Linux 4.12-rc1

-----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJZF2pwAAoJEHm+PkMAQRiG9aAIAJJyV6Ux9kaX+glqO3KIs0wm
 0K/yqMOv1JTfJ1UUgY4iZbk5XOPPmXv1bdKJFECZfuAHdymJUF/RVNNvDlZbaLdd
 K8vDEi92eRwcf07a5b/Q2F8yNfADKKmRAA/oAbuQLBhJ0dPHig70PIvi9gq9kqiE
 Ft1MinbsZLavYatLm7oVDr/nsYebEDMGwTy0EX5bF2YjydfAlCvVWnI5ld5wisiV
 0fQF4W7MMjjcpAzG8uq3atEB8iQcWS2Ykz2chZRbYzHcdV2WJW751Vge9xc05Hzi
 rxlqn6peZFiFyM0qdPLhY0ktGzSTZcCFeb3aZicvm5aOamy2KJjOSZrEwjU8kts=
 =VHpx
 -----END PGP SIGNATURE-----

Merge tag 'v4.12-rc1' into docs-next

Linux 4.12-rc1
This commit is contained in:
Jonathan Corbet 2017-05-18 10:19:33 -06:00
commit a1a9af4e9d
1478 changed files with 47160 additions and 31616 deletions

1
.gitignore vendored
View File

@ -33,6 +33,7 @@
*.lzo
*.patch
*.gcno
*.ll
modules.builtin
Module.symvers
*.dwo

View File

@ -146,6 +146,8 @@ Santosh Shilimkar <ssantosh@kernel.org>
Santosh Shilimkar <santosh.shilimkar@oracle.org>
Sascha Hauer <s.hauer@pengutronix.de>
S.Çağlar Onur <caglar@pardus.org.tr>
Sebastian Reichel <sre@kernel.org> <sre@debian.org>
Sebastian Reichel <sre@kernel.org> <sebastian.reichel@collabora.co.uk>
Shiraz Hashim <shiraz.linux.kernel@gmail.com> <shiraz.hashim@st.com>
Shuah Khan <shuah@kernel.org> <shuahkhan@gmail.com>
Shuah Khan <shuah@kernel.org> <shuah.khan@hp.com>

View File

@ -412,6 +412,8 @@ sysctl/
- directory with info on the /proc/sys/* files.
target/
- directory with info on generating TCM v4 fabric .ko modules
tee.txt
- info on the TEE subsystem and drivers
this_cpu_ops.txt
- List rationale behind and the way to use this_cpu operations.
thermal/

View File

@ -17,7 +17,7 @@ rcu_dereference.txt
rcubarrier.txt
- RCU and Unloadable Modules
rculist_nulls.txt
- RCU list primitives for use with SLAB_DESTROY_BY_RCU
- RCU list primitives for use with SLAB_TYPESAFE_BY_RCU
rcuref.txt
- Reference-count design for elements of lists/arrays protected by RCU
rcu.txt

