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Yu Zhao 2014-10-29 14:50:26 -07:00 committed by Linus Torvalds
parent f601de2044
commit 5ddacbe92b

View File

@ -200,7 +200,7 @@ retry:
preempt_disable();
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
preempt_enable();
__free_page(zero_page);
__free_pages(zero_page, compound_order(zero_page));
goto retry;
}
@ -232,7 +232,7 @@ static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
__free_page(zero_page);
__free_pages(zero_page, compound_order(zero_page));
return HPAGE_PMD_NR;
}