mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 20:58:33 +00:00
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc fixes from Ben Herrenschmidt: "Here's a few powerpc fixes for 3.9, mostly regressions (though not all from 3.9 merge window) that we've been hammering into shape over the last couple of weeks. They fix booting on Cell and G5 among other things (yes, we've been a bit sloppy with older machines this time around)." * 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc: Rename USER_ESID_BITS* to ESID_BITS* powerpc: Update kernel VSID range powerpc: Make VSID_BITS* dependency explicit powerpc: Make sure that we alays include CONFIG_BINFMT_ELF powerpc/ptrace: Fix brk.len used uninitialised powerpc: Fix -mcmodel=medium breakage in prom_init.c powerpc: Remove last traces of POWER4_ONLY powerpc: Fix cputable entry for 970MP rev 1.0 powerpc: Fix STAB initialization
This commit is contained in:
commit
a15cd063e1
@ -90,6 +90,7 @@ config GENERIC_GPIO
|
||||
config PPC
|
||||
bool
|
||||
default y
|
||||
select BINFMT_ELF
|
||||
select OF
|
||||
select OF_EARLY_FLATTREE
|
||||
select HAVE_FTRACE_MCOUNT_RECORD
|
||||
|
@ -343,17 +343,16 @@ extern void slb_set_size(u16 size);
|
||||
/*
|
||||
* VSID allocation (256MB segment)
|
||||
*
|
||||
* We first generate a 38-bit "proto-VSID". For kernel addresses this
|
||||
* is equal to the ESID | 1 << 37, for user addresses it is:
|
||||
* (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
|
||||
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
|
||||
* from mmu context id and effective segment id of the address.
|
||||
*
|
||||
* This splits the proto-VSID into the below range
|
||||
* 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
|
||||
* 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
|
||||
*
|
||||
* We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
|
||||
* That is, we assign half of the space to user processes and half
|
||||
* to the kernel.
|
||||
* For user processes max context id is limited to ((1ul << 19) - 5)
|
||||
* for kernel space, we use the top 4 context ids to map address as below
|
||||
* NOTE: each context only support 64TB now.
|
||||
* 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
||||
* 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
||||
* 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
||||
* 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
||||
*
|
||||
* The proto-VSIDs are then scrambled into real VSIDs with the
|
||||
* multiplicative hash:
|
||||
@ -363,41 +362,49 @@ extern void slb_set_size(u16 size);
|
||||
* VSID_MULTIPLIER is prime, so in particular it is
|
||||
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
|
||||
* Because the modulus is 2^n-1 we can compute it efficiently without
|
||||
* a divide or extra multiply (see below).
|
||||
* a divide or extra multiply (see below). The scramble function gives
|
||||
* robust scattering in the hash table (at least based on some initial
|
||||
* results).
|
||||
*
|
||||
* This scheme has several advantages over older methods:
|
||||
* We also consider VSID 0 special. We use VSID 0 for slb entries mapping
|
||||
* bad address. This enables us to consolidate bad address handling in
|
||||
* hash_page.
|
||||
*
|
||||
* - We have VSIDs allocated for every kernel address
|
||||
* (i.e. everything above 0xC000000000000000), except the very top
|
||||
* segment, which simplifies several things.
|
||||
*
|
||||
* - We allow for USER_ESID_BITS significant bits of ESID and
|
||||
* CONTEXT_BITS bits of context for user addresses.
|
||||
* i.e. 64T (46 bits) of address space for up to half a million contexts.
|
||||
*
|
||||
* - The scramble function gives robust scattering in the hash
|
||||
* table (at least based on some initial results). The previous
|
||||
* method was more susceptible to pathological cases giving excessive
|
||||
* hash collisions.
|
||||
* We also need to avoid the last segment of the last context, because that
|
||||
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
|
||||
* because of the modulo operation in vsid scramble. But the vmemmap
|
||||
* (which is what uses region 0xf) will never be close to 64TB in size
|
||||
* (it's 56 bytes per page of system memory).
|
||||
*/
|
||||
|
||||
#define CONTEXT_BITS 19
|
||||
#define ESID_BITS 18
|
||||
#define ESID_BITS_1T 6
|
||||
|
||||
/*
|
||||
* 256MB segment
|
||||
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
|
||||
* available for user + kernel mapping. The top 4 contexts are used for
|
||||
* kernel mapping. Each segment contains 2^28 bytes. Each
|
||||
* context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
|
||||
* (19 == 37 + 28 - 46).
