mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 13:00:35 +00:00
xfs: add helpers to collect and sift btree block pointers during repair
Add some helpers to assemble a list of fs block extents. Generally, repair functions will iterate the rmapbt to make a list (1) of all extents owned by the nominal owner of the metadata structure; then they will iterate all other structures with the same rmap owner to make a list (2) of active blocks; and finally we have a subtraction function to subtract all the blocks in (2) from (1), with the result that (1) is now a list of blocks that were owned by the old btree and must be disposed. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
This commit is contained in:
parent
73d6b42aa4
commit
64a39d876e
@ -368,3 +368,220 @@ xfs_repair_init_btblock(
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reconstructing per-AG Btrees
|
||||
*
|
||||
* When a space btree is corrupt, we don't bother trying to fix it. Instead,
|
||||
* we scan secondary space metadata to derive the records that should be in
|
||||
* the damaged btree, initialize a fresh btree root, and insert the records.
|
||||
* Note that for rebuilding the rmapbt we scan all the primary data to
|
||||
* generate the new records.
|
||||
*
|
||||
* However, that leaves the matter of removing all the metadata describing the
|
||||
* old broken structure. For primary metadata we use the rmap data to collect
|
||||
* every extent with a matching rmap owner (exlist); we then iterate all other
|
||||
* metadata structures with the same rmap owner to collect the extents that
|
||||
* cannot be removed (sublist). We then subtract sublist from exlist to
|
||||
* derive the blocks that were used by the old btree. These blocks can be
|
||||
* reaped.
|
||||
*
|
||||
* For rmapbt reconstructions we must use different tactics for extent
|
||||
* collection. First we iterate all primary metadata (this excludes the old
|
||||
* rmapbt, obviously) to generate new rmap records. The gaps in the rmap
|
||||
* records are collected as exlist. The bnobt records are collected as
|
||||
* sublist. As with the other btrees we subtract sublist from exlist, and the
|
||||
* result (since the rmapbt lives in the free space) are the blocks from the
|
||||
* old rmapbt.
|
||||
*/
|
||||
|
||||
/* Collect a dead btree extent for later disposal. */
|
||||
int
|
||||
xfs_repair_collect_btree_extent(
|
||||
struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *exlist,
|
||||
xfs_fsblock_t fsbno,
|
||||
xfs_extlen_t len)
|
||||
{
|
||||
struct xfs_repair_extent *rex;
|
||||
|
||||
trace_xfs_repair_collect_btree_extent(sc->mp,
|
||||
XFS_FSB_TO_AGNO(sc->mp, fsbno),
|
||||
XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
|
||||
|
||||
rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
|
||||
if (!rex)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&rex->list);
|
||||
rex->fsbno = fsbno;
|
||||
rex->len = len;
|
||||
list_add_tail(&rex->list, &exlist->list);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* An error happened during the rebuild so the transaction will be cancelled.
|
||||
* The fs will shut down, and the administrator has to unmount and run repair.
|
||||
* Therefore, free all the memory associated with the list so we can die.
|
||||
*/
|
||||
void
|
||||
xfs_repair_cancel_btree_extents(
|
||||
struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *exlist)
|
||||
{
|
||||
struct xfs_repair_extent *rex;
|
||||
struct xfs_repair_extent *n;
|
||||
|
||||
for_each_xfs_repair_extent_safe(rex, n, exlist) {
|
||||
list_del(&rex->list);
|
||||
kmem_free(rex);
|
||||
}
|
||||
}
|
||||
|
||||
/* Compare two btree extents. */
|
||||
static int
|
||||
xfs_repair_btree_extent_cmp(
|
||||
void *priv,
|
||||
struct list_head *a,
|
||||
struct list_head *b)
|
||||
{
|
||||
struct xfs_repair_extent *ap;
|
||||
struct xfs_repair_extent *bp;
|
||||
|
||||
ap = container_of(a, struct xfs_repair_extent, list);
|
||||
bp = container_of(b, struct xfs_repair_extent, list);
|
||||
|
||||
if (ap->fsbno > bp->fsbno)
|
||||
return 1;
|
||||
if (ap->fsbno < bp->fsbno)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all the blocks mentioned in @sublist from the extents in @exlist.
|
||||
*
|
||||
* The intent is that callers will iterate the rmapbt for all of its records
|
||||
* for a given owner to generate @exlist; and iterate all the blocks of the
|
||||
* metadata structures that are not being rebuilt and have the same rmapbt
|
||||
* owner to generate @sublist. This routine subtracts all the extents
|
||||
* mentioned in sublist from all the extents linked in @exlist, which leaves
|
||||
* @exlist as the list of blocks that are not accounted for, which we assume
|
||||
* are the dead blocks of the old metadata structure. The blocks mentioned in
|
||||
* @exlist can be reaped.