View File

@ -19,6 +19,8 @@ to each other.
The <tt>rcu_state</tt> Structure</a>
<li> <a href="#The rcu_node Structure">
The <tt>rcu_node</tt> Structure</a>
<li> <a href="#The rcu_segcblist Structure">
The <tt>rcu_segcblist</tt> Structure</a>
<li> <a href="#The rcu_data Structure">
The <tt>rcu_data</tt> Structure</a>
<li> <a href="#The rcu_dynticks Structure">
@ -841,6 +843,134 @@ for lockdep lock-class names.
Finally, lines&nbsp;64-66 produce an error if the maximum number of
CPUs is too large for the specified fanout.
<h3><a name="The rcu_segcblist Structure">
The <tt>rcu_segcblist</tt> Structure</a></h3>
The <tt>rcu_segcblist</tt> structure maintains a segmented list of
callbacks as follows:
<pre>
1 #define RCU_DONE_TAIL 0
2 #define RCU_WAIT_TAIL 1
3 #define RCU_NEXT_READY_TAIL 2
4 #define RCU_NEXT_TAIL 3
5 #define RCU_CBLIST_NSEGS 4
6
7 struct rcu_segcblist {
8 struct rcu_head *head;
9 struct rcu_head **tails[RCU_CBLIST_NSEGS];
10 unsigned long gp_seq[RCU_CBLIST_NSEGS];
11 long len;
12 long len_lazy;
13 };
</pre>
<p>
The segments are as follows:
<ol>
<li> <tt>RCU_DONE_TAIL</tt>: Callbacks whose grace periods have elapsed.
These callbacks are ready to be invoked.
<li> <tt>RCU_WAIT_TAIL</tt>: Callbacks that are waiting for the
current grace period.
Note that different CPUs can have different ideas about which
grace period is current, hence the <tt>-&gt;gp_seq</tt> field.
<li> <tt>RCU_NEXT_READY_TAIL</tt>: Callbacks waiting for the next
grace period to start.
<li> <tt>RCU_NEXT_TAIL</tt>: Callbacks that have not yet been
associated with a grace period.
</ol>
<p>
The <tt>-&gt;head</tt> pointer references the first callback or
is <tt>NULL</tt> if the list contains no callbacks (which is
<i>not</i> the same as being empty).
Each element of the <tt>-&gt;tails[]</tt> array references the
<tt>-&gt;next</tt> pointer of the last callback in the corresponding
segment of the list, or the list's <tt>-&gt;head</tt> pointer if
that segment and all previous segments are empty.
If the corresponding segment is empty but some previous segment is
not empty, then the array element is identical to its predecessor.
Older callbacks are closer to the head of the list, and new callbacks
are added at the tail.
This relationship between the <tt>-&gt;head</tt> pointer, the
<tt>-&gt;tails[]</tt> array, and the callbacks is shown in this
diagram:
</p><p><img src="nxtlist.svg" alt="nxtlist.svg" width="40%">
</p><p>In this figure, the <tt>-&gt;head</tt> pointer references the
first
RCU callback in the list.
The <tt>-&gt;tails[RCU_DONE_TAIL]</tt> array element references
the <tt>-&gt;head</tt> pointer itself, indicating that none
of the callbacks is ready to invoke.
The <tt>-&gt;tails[RCU_WAIT_TAIL]</tt> array element references callback
CB&nbsp;2's <tt>-&gt;next</tt> pointer, which indicates that
CB&nbsp;1 and CB&nbsp;2 are both waiting on the current grace period,
give or take possible disagreements about exactly which grace period
is the current one.
The <tt>-&gt;tails[RCU_NEXT_READY_TAIL]</tt> array element
references the same RCU callback that <tt>-&gt;tails[RCU_WAIT_TAIL]</tt>
does, which indicates that there are no callbacks waiting on the next
RCU grace period.
The <tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element references
CB&nbsp;4's <tt>-&gt;next</tt> pointer, indicating that all the
remaining RCU callbacks have not yet been assigned to an RCU grace
period.
Note that the <tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element
always references the last RCU callback's <tt>-&gt;next</tt> pointer
unless the callback list is empty, in which case it references
the <tt>-&gt;head</tt> pointer.
<p>
There is one additional important special case for the
<tt>-&gt;tails[RCU_NEXT_TAIL]</tt> array element: It can be <tt>NULL</tt>
when this list is <i>disabled</i>.
Lists are disabled when the corresponding CPU is offline or when
the corresponding CPU's callbacks are offloaded to a kthread,
both of which are described elsewhere.
</p><p>CPUs advance their callbacks from the
<tt>RCU_NEXT_TAIL</tt> to the <tt>RCU_NEXT_READY_TAIL</tt> to the
<tt>RCU_WAIT_TAIL</tt> to the <tt>RCU_DONE_TAIL</tt> list segments
as grace periods advance.
</p><p>The <tt>-&gt;gp_seq[]</tt> array records grace-period
numbers corresponding to the list segments.
This is what allows different CPUs to have different ideas as to
which is the current grace period while still avoiding premature
invocation of their callbacks.
In particular, this allows CPUs that go idle for extended periods
to determine which of their callbacks are ready to be invoked after
reawakening.
</p><p>The <tt>-&gt;len</tt> counter contains the number of
callbacks in <tt>-&gt;head</tt>, and the
<tt>-&gt;len_lazy</tt> contains the number of those callbacks that
are known to only free memory, and whose invocation can therefore
be safely deferred.
<p><b>Important note</b>: It is the <tt>-&gt;len</tt> field that
determines whether or not there are callbacks associated with
this <tt>rcu_segcblist</tt> structure, <i>not</i> the <tt>-&gt;head</tt>
pointer.
The reason for this is that all the ready-to-invoke callbacks
(that is, those in the <tt>RCU_DONE_TAIL</tt> segment) are extracted
all at once at callback-invocation time.
If callback invocation must be postponed, for example, because a
high-priority process just woke up on this CPU, then the remaining
callbacks are placed back on the <tt>RCU_DONE_TAIL</tt> segment.
Either way, the <tt>-&gt;len</tt> and <tt>-&gt;len_lazy</tt> counts
are adjusted after the corresponding callbacks have been invoked, and so
again it is the <tt>-&gt;len</tt> count that accurately reflects whether
or not there are callbacks associated with this <tt>rcu_segcblist</tt>
structure.
Of course, off-CPU sampling of the <tt>-&gt;len</tt> count requires
the use of appropriate synchronization, for example, memory barriers.
This synchronization can be a bit subtle, particularly in the case
of <tt>rcu_barrier()</tt>.
<h3><a name="The rcu_data Structure">
The <tt>rcu_data</tt> Structure</a></h3>
@ -983,62 +1113,18 @@ choice.
as follows:
<pre>