|
||||
*/
|
||||
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
|
||||
|
||||
/*
|
||||
* This should be computed such that protovosid * vsid_mulitplier
|
||||
* doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
|
||||
*/
|
||||
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
|
||||
#define VSID_BITS_256M 38
|
||||
#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
|
||||
#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
|
||||
|
||||
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
|
||||
#define VSID_BITS_1T 26
|
||||
#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
|
||||
#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
|
||||
|
||||
#define CONTEXT_BITS 19
|
||||
#define USER_ESID_BITS 18
|
||||
#define USER_ESID_BITS_1T 6
|
||||
|
||||
#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
|
||||
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
|
||||
|
||||
/*
|
||||
* This macro generates asm code to compute the VSID scramble
|
||||
@ -421,7 +428,8 @@ extern void slb_set_size(u16 size);
|
||||
srdi rx,rt,VSID_BITS_##size; \
|
||||
clrldi rt,rt,(64-VSID_BITS_##size); \
|
||||
add rt,rt,rx; /* add high and low bits */ \
|
||||
/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
|
||||
/* NOTE: explanation based on VSID_BITS_##size = 36 \
|
||||
* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
|
||||
* 2^36-1+2^28-1. That in particular means that if r3 >= \
|
||||
* 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
|
||||
* the bit clear, r3 already has the answer we want, if it \
|
||||
@ -513,34 +521,6 @@ typedef struct {
|
||||
})
|
||||
#endif /* 1 */
|
||||
|
||||
/*
|
||||
* This is only valid for addresses >= PAGE_OFFSET
|
||||
* The proto-VSID space is divided into two class
|
||||
* User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
|
||||
* kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
|
||||
*
|
||||
* With KERNEL_START at 0xc000000000000000, the proto vsid for
|
||||
* the kernel ends up with 0xc00000000 (36 bits). With 64TB
|
||||
* support we need to have kernel proto-VSID in the
|
||||
* [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
|
||||
*/
|
||||
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
|
||||
{
|
||||
unsigned long proto_vsid;
|
||||
/*
|
||||
* We need to make sure proto_vsid for the kernel is
|
||||
* >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
|
||||
*/
|
||||
if (ssize == MMU_SEGSIZE_256M) {
|
||||
proto_vsid = ea >> SID_SHIFT;
|
||||
proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
|
||||
return vsid_scramble(proto_vsid, 256M);
|
||||
}
|
||||
proto_vsid = ea >> SID_SHIFT_1T;
|
||||
proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
|
||||
return vsid_scramble(proto_vsid, 1T);
|
||||
}
|
||||
|
||||
/* Returns the segment size indicator for a user address */
|
||||
static inline int user_segment_size(unsigned long addr)
|
||||
{
|
||||
@ -550,17 +530,41 @@ static inline int user_segment_size(unsigned long addr)
|
||||
return MMU_SEGSIZE_256M;
|
||||
}
|
||||
|
||||
/* This is only valid for user addresses (which are below 2^44) */
|
||||
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
|
||||
int ssize)
|
||||
{
|
||||
/*
|
||||
* Bad address. We return VSID 0 for that
|
||||
*/
|
||||
if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
|
||||
return 0;
|
||||
|
||||
if (ssize == MMU_SEGSIZE_256M)
|
||||
return vsid_scramble((context << USER_ESID_BITS)
|
||||
return vsid_scramble((context << ESID_BITS)
|
||||
| (ea >> SID_SHIFT), 256M);
|
||||
return vsid_scramble((context << USER_ESID_BITS_1T)
|
||||
return vsid_scramble((context << ESID_BITS_1T)
|
||||