|
||||
*/
|
||||
#define LEFT_ALIGNED (1 << 0)
|
||||
#define RIGHT_ALIGNED (1 << 1)
|
||||
int
|
||||
xfs_repair_subtract_extents(
|
||||
struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *exlist,
|
||||
struct xfs_repair_extent_list *sublist)
|
||||
{
|
||||
struct list_head *lp;
|
||||
struct xfs_repair_extent *ex;
|
||||
struct xfs_repair_extent *newex;
|
||||
struct xfs_repair_extent *subex;
|
||||
xfs_fsblock_t sub_fsb;
|
||||
xfs_extlen_t sub_len;
|
||||
int state;
|
||||
int error = 0;
|
||||
|
||||
if (list_empty(&exlist->list) || list_empty(&sublist->list))
|
||||
return 0;
|
||||
ASSERT(!list_empty(&sublist->list));
|
||||
|
||||
list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
|
||||
list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);
|
||||
|
||||
/*
|
||||
* Now that we've sorted both lists, we iterate exlist once, rolling
|
||||
* forward through sublist and/or exlist as necessary until we find an
|
||||
* overlap or reach the end of either list. We do not reset lp to the
|
||||
* head of exlist nor do we reset subex to the head of sublist. The
|
||||
* list traversal is similar to merge sort, but we're deleting
|
||||
* instead. In this manner we avoid O(n^2) operations.
|
||||
*/
|
||||
subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
|
||||
list);
|
||||
lp = exlist->list.next;
|
||||
while (lp != &exlist->list) {
|
||||
ex = list_entry(lp, struct xfs_repair_extent, list);
|
||||
|
||||
/*
|
||||
* Advance subex and/or ex until we find a pair that
|
||||
* intersect or we run out of extents.
|
||||
*/
|
||||
while (subex->fsbno + subex->len <= ex->fsbno) {
|
||||
if (list_is_last(&subex->list, &sublist->list))
|
||||
goto out;
|
||||
subex = list_next_entry(subex, list);
|
||||
}
|
||||
if (subex->fsbno >= ex->fsbno + ex->len) {
|
||||
lp = lp->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* trim subex to fit the extent we have */
|
||||
sub_fsb = subex->fsbno;
|
||||
sub_len = subex->len;
|
||||
if (subex->fsbno < ex->fsbno) {
|
||||
sub_len -= ex->fsbno - subex->fsbno;
|
||||
sub_fsb = ex->fsbno;
|
||||
}
|
||||
if (sub_len > ex->len)
|
||||
sub_len = ex->len;
|
||||
|
||||
state = 0;
|
||||
if (sub_fsb == ex->fsbno)
|
||||
state |= LEFT_ALIGNED;
|
||||
if (sub_fsb + sub_len == ex->fsbno + ex->len)
|
||||
state |= RIGHT_ALIGNED;
|
||||
switch (state) {
|
||||
case LEFT_ALIGNED:
|
||||
/* Coincides with only the left. */
|
||||
ex->fsbno += sub_len;
|
||||
ex->len -= sub_len;
|
||||
break;
|
||||
case RIGHT_ALIGNED:
|
||||
/* Coincides with only the right. */
|
||||
ex->len -= sub_len;
|
||||
lp = lp->next;
|
||||
break;
|
||||
case LEFT_ALIGNED | RIGHT_ALIGNED:
|
||||
/* Total overlap, just delete ex. */
|
||||
lp = lp->next;
|
||||
list_del(&ex->list);
|
||||
kmem_free(ex);
|
||||
break;
|
||||
case 0:
|
||||
/*
|
||||
* Deleting from the middle: add the new right extent
|
||||
* and then shrink the left extent.
|
||||
*/
|
||||
newex = kmem_alloc(sizeof(struct xfs_repair_extent),
|
||||
KM_MAYFAIL);
|
||||
if (!newex) {
|
||||
error = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
INIT_LIST_HEAD(&newex->list);
|
||||
newex->fsbno = sub_fsb + sub_len;
|
||||
newex->len = ex->fsbno + ex->len - newex->fsbno;
|
||||
list_add(&newex->list, &ex->list);
|
||||
ex->len = sub_fsb - ex->fsbno;
|
||||
lp = lp->next;
|
||||
break;
|
||||
default:
|
||||
ASSERT(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
out:
|
||||
return error;
|
||||
}
|
||||
#undef LEFT_ALIGNED
|
||||
#undef RIGHT_ALIGNED
|
||||
|
@ -43,6 +43,34 @@ int xfs_repair_init_btblock(struct xfs_scrub_context *sc, xfs_fsblock_t fsb,
|
||||
struct xfs_buf **bpp, xfs_btnum_t btnum,
|
||||
const struct xfs_buf_ops *ops);
|
||||
|
||||
struct xfs_repair_extent {
|
||||
struct list_head list;
|
||||
xfs_fsblock_t fsbno;
|
||||
xfs_extlen_t len;
|
||||
};
|
||||
|
||||
struct xfs_repair_extent_list {
|
||||
struct list_head list;
|
||||
};
|
||||
|
||||
static inline void
|
||||
xfs_repair_init_extent_list(
|
||||
struct xfs_repair_extent_list *exlist)
|
||||
{
|
||||
INIT_LIST_HEAD(&exlist->list);
|
||||
}
|
||||
|
||||
#define for_each_xfs_repair_extent_safe(rbe, n, exlist) \
|
||||
list_for_each_entry_safe((rbe), (n), &(exlist)->list, list)
|
||||
int xfs_repair_collect_btree_extent(struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *btlist, xfs_fsblock_t fsbno,
|
||||
xfs_extlen_t len);
|
||||
void xfs_repair_cancel_btree_extents(struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *btlist);
|
||||
int xfs_repair_subtract_extents(struct xfs_scrub_context *sc,
|
||||
struct xfs_repair_extent_list *exlist,
|
||||
struct xfs_repair_extent_list *sublist);
|
||||
|
||||
/* Metadata repairers */
|
||||
|
||||
int xfs_repair_probe(struct xfs_scrub_context *sc);
|
||||
|
Loading…
Reference in New Issue
Block a user