1 struct rcu_head *nxtlist;
2 struct rcu_head **nxttail[RCU_NEXT_SIZE];
3 unsigned long nxtcompleted[RCU_NEXT_SIZE];
4 long qlen_lazy;
5 long qlen;
6 long qlen_last_fqs_check;
1 struct rcu_segcblist cblist;
2 long qlen_last_fqs_check;
3 unsigned long n_cbs_invoked;
4 unsigned long n_nocbs_invoked;
5 unsigned long n_cbs_orphaned;
6 unsigned long n_cbs_adopted;
7 unsigned long n_force_qs_snap;
8 unsigned long n_cbs_invoked;
9 unsigned long n_cbs_orphaned;
10 unsigned long n_cbs_adopted;
11 long blimit;
8 long blimit;
</pre>
<p>The <tt>-&gt;nxtlist</tt> pointer and the
<tt>-&gt;nxttail[]</tt> array form a four-segment list with
older callbacks near the head and newer ones near the tail.
Each segment contains callbacks with the corresponding relationship
to the current grace period.
The pointer out of the end of each of the four segments is referenced
by the element of the <tt>-&gt;nxttail[]</tt> array indexed by
<tt>RCU_DONE_TAIL</tt> (for callbacks handled by a prior grace period),
<tt>RCU_WAIT_TAIL</tt> (for callbacks waiting on the current grace period),
<tt>RCU_NEXT_READY_TAIL</tt> (for callbacks that will wait on the next
grace period), and
<tt>RCU_NEXT_TAIL</tt> (for callbacks that are not yet associated
with a specific grace period)
respectively, as shown in the following figure.
</p><p><img src="nxtlist.svg" alt="nxtlist.svg" width="40%">
</p><p>In this figure, the <tt>-&gt;nxtlist</tt> pointer references the
first
RCU callback in the list.
The <tt>-&gt;nxttail[RCU_DONE_TAIL]</tt> array element references
the <tt>-&gt;nxtlist</tt> pointer itself, indicating that none
of the callbacks is ready to invoke.
The <tt>-&gt;nxttail[RCU_WAIT_TAIL]</tt> array element references callback
CB&nbsp;2's <tt>-&gt;next</tt> pointer, which indicates that
CB&nbsp;1 and CB&nbsp;2 are both waiting on the current grace period.
The <tt>-&gt;nxttail[RCU_NEXT_READY_TAIL]</tt> array element
references the same RCU callback that <tt>-&gt;nxttail[RCU_WAIT_TAIL]</tt>
does, which indicates that there are no callbacks waiting on the next
RCU grace period.
The <tt>-&gt;nxttail[RCU_NEXT_TAIL]</tt> array element references
CB&nbsp;4's <tt>-&gt;next</tt> pointer, indicating that all the
remaining RCU callbacks have not yet been assigned to an RCU grace
period.
Note that the <tt>-&gt;nxttail[RCU_NEXT_TAIL]</tt> array element
always references the last RCU callback's <tt>-&gt;next</tt> pointer
unless the callback list is empty, in which case it references
the <tt>-&gt;nxtlist</tt> pointer.
</p><p>CPUs advance their callbacks from the
<tt>RCU_NEXT_TAIL</tt> to the <tt>RCU_NEXT_READY_TAIL</tt> to the
<tt>RCU_WAIT_TAIL</tt> to the <tt>RCU_DONE_TAIL</tt> list segments
as grace periods advance.
<p>The <tt>-&gt;cblist</tt> structure is the segmented callback list
described earlier.
The CPU advances the callbacks in its <tt>rcu_data</tt> structure
whenever it notices that another RCU grace period has completed.
The CPU detects the completion of an RCU grace period by noticing
@ -1049,16 +1135,7 @@ Recall that each <tt>rcu_node</tt> structure's
<tt>-&gt;completed</tt> field is updated at the end of each
grace period.
</p><p>The <tt>-&gt;nxtcompleted[]</tt> array records grace-period
numbers corresponding to the list segments.
This allows CPUs that go idle for extended periods to determine
which of their callbacks are ready to be invoked after reawakening.
</p><p>The <tt>-&gt;qlen</tt> counter contains the number of
callbacks in <tt>-&gt;nxtlist</tt>, and the
<tt>-&gt;qlen_lazy</tt> contains the number of those callbacks that
are known to only free memory, and whose invocation can therefore
be safely deferred.
<p>
The <tt>-&gt;qlen_last_fqs_check</tt> and
<tt>-&gt;n_force_qs_snap</tt> coordinate the forcing of quiescent
states from <tt>call_rcu()</tt> and friends when callback
@ -1069,6 +1146,10 @@ lists grow excessively long.
fields count the number of callbacks invoked,
sent to other CPUs when this CPU goes offline,
and received from other CPUs when those other CPUs go offline.
The <tt>-&gt;n_nocbs_invoked</tt> is used when the CPU's callbacks
are offloaded to a kthread.
<p>
Finally, the <tt>-&gt;blimit</tt> counter is the maximum number of
RCU callbacks that may be invoked at a given time.
@ -1104,6 +1185,9 @@ Its fields are as follows:
1 int dynticks_nesting;
2 int dynticks_nmi_nesting;
3 atomic_t dynticks;
4 bool rcu_need_heavy_qs;
5 unsigned long rcu_qs_ctr;
6 bool rcu_urgent_qs;
</pre>
<p>The <tt>-&gt;dynticks_nesting</tt> field counts the
@ -1117,11 +1201,32 @@ NMIs are counted by the <tt>-&gt;dynticks_nmi_nesting</tt>
field, except that NMIs that interrupt non-dyntick-idle execution
are not counted.
</p><p>Finally, the <tt>-&gt;dynticks</tt> field counts the corresponding
</p><p>The <tt>-&gt;dynticks</tt> field counts the corresponding
CPU's transitions to and from dyntick-idle mode, so that this counter
has an even value when the CPU is in dyntick-idle mode and an odd
value otherwise.
</p><p>The <tt>-&gt;rcu_need_heavy_qs</tt> field is used
to record the fact that the RCU core code would really like to
see a quiescent state from the corresponding CPU, so much so that
it is willing to call for heavy-weight dyntick-counter operations.
This flag is checked by RCU's context-switch and <tt>cond_resched()</tt>
code, which provide a momentary idle sojourn in response.
</p><p>The <tt>-&gt;rcu_qs_ctr</tt> field is used to record
quiescent states from <tt>cond_resched()</tt>.
Because <tt>cond_resched()</tt> can execute quite frequently, this
must be quite lightweight, as in a non-atomic increment of this
per-CPU field.
</p><p>Finally, the <tt>-&gt;rcu_urgent_qs</tt> field is used to record
the fact that the RCU core code would really like to see a quiescent
state from the corresponding CPU, with the various other fields indicating
just how badly RCU wants this quiescent state.
This flag is checked by RCU's context-switch and <tt>cond_resched()</tt>
code, which, if nothing else, non-atomically increment <tt>-&gt;rcu_qs_ctr</tt>
in response.
<table>
<tr><th>&nbsp;</th></tr>
<tr><th align="left">Quick Quiz:</th></tr>