| (ea >> SID_SHIFT_1T), 1T);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is only valid for addresses >= PAGE_OFFSET
|
||||
*
|
||||
* For kernel space, we use the top 4 context ids to map address as below
|
||||
* 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
||||
* 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
||||
* 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
||||
* 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
||||
*/
|
||||
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
|
||||
{
|
||||
unsigned long context;
|
||||
|
||||
/*
|
||||
* kernel take the top 4 context from the available range
|
||||
*/
|
||||
context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
|
||||
return get_vsid(context, ea, ssize);
|
||||
}
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
|
||||
|
@ -275,7 +275,7 @@ static struct cpu_spec __initdata cpu_specs[] = {
|
||||
.cpu_features = CPU_FTRS_PPC970,
|
||||
.cpu_user_features = COMMON_USER_POWER4 |
|
||||
PPC_FEATURE_HAS_ALTIVEC_COMP,
|
||||
.mmu_features = MMU_FTR_HPTE_TABLE,
|
||||
.mmu_features = MMU_FTRS_PPC970,
|
||||
.icache_bsize = 128,
|
||||
.dcache_bsize = 128,
|
||||
.num_pmcs = 8,
|
||||
|
@ -1452,20 +1452,36 @@ do_ste_alloc:
|
||||
_GLOBAL(do_stab_bolted)
|
||||
stw r9,PACA_EXSLB+EX_CCR(r13) /* save CR in exc. frame */
|
||||
std r11,PACA_EXSLB+EX_SRR0(r13) /* save SRR0 in exc. frame */
|
||||
mfspr r11,SPRN_DAR /* ea */
|
||||
|
||||
/*
|
||||
* check for bad kernel/user address
|
||||
* (ea & ~REGION_MASK) >= PGTABLE_RANGE
|
||||
*/
|
||||
rldicr. r9,r11,4,(63 - 46 - 4)
|
||||
li r9,0 /* VSID = 0 for bad address */
|
||||
bne- 0f
|
||||
|
||||
/*
|
||||
* Calculate VSID:
|
||||
* This is the kernel vsid, we take the top for context from
|
||||
* the range. context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1
|
||||
* Here we know that (ea >> 60) == 0xc
|
||||
*/
|
||||
lis r9,(MAX_USER_CONTEXT + 1)@ha
|
||||
addi r9,r9,(MAX_USER_CONTEXT + 1)@l
|
||||
|
||||
srdi r10,r11,SID_SHIFT
|
||||
rldimi r10,r9,ESID_BITS,0 /* proto vsid */
|
||||
ASM_VSID_SCRAMBLE(r10, r9, 256M)
|
||||
rldic r9,r10,12,16 /* r9 = vsid << 12 */
|
||||
|
||||
0:
|
||||
/* Hash to the primary group */
|
||||
ld r10,PACASTABVIRT(r13)
|
||||
mfspr r11,SPRN_DAR
|
||||
srdi r11,r11,28
|
||||
srdi r11,r11,SID_SHIFT
|
||||
rldimi r10,r11,7,52 /* r10 = first ste of the group */
|
||||
|
||||
/* Calculate VSID */
|
||||
/* This is a kernel address, so protovsid = ESID | 1 << 37 */
|
||||
li r9,0x1
|
||||
rldimi r11,r9,(CONTEXT_BITS + USER_ESID_BITS),0
|
||||
ASM_VSID_SCRAMBLE(r11, r9, 256M)
|
||||
rldic r9,r11,12,16 /* r9 = vsid << 12 */
|
||||
|
||||
/* Search the primary group for a free entry */
|
||||
1: ld r11,0(r10) /* Test valid bit of the current ste */
|
||||
andi. r11,r11,0x80
|
||||
|
@ -2832,11 +2832,13 @@ static void unreloc_toc(void)
|
||||
{
|
||||
}
|
||||
#else
|
||||
static void __reloc_toc(void *tocstart, unsigned long offset,
|
||||
unsigned long nr_entries)
|
||||
static void __reloc_toc(unsigned long offset, unsigned long nr_entries)
|
||||
{
|
||||
unsigned long i;
|
||||
unsigned long *toc_entry = (unsigned long *)tocstart;
|
||||
unsigned long *toc_entry;
|
||||
|
||||
/* Get the start of the TOC by using r2 directly. */
|
||||
asm volatile("addi %0,2,-0x8000" : "=b" (toc_entry));
|
||||
|
||||
for (i = 0; i < nr_entries; i++) {
|
||||
*toc_entry = *toc_entry + offset;
|
||||
@ -2850,8 +2852,7 @@ static void reloc_toc(void)
|
||||
unsigned long nr_entries =
|
||||
(__prom_init_toc_end - __prom_init_toc_start) / sizeof(long);
|
||||
|
||||
/* Need to add offset to get at __prom_init_toc_start */
|
||||
__reloc_toc(__prom_init_toc_start + offset, offset, nr_entries);
|
||||
__reloc_toc(offset, nr_entries);
|
||||
|
||||
mb();
|
||||
}
|
||||
@ -2864,8 +2865,7 @@ static void unreloc_toc(void)
|
||||
|
||||
mb();
|
||||
|
||||
/* __prom_init_toc_start has been relocated, no need to add offset */
|
||||
__reloc_toc(__prom_init_toc_start, -offset, nr_entries);
|
||||
__reloc_toc(-offset, nr_entries);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1428,6 +1428,7 @@ static long ppc_set_hwdebug(struct task_struct *child,
|
||||
|
||||
brk.address = bp_info->addr & ~7UL;
|
||||
brk.type = HW_BRK_TYPE_TRANSLATE;
|
||||
brk.len = 8;
|
||||
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
|
||||
brk.type |= HW_BRK_TYPE_READ;
|
||||
if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
|
||||
|
@ -326,8 +326,8 @@ int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
|
||||
vcpu3s->context_id[0] = err;
|
||||
|
||||
vcpu3s->proto_vsid_max = ((vcpu3s->context_id[0] + 1)
|
||||
<< USER_ESID_BITS) - 1;
|
||||
vcpu3s->proto_vsid_first = vcpu3s->context_id[0] << USER_ESID_BITS;
|
||||
<< ESID_BITS) - 1;
|
||||
vcpu3s->proto_vsid_first = vcpu3s->context_id[0] << ESID_BITS;
|
||||
vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
|
||||
|
||||
kvmppc_mmu_hpte_init(vcpu);
|
||||
|
@ -195,6 +195,11 @@ int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
|
||||
unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
|
||||
unsigned long tprot = prot;
|
||||
|
||||
/*
|
||||
* If we hit a bad address return error.
|
||||
*/
|
||||
if (!vsid)
|
||||
return -1;
|
||||
/* Make kernel text executable */
|
||||
if (overlaps_kernel_text(vaddr, vaddr + step))
|
||||
tprot &= ~HPTE_R_N;
|
||||
@ -759,6 +764,8 @@ void __init early_init_mmu(void)
|
||||
/* Initialize stab / SLB management */
|
||||
if (mmu_has_feature(MMU_FTR_SLB))
|
||||
slb_initialize();
|
||||
else
|
||||
stab_initialize(get_paca()->stab_real);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
@ -922,11 +929,6 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
|
||||
DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
|
||||
ea, access, trap);
|
||||
|
||||
if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
|
||||
DBG_LOW(" out of pgtable range !\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Get region & vsid */
|
||||
switch (REGION_ID(ea)) {
|
||||
case USER_REGION_ID:
|
||||
@ -957,6 +959,11 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
|
||||
}
|
||||
DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
|
||||
|
||||
/* Bad address. */
|
||||
if (!vsid) {
|
||||
DBG_LOW("Bad address!\n");
|
||||
return 1;
|
||||
}
|
||||
/* Get pgdir */
|
||||
pgdir = mm->pgd;
|
||||
if (pgdir == NULL)
|
||||
@ -1126,6 +1133,8 @@ void hash_preload(struct mm_struct *mm, unsigned long ea,
|
||||
/* Get VSID */
|
||||
ssize = user_segment_size(ea);
|
||||
vsid = get_vsid(mm->context.id, ea, ssize);
|
||||
if (!vsid)
|
||||
return;
|
||||
|
||||
/* Hash doesn't like irqs */
|
||||
local_irq_save(flags);
|
||||
@ -1233,6 +1242,9 @@ static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
|
||||
hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
|
||||
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
||||
|
||||
/* Don't create HPTE entries for bad address */
|
||||
if (!vsid)
|
||||
return;
|
||||
ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
|
||||
mode, HPTE_V_BOLTED,
|
||||
mmu_linear_psize, mmu_kernel_ssize);
|
||||
|
@ -29,15 +29,6 @@
|
||||
static DEFINE_SPINLOCK(mmu_context_lock);
|
||||
static DEFINE_IDA(mmu_context_ida);
|
||||
|
||||
/*
|
||||
* 256MB segment
|
||||
* The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
|
||||
* available for user mappings. Each segment contains 2^28 bytes. Each
|
||||
* context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
|
||||
* (19 == 37 + 28 - 46).