View File

@ -19,7 +19,7 @@
id="svg2"
version="1.1"
inkscape:version="0.48.4 r9939"
sodipodi:docname="nxtlist.fig">
sodipodi:docname="segcblist.svg">
<metadata
id="metadata94">
<rdf:RDF>
@ -28,7 +28,7 @@
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
<dc:title />
</cc:Work>
</rdf:RDF>
</metadata>
@ -241,61 +241,51 @@
xml:space="preserve"
x="225"
y="675"
fill="#000000"
font-family="Courier"
font-style="normal"
font-weight="bold"
font-size="324"
text-anchor="start"
id="text64">nxtlist</text>
id="text64"
style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;head</text>
<!-- Text -->
<text
xml:space="preserve"
x="225"
y="1800"
fill="#000000"
font-family="Courier"
font-style="normal"
font-weight="bold"
font-size="324"
text-anchor="start"
id="text66">nxttail[RCU_DONE_TAIL]</text>
id="text66"
style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_DONE_TAIL]</text>
<!-- Text -->
<text
xml:space="preserve"
x="225"
y="2925"
fill="#000000"
font-family="Courier"
font-style="normal"
font-weight="bold"
font-size="324"
text-anchor="start"
id="text68">nxttail[RCU_WAIT_TAIL]</text>
id="text68"
style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_WAIT_TAIL]</text>
<!-- Text -->
<text
xml:space="preserve"
x="225"
y="4050"
fill="#000000"
font-family="Courier"
font-style="normal"
font-weight="bold"
font-size="324"
text-anchor="start"
id="text70">nxttail[RCU_NEXT_READY_TAIL]</text>
id="text70"
style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_NEXT_READY_TAIL]</text>
<!-- Text -->
<text
xml:space="preserve"
x="225"
y="5175"
fill="#000000"
font-family="Courier"
font-style="normal"
font-weight="bold"
font-size="324"
text-anchor="start"
id="text72">nxttail[RCU_NEXT_TAIL]</text>
id="text72"
style="font-size:324px;font-style:normal;font-weight:bold;text-anchor:start;fill:#000000;font-family:Courier">-&gt;tails[RCU_NEXT_TAIL]</text>
<!-- Text -->
<text
xml:space="preserve"

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -284,6 +284,7 @@ Expedited Grace Period Refinements</a></h2>
Funnel locking and wait/wakeup</a>.
<li> <a href="#Use of Workqueues">Use of Workqueues</a>.
<li> <a href="#Stall Warnings">Stall warnings</a>.
<li> <a href="#Mid-Boot Operation">Mid-boot operation</a>.
</ol>
<h3><a name="Idle-CPU Checks">Idle-CPU Checks</a></h3>
@ -524,7 +525,7 @@ their grace periods and carrying out their wakeups.
In earlier implementations, the task requesting the expedited
grace period also drove it to completion.
This straightforward approach had the disadvantage of needing to
account for signals sent to user tasks,
account for POSIX signals sent to user tasks,
so more recent implemementations use the Linux kernel's
<a href="https://www.kernel.org/doc/Documentation/workqueue.txt">workqueues</a>.
@ -533,8 +534,8 @@ The requesting task still does counter snapshotting and funnel-lock
processing, but the task reaching the top of the funnel lock
does a <tt>schedule_work()</tt> (from <tt>_synchronize_rcu_expedited()</tt>
so that a workqueue kthread does the actual grace-period processing.
Because workqueue kthreads do not accept signals, grace-period-wait
processing need not allow for signals.
Because workqueue kthreads do not accept POSIX signals, grace-period-wait
processing need not allow for POSIX signals.
In addition, this approach allows wakeups for the previous expedited
grace period to be overlapped with processing for the next expedited
@ -586,6 +587,46 @@ blocking the current grace period are printed.
Each stall warning results in another pass through the loop, but the
second and subsequent passes use longer stall times.
<h3><a name="Mid-Boot Operation">Mid-boot operation</a></h3>
<p>
The use of workqueues has the advantage that the expedited
grace-period code need not worry about POSIX signals.
Unfortunately, it has the
corresponding disadvantage that workqueues cannot be used until
they are initialized, which does not happen until some time after
the scheduler spawns the first task.
Given that there are parts of the kernel that really do want to
execute grace periods during this mid-boot &ldquo;dead zone&rdquo;,
expedited grace periods must do something else during thie time.
<p>
What they do is to fall back to the old practice of requiring that the
requesting task drive the expedited grace period, as was the case
before the use of workqueues.
However, the requesting task is only required to drive the grace period
during the mid-boot dead zone.
Before mid-boot, a synchronous grace period is a no-op.
Some time after mid-boot, workqueues are used.
<p>
Non-expedited non-SRCU synchronous grace periods must also operate
normally during mid-boot.
This is handled by causing non-expedited grace periods to take the
expedited code path during mid-boot.
<p>
The current code assumes that there are no POSIX signals during
the mid-boot dead zone.
However, if an overwhelming need for POSIX signals somehow arises,
appropriate adjustments can be made to the expedited stall-warning code.
One such adjustment would reinstate the pre-workqueue stall-warning
checks, but only during the mid-boot dead zone.
<p>
With this refinement, synchronous grace periods can now be used from
task context pretty much any time during the life of the kernel.
<h3><a name="Summary">
Summary</a></h3>