|
||||
*/
|
||||
#define MAX_CONTEXT ((1UL << CONTEXT_BITS) - 1)
|
||||
|
||||
int __init_new_context(void)
|
||||
{
|
||||
int index;
|
||||
@ -56,7 +47,7 @@ again:
|
||||
else if (err)
|
||||
return err;
|
||||
|
||||
if (index > MAX_CONTEXT) {
|
||||
if (index > MAX_USER_CONTEXT) {
|
||||
spin_lock(&mmu_context_lock);
|
||||
ida_remove(&mmu_context_ida, index);
|
||||
spin_unlock(&mmu_context_lock);
|
||||
|
@ -61,7 +61,7 @@
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_PPC_STD_MMU_64
|
||||
#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
|
||||
#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
|
||||
#error TASK_SIZE_USER64 exceeds user VSID range
|
||||
#endif
|
||||
#endif
|
||||
|
@ -31,10 +31,15 @@
|
||||
* No other registers are examined or changed.
|
||||
*/
|
||||
_GLOBAL(slb_allocate_realmode)
|
||||
/* r3 = faulting address */
|
||||
/*
|
||||
* check for bad kernel/user address
|
||||
* (ea & ~REGION_MASK) >= PGTABLE_RANGE
|
||||
*/
|
||||
rldicr. r9,r3,4,(63 - 46 - 4)
|
||||
bne- 8f
|
||||
|
||||
srdi r9,r3,60 /* get region */
|
||||
srdi r10,r3,28 /* get esid */
|
||||
srdi r10,r3,SID_SHIFT /* get esid */
|
||||
cmpldi cr7,r9,0xc /* cmp PAGE_OFFSET for later use */
|
||||
|
||||
/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
|
||||
@ -56,12 +61,14 @@ _GLOBAL(slb_allocate_realmode)
|
||||
*/
|
||||
_GLOBAL(slb_miss_kernel_load_linear)
|
||||
li r11,0
|
||||
li r9,0x1
|
||||
/*
|
||||
* for 1T we shift 12 bits more. slb_finish_load_1T will do
|
||||
* the necessary adjustment
|
||||
* context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1
|
||||
* r9 = region id.
|
||||
*/
|
||||
rldimi r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
|
||||
addis r9,r9,(MAX_USER_CONTEXT - 0xc + 1)@ha
|
||||
addi r9,r9,(MAX_USER_CONTEXT - 0xc + 1)@l
|
||||
|
||||
|
||||
BEGIN_FTR_SECTION
|
||||
b slb_finish_load
|
||||
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
||||
@ -91,24 +98,19 @@ _GLOBAL(slb_miss_kernel_load_vmemmap)
|
||||
_GLOBAL(slb_miss_kernel_load_io)
|
||||
li r11,0
|
||||
6:
|
||||
li r9,0x1
|
||||
/*
|
||||
* for 1T we shift 12 bits more. slb_finish_load_1T will do
|
||||
* the necessary adjustment
|
||||
* context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1
|
||||
* r9 = region id.
|
||||
*/
|
||||
rldimi r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
|
||||
addis r9,r9,(MAX_USER_CONTEXT - 0xc + 1)@ha
|
||||
addi r9,r9,(MAX_USER_CONTEXT - 0xc + 1)@l
|
||||
|
||||
BEGIN_FTR_SECTION
|
||||
b slb_finish_load
|
||||
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
||||
b slb_finish_load_1T
|
||||
|
||||
0: /* user address: proto-VSID = context << 15 | ESID. First check
|
||||
* if the address is within the boundaries of the user region
|
||||
*/
|
||||
srdi. r9,r10,USER_ESID_BITS
|
||||
bne- 8f /* invalid ea bits set */
|
||||
|
||||
|
||||
0:
|
||||
/* when using slices, we extract the psize off the slice bitmaps
|
||||
* and then we need to get the sllp encoding off the mmu_psize_defs
|
||||
* array.