View File

@ -659,8 +659,9 @@ systems with more than one CPU:
In other words, a given instance of <tt>synchronize_rcu()</tt>
can avoid waiting on a given RCU read-side critical section only
if it can prove that <tt>synchronize_rcu()</tt> started first.
</font>
<p>
<p><font color="ffffff">
A related question is &ldquo;When <tt>rcu_read_lock()</tt>
doesn't generate any code, why does it matter how it relates
to a grace period?&rdquo;
@ -675,8 +676,9 @@ systems with more than one CPU:
within the critical section, in which case none of the accesses
within the critical section may observe the effects of any
access following the grace period.
</font>
<p>
<p><font color="ffffff">
As of late 2016, mathematical models of RCU take this
viewpoint, for example, see slides&nbsp;62 and&nbsp;63
of the
@ -1616,8 +1618,8 @@ CPUs should at least make reasonable forward progress.
In return for its shorter latencies, <tt>synchronize_rcu_expedited()</tt>
is permitted to impose modest degradation of real-time latency
on non-idle online CPUs.
That said, it will likely be necessary to take further steps to reduce this
degradation, hopefully to roughly that of a scheduling-clock interrupt.
Here, &ldquo;modest&rdquo; means roughly the same latency
degradation as a scheduling-clock interrupt.
<p>
There are a number of situations where even
@ -1913,12 +1915,9 @@ This requirement is another factor driving batching of grace periods,
but it is also the driving force behind the checks for large numbers
of queued RCU callbacks in the <tt>call_rcu()</tt> code path.
Finally, high update rates should not delay RCU read-side critical
sections, although some read-side delays can occur when using
sections, although some small read-side delays can occur when using
<tt>synchronize_rcu_expedited()</tt>, courtesy of this function's use
of <tt>try_stop_cpus()</tt>.
(In the future, <tt>synchronize_rcu_expedited()</tt> will be
converted to use lighter-weight inter-processor interrupts (IPIs),
but this will still disturb readers, though to a much smaller degree.)
of <tt>smp_call_function_single()</tt>.
<p>
Although all three of these corner cases were understood in the early
@ -2154,7 +2153,8 @@ as will <tt>rcu_assign_pointer()</tt>.
<p>
Although <tt>call_rcu()</tt> may be invoked at any
time during boot, callbacks are not guaranteed to be invoked until after
the scheduler is fully up and running.
all of RCU's kthreads have been spawned, which occurs at
<tt>early_initcall()</tt> time.
This delay in callback invocation is due to the fact that RCU does not
invoke callbacks until it is fully initialized, and this full initialization
cannot occur until after the scheduler has initialized itself to the
@ -2167,8 +2167,10 @@ on what operations those callbacks could invoke.
Perhaps surprisingly, <tt>synchronize_rcu()</tt>,
<a href="#Bottom-Half Flavor"><tt>synchronize_rcu_bh()</tt></a>
(<a href="#Bottom-Half Flavor">discussed below</a>),
and
<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>
<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>,
<tt>synchronize_rcu_expedited()</tt>,
<tt>synchronize_rcu_bh_expedited()</tt>, and
<tt>synchronize_sched_expedited()</tt>
will all operate normally
during very early boot, the reason being that there is only one CPU
and preemption is disabled.
@ -2178,45 +2180,59 @@ state and thus a grace period, so the early-boot implementation can
be a no-op.
<p>
Both <tt>synchronize_rcu_bh()</tt> and <tt>synchronize_sched()</tt>
continue to operate normally through the remainder of boot, courtesy
of the fact that preemption is disabled across their RCU read-side
critical sections and also courtesy of the fact that there is still
only one CPU.
However, once the scheduler starts initializing, preemption is enabled.
There is still only a single CPU, but the fact that preemption is enabled
means that the no-op implementation of <tt>synchronize_rcu()</tt> no
longer works in <tt>CONFIG_PREEMPT=y</tt> kernels.
Therefore, as soon as the scheduler starts initializing, the early-boot
fastpath is disabled.
This means that <tt>synchronize_rcu()</tt> switches to its runtime
mode of operation where it posts callbacks, which in turn means that
any call to <tt>synchronize_rcu()</tt> will block until the corresponding
callback is invoked.
Unfortunately, the callback cannot be invoked until RCU's runtime
grace-period machinery is up and running, which cannot happen until
the scheduler has initialized itself sufficiently to allow RCU's
kthreads to be spawned.
Therefore, invoking <tt>synchronize_rcu()</tt> during scheduler
initialization can result in deadlock.
However, once the scheduler has spawned its first kthread, this early
boot trick fails for <tt>synchronize_rcu()</tt> (as well as for
<tt>synchronize_rcu_expedited()</tt>) in <tt>CONFIG_PREEMPT=y</tt>
kernels.
The reason is that an RCU read-side critical section might be preempted,
which means that a subsequent <tt>synchronize_rcu()</tt> really does have
to wait for something, as opposed to simply returning immediately.
Unfortunately, <tt>synchronize_rcu()</tt> can't do this until all of
its kthreads are spawned, which doesn't happen until some time during
<tt>early_initcalls()</tt> time.
But this is no excuse: RCU is nevertheless required to correctly handle
synchronous grace periods during this time period.
Once all of its kthreads are up and running, RCU starts running
normally.
<table>
<tr><th>&nbsp;</th></tr>
<tr><th align="left">Quick Quiz:</th></tr>
<tr><td>
So what happens with <tt>synchronize_rcu()</tt> during
scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
kernels?
How can RCU possibly handle grace periods before all of its
kthreads have been spawned???
</td></tr>
<tr><th align="left">Answer:</th></tr>
<tr><td bgcolor="#ffffff"><font color="ffffff">
In <tt>CONFIG_PREEMPT=n</tt> kernel, <tt>synchronize_rcu()</tt>
maps directly to <tt>synchronize_sched()</tt>.
Therefore, <tt>synchronize_rcu()</tt> works normally throughout
boot in <tt>CONFIG_PREEMPT=n</tt> kernels.
However, your code must also work in <tt>CONFIG_PREEMPT=y</tt> kernels,
so it is still necessary to avoid invoking <tt>synchronize_rcu()</tt>
during scheduler initialization.
Very carefully!
</font>
<p><font color="ffffff">
During the &ldquo;dead zone&rdquo; between the time that the
scheduler spawns the first task and the time that all of RCU's
kthreads have been spawned, all synchronous grace periods are
handled by the expedited grace-period mechanism.
At runtime, this expedited mechanism relies on workqueues, but
during the dead zone the requesting task itself drives the
desired expedited grace period.
Because dead-zone execution takes place within task context,
everything works.
Once the dead zone ends, expedited grace periods go back to
using workqueues, as is required to avoid problems that would
otherwise occur when a user task received a POSIX signal while
driving an expedited grace period.
</font>
<p><font color="ffffff">
And yes, this does mean that it is unhelpful to send POSIX
signals to random tasks between the time that the scheduler
spawns its first kthread and the time that RCU's kthreads
have all been spawned.
If there ever turns out to be a good reason for sending POSIX
signals during that time, appropriate adjustments will be made.
(If it turns out that POSIX signals are sent during this time for
no good reason, other adjustments will be made, appropriate
or otherwise.)
</font></td></tr>
<tr><td>&nbsp;</td></tr>
</table>
@ -2295,12 +2311,61 @@ situation, and Dipankar Sarma incorporated <tt>rcu_barrier()</tt> into RCU.
The need for <tt>rcu_barrier()</tt> for module unloading became
apparent later.
<p>
<b>Important note</b>: The <tt>rcu_barrier()</tt> function is not,
repeat, <i>not</i>, obligated to wait for a grace period.
It is instead only required to wait for RCU callbacks that have
already been posted.
Therefore, if there are no RCU callbacks posted anywhere in the system,
<tt>rcu_barrier()</tt> is within its rights to return immediately.
Even if there are callbacks posted, <tt>rcu_barrier()</tt> does not
necessarily need to wait for a grace period.
<table>
<tr><th>&nbsp;</th></tr>
<tr><th align="left">Quick Quiz:</th></tr>
<tr><td>
Wait a minute!
Each RCU callbacks must wait for a grace period to complete,
and <tt>rcu_barrier()</tt> must wait for each pre-existing
callback to be invoked.
Doesn't <tt>rcu_barrier()</tt> therefore need to wait for
a full grace period if there is even one callback posted anywhere
in the system?
</td></tr>
<tr><th align="left">Answer:</th></tr>
<tr><td bgcolor="#ffffff"><font color="ffffff">
Absolutely not!!!
</font>
<p><font color="ffffff">
Yes, each RCU callbacks must wait for a grace period to complete,
but it might well be partly (or even completely) finished waiting
by the time <tt>rcu_barrier()</tt> is invoked.
In that case, <tt>rcu_barrier()</tt> need only wait for the
remaining portion of the grace period to elapse.
So even if there are quite a few callbacks posted,
<tt>rcu_barrier()</tt> might well return quite quickly.
</font>
<p><font color="ffffff">
So if you need to wait for a grace period as well as for all
pre-existing callbacks, you will need to invoke both
<tt>synchronize_rcu()</tt> and <tt>rcu_barrier()</tt>.
If latency is a concern, you can always use workqueues
to invoke them concurrently.
</font></td></tr>
<tr><td>&nbsp;</td></tr>
</table>
<h3><a name="Hotplug CPU">Hotplug CPU</a></h3>
<p>
The Linux kernel supports CPU hotplug, which means that CPUs
can come and go.
It is of course illegal to use any RCU API member from an offline CPU.
It is of course illegal to use any RCU API member from an offline CPU,
with the exception of <a href="#Sleepable RCU">SRCU</a> read-side
critical sections.
This requirement was present from day one in DYNIX/ptx, but
on the other hand, the Linux kernel's CPU-hotplug implementation
is &ldquo;interesting.&rdquo;
@ -2310,19 +2375,18 @@ The Linux-kernel CPU-hotplug implementation has notifiers that
are used to allow the various kernel subsystems (including RCU)
to respond appropriately to a given CPU-hotplug operation.
Most RCU operations may be invoked from CPU-hotplug notifiers,
including even normal synchronous grace-period operations
such as <tt>synchronize_rcu()</tt>.
However, expedited grace-period operations such as
<tt>synchronize_rcu_expedited()</tt> are not supported,
due to the fact that current implementations block CPU-hotplug
operations, which could result in deadlock.
including even synchronous grace-period operations such as
<tt>synchronize_rcu()</tt> and <tt>synchronize_rcu_expedited()</tt>.
<p>
In addition, all-callback-wait operations such as
However, all-callback-wait operations such as
<tt>rcu_barrier()</tt> are also not supported, due to the
fact that there are phases of CPU-hotplug operations where
the outgoing CPU's callbacks will not be invoked until after
the CPU-hotplug operation ends, which could also result in deadlock.
Furthermore, <tt>rcu_barrier()</tt> blocks CPU-hotplug operations
during its execution, which results in another type of deadlock
when invoked from a CPU-hotplug notifier.
<h3><a name="Scheduler and RCU">Scheduler and RCU</a></h3>
@ -2863,6 +2927,27 @@ It also motivates the <tt>smp_mb__after_srcu_read_unlock()</tt>
API, which, in combination with <tt>srcu_read_unlock()</tt>,
guarantees a full memory barrier.
<p>
Also unlike other RCU flavors, SRCU's callbacks-wait function
<tt>srcu_barrier()</tt> may be invoked from CPU-hotplug notifiers,
though this is not necessarily a good idea.
The reason that this is possible is that SRCU is insensitive
to whether or not a CPU is online, which means that <tt>srcu_barrier()</tt>
need not exclude CPU-hotplug operations.
<p>
As of v4.12, SRCU's callbacks are maintained per-CPU, eliminating
a locking bottleneck present in prior kernel versions.
Although this will allow users to put much heavier stress on
<tt>call_srcu()</tt>, it is important to note that SRCU does not
yet take any special steps to deal with callback flooding.
So if you are posting (say) 10,000 SRCU callbacks per second per CPU,
you are probably totally OK, but if you intend to post (say) 1,000,000
SRCU callbacks per second per CPU, please run some tests first.
SRCU just might need a few adjustment to deal with that sort of load.
Of course, your mileage may vary based on the speed of your CPUs and
the size of your memory.
<p>
The
<a href="https://lwn.net/Articles/609973/#RCU Per-Flavor API Table">SRCU API</a>
@ -3021,8 +3106,8 @@ to do some redesign to avoid this scalability problem.
<p>
RCU disables CPU hotplug in a few places, perhaps most notably in the
expedited grace-period and <tt>rcu_barrier()</tt> operations.
If there is a strong reason to use expedited grace periods in CPU-hotplug
<tt>rcu_barrier()</tt> operations.
If there is a strong reason to use <tt>rcu_barrier()</tt> in CPU-hotplug
notifiers, it will be necessary to avoid disabling CPU hotplug.
This would introduce some complexity, so there had better be a <i>very</i>
good reason.
@ -3096,9 +3181,5 @@ Andy Lutomirski for their help in rendering
this article human readable, and to Michelle Rankin for her support
of this effort.
Other contributions are acknowledged in the Linux kernel's git archive.
The cartoon is copyright (c) 2013 by Melissa Broussard,
and is provided
under the terms of the Creative Commons Attribution-Share Alike 3.0
United States license.
</body></html>