|
||||
@ -164,15 +166,13 @@ END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
||||
ld r9,PACACONTEXTID(r13)
|
||||
BEGIN_FTR_SECTION
|
||||
cmpldi r10,0x1000
|
||||
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
||||
rldimi r10,r9,USER_ESID_BITS,0
|
||||
BEGIN_FTR_SECTION
|
||||
bge slb_finish_load_1T
|
||||
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
||||
b slb_finish_load
|
||||
|
||||
8: /* invalid EA */
|
||||
li r10,0 /* BAD_VSID */
|
||||
li r9,0 /* BAD_VSID */
|
||||
li r11,SLB_VSID_USER /* flags don't much matter */
|
||||
b slb_finish_load
|
||||
|
||||
@ -221,8 +221,6 @@ _GLOBAL(slb_allocate_user)
|
||||
|
||||
/* get context to calculate proto-VSID */
|
||||
ld r9,PACACONTEXTID(r13)
|
||||
rldimi r10,r9,USER_ESID_BITS,0
|
||||
|
||||
/* fall through slb_finish_load */
|
||||
|
||||
#endif /* __DISABLED__ */
|
||||
@ -231,9 +229,10 @@ _GLOBAL(slb_allocate_user)
|
||||
/*
|
||||
* Finish loading of an SLB entry and return
|
||||
*
|
||||
* r3 = EA, r10 = proto-VSID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
|
||||
* r3 = EA, r9 = context, r10 = ESID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
|
||||
*/
|
||||
slb_finish_load:
|
||||
rldimi r10,r9,ESID_BITS,0
|
||||
ASM_VSID_SCRAMBLE(r10,r9,256M)
|
||||
/*
|
||||
* bits above VSID_BITS_256M need to be ignored from r10
|
||||
@ -298,10 +297,11 @@ _GLOBAL(slb_compare_rr_to_size)
|
||||
/*
|
||||
* Finish loading of a 1T SLB entry (for the kernel linear mapping) and return.
|
||||
*
|
||||
* r3 = EA, r10 = proto-VSID, r11 = flags, clobbers r9
|
||||
* r3 = EA, r9 = context, r10 = ESID(256MB), r11 = flags, clobbers r9
|
||||
*/
|
||||
slb_finish_load_1T:
|
||||
srdi r10,r10,40-28 /* get 1T ESID */
|
||||
srdi r10,r10,(SID_SHIFT_1T - SID_SHIFT) /* get 1T ESID */
|
||||
rldimi r10,r9,ESID_BITS_1T,0
|
||||
ASM_VSID_SCRAMBLE(r10,r9,1T)
|
||||
/*
|
||||
* bits above VSID_BITS_1T need to be ignored from r10
|
||||
|
@ -82,11 +82,11 @@ void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
|
||||
if (!is_kernel_addr(addr)) {
|
||||
ssize = user_segment_size(addr);
|
||||
vsid = get_vsid(mm->context.id, addr, ssize);
|
||||
WARN_ON(vsid == 0);
|
||||
} else {
|
||||
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
|
||||
ssize = mmu_kernel_ssize;
|
||||
}
|
||||
WARN_ON(vsid == 0);
|
||||
vpn = hpt_vpn(addr, vsid, ssize);
|
||||
rpte = __real_pte(__pte(pte), ptep);
|
||||
|
||||
|
@ -124,9 +124,8 @@ config 6xx
|
||||
select PPC_HAVE_PMU_SUPPORT
|
||||
|
||||
config POWER3
|
||||
bool
|
||||
depends on PPC64 && PPC_BOOK3S
|
||||
default y if !POWER4_ONLY
|
||||
def_bool y
|
||||
|
||||
config POWER4
|
||||
depends on PPC64 && PPC_BOOK3S
|
||||
@ -145,8 +144,7 @@ config TUNE_CELL
|
||||
but somewhat slower on other machines. This option only changes
|
||||
the scheduling of instructions, not the selection of instructions
|
||||
itself, so the resulting kernel will keep running on all other
|
||||
machines. When building a kernel that is supposed to run only
|
||||
on Cell, you should also select the POWER4_ONLY option.
|
||||
machines.
|
||||
|
||||
# this is temp to handle compat with arch=ppc
|
||||
config 8xx
|
||||
|
Loading…
x
Reference in New Issue
Block a user