View File

@ -138,6 +138,15 @@ o Be very careful about comparing pointers obtained from
This sort of comparison occurs frequently when scanning
RCU-protected circular linked lists.
Note that if checks for being within an RCU read-side
critical section are not required and the pointer is never
dereferenced, rcu_access_pointer() should be used in place
of rcu_dereference(). The rcu_access_pointer() primitive
does not require an enclosing read-side critical section,
and also omits the smp_read_barrier_depends() included in
rcu_dereference(), which in turn should provide a small
performance gain in some CPUs (e.g., the DEC Alpha).
o The comparison is against a pointer that references memory
that was initialized "a long time ago." The reason
this is safe is that even if misordering occurs, the

View File

@ -1,5 +1,5 @@
Using hlist_nulls to protect read-mostly linked lists and
objects using SLAB_DESTROY_BY_RCU allocations.
objects using SLAB_TYPESAFE_BY_RCU allocations.
Please read the basics in Documentation/RCU/listRCU.txt
@ -7,7 +7,7 @@ Using special makers (called 'nulls') is a convenient way
to solve following problem :
A typical RCU linked list managing objects which are
allocated with SLAB_DESTROY_BY_RCU kmem_cache can
allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can
use following algos :
1) Lookup algo
@ -96,7 +96,7 @@ unlock_chain(); // typically a spin_unlock()
3) Remove algo
--------------
Nothing special here, we can use a standard RCU hlist deletion.
But thanks to SLAB_DESTROY_BY_RCU, beware a deleted object can be reused
But thanks to SLAB_TYPESAFE_BY_RCU, beware a deleted object can be reused
very very fast (before the end of RCU grace period)
if (put_last_reference_on(obj) {

View File

@ -1,9 +1,102 @@
Using RCU's CPU Stall Detector
The rcu_cpu_stall_suppress module parameter enables RCU's CPU stall
detector, which detects conditions that unduly delay RCU grace periods.
This module parameter enables CPU stall detection by default, but
may be overridden via boot-time parameter or at runtime via sysfs.
This document first discusses what sorts of issues RCU's CPU stall
detector can locate, and then discusses kernel parameters and Kconfig
options that can be used to fine-tune the detector's operation. Finally,
this document explains the stall detector's "splat" format.
What Causes RCU CPU Stall Warnings?
So your kernel printed an RCU CPU stall warning. The next question is
"What caused it?" The following problems can result in RCU CPU stall
warnings:
o A CPU looping in an RCU read-side critical section.
o A CPU looping with interrupts disabled.
o A CPU looping with preemption disabled. This condition can
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
stalls.
o A CPU looping with bottom halves disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the
kernel without invoking schedule(). Note that cond_resched()
does not necessarily prevent RCU CPU stall warnings. Therefore,
if the looping in the kernel is really expected and desirable
behavior, you might need to replace some of the cond_resched()
calls with calls to cond_resched_rcu_qs().
o Booting Linux using a console connection that is too slow to
keep up with the boot-time console-message rate. For example,
a 115Kbaud serial console can be -way- too slow to keep up
with boot-time message rates, and will frequently result in
RCU CPU stall warning messages. Especially if you have added
debug printk()s.
o Anything that prevents RCU's grace-period kthreads from running.
This can result in the "All QSes seen" console-log message.
This message will include information on when the kthread last
ran and how often it should be expected to run.
o A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
happen to preempt a low-priority task in the middle of an RCU
read-side critical section. This is especially damaging if
that low-priority task is not permitted to run on any other CPU,
in which case the next RCU grace period can never complete, which
will eventually cause the system to run out of memory and hang.
While the system is in the process of running itself out of
memory, you might see stall-warning messages.
o A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
is running at a higher priority than the RCU softirq threads.
This will prevent RCU callbacks from ever being invoked,
and in a CONFIG_PREEMPT_RCU kernel will further prevent
RCU grace periods from ever completing. Either way, the
system will eventually run out of memory and hang. In the
CONFIG_PREEMPT_RCU case, you might see stall-warning
messages.
o A hardware or software issue shuts off the scheduler-clock
interrupt on a CPU that is not in dyntick-idle mode. This
problem really has happened, and seems to be most likely to
result in RCU CPU stall warnings for CONFIG_NO_HZ_COMMON=n kernels.
o A bug in the RCU implementation.
o A hardware failure. This is quite unlikely, but has occurred
at least once in real life. A CPU failed in a running system,
becoming unresponsive, but not causing an immediate crash.
This resulted in a series of RCU CPU stall warnings, eventually
leading the realization that the CPU had failed.
The RCU, RCU-sched, RCU-bh, and RCU-tasks implementations have CPU stall
warning. Note that SRCU does -not- have CPU stall warnings. Please note
that RCU only detects CPU stalls when there is a grace period in progress.
No grace period, no CPU stall warnings.
To diagnose the cause of the stall, inspect the stack traces.
The offending function will usually be near the top of the stack.
If you have a series of stall warnings from a single extended stall,
comparing the stack traces can often help determine where the stall
is occurring, which will usually be in the function nearest the top of
that portion of the stack which remains the same from trace to trace.
If you can reliably trigger the stall, ftrace can be quite helpful.
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE
and with RCU's event tracing. For information on RCU's event tracing,
see include/trace/events/rcu.h.
Fine-Tuning the RCU CPU Stall Detector
The rcuupdate.rcu_cpu_stall_suppress module parameter disables RCU's
CPU stall detector, which detects conditions that unduly delay RCU grace
periods. This module parameter enables CPU stall detection by default,
but may be overridden via boot-time parameter or at runtime via sysfs.
The stall detector's idea of what constitutes "unduly delayed" is
controlled by a set of kernel configuration variables and cpp macros:
@ -56,6 +149,9 @@ rcupdate.rcu_task_stall_timeout
And continues with the output of sched_show_task() for each
task stalling the current RCU-tasks grace period.
Interpreting RCU's CPU Stall-Detector "Splats"
For non-RCU-tasks flavors of RCU, when a CPU detects that it is stalling,
it will print a message similar to the following:
@ -178,89 +274,3 @@ grace period is in flight.
It is entirely possible to see stall warnings from normal and from
expedited grace periods at about the same time from the same run.
What Causes RCU CPU Stall Warnings?
So your kernel printed an RCU CPU stall warning. The next question is
"What caused it?" The following problems can result in RCU CPU stall
warnings:
o A CPU looping in an RCU read-side critical section.
o A CPU looping with interrupts disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o A CPU looping with preemption disabled. This condition can
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
stalls.
o A CPU looping with bottom halves disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the
kernel without invoking schedule(). Note that cond_resched()
does not necessarily prevent RCU CPU stall warnings. Therefore,
if the looping in the kernel is really expected and desirable
behavior, you might need to replace some of the cond_resched()
calls with calls to cond_resched_rcu_qs().
o Booting Linux using a console connection that is too slow to
keep up with the boot-time console-message rate. For example,
a 115Kbaud serial console can be -way- too slow to keep up
with boot-time message rates, and will frequently result in
RCU CPU stall warning messages. Especially if you have added
debug printk()s.
o Anything that prevents RCU's grace-period kthreads from running.
This can result in the "All QSes seen" console-log message.
This message will include information on when the kthread last
ran and how often it should be expected to run.
o A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
happen to preempt a low-priority task in the middle of an RCU
read-side critical section. This is especially damaging if
that low-priority task is not permitted to run on any other CPU,
in which case the next RCU grace period can never complete, which
will eventually cause the system to run out of memory and hang.
While the system is in the process of running itself out of
memory, you might see stall-warning messages.
o A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
is running at a higher priority than the RCU softirq threads.
This will prevent RCU callbacks from ever being invoked,
and in a CONFIG_PREEMPT_RCU kernel will further prevent
RCU grace periods from ever completing. Either way, the
system will eventually run out of memory and hang. In the
CONFIG_PREEMPT_RCU case, you might see stall-warning
messages.
o A hardware or software issue shuts off the scheduler-clock
interrupt on a CPU that is not in dyntick-idle mode. This
problem really has happened, and seems to be most likely to
result in RCU CPU stall warnings for CONFIG_NO_HZ_COMMON=n kernels.
o A bug in the RCU implementation.
o A hardware failure. This is quite unlikely, but has occurred
at least once in real life. A CPU failed in a running system,
becoming unresponsive, but not causing an immediate crash.
This resulted in a series of RCU CPU stall warnings, eventually
leading the realization that the CPU had failed.
The RCU, RCU-sched, RCU-bh, and RCU-tasks implementations have CPU stall
warning. Note that SRCU does -not- have CPU stall warnings. Please note
that RCU only detects CPU stalls when there is a grace period in progress.
No grace period, no CPU stall warnings.
To diagnose the cause of the stall, inspect the stack traces.
The offending function will usually be near the top of the stack.
If you have a series of stall warnings from a single extended stall,
comparing the stack traces can often help determine where the stall
is occurring, which will usually be in the function nearest the top of
that portion of the stack which remains the same from trace to trace.
If you can reliably trigger the stall, ftrace can be quite helpful.
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE
and with RCU's event tracing. For information on RCU's event tracing,
see include/trace/events/rcu.h.

View File

@ -562,7 +562,9 @@ This section presents a "toy" RCU implementation that is based on
familiar locking primitives. Its overhead makes it a non-starter for
real-life use, as does its lack of scalability. It is also unsuitable
for realtime use, since it allows scheduling latency to "bleed" from
one read-side critical section to another.
one read-side critical section to another. It also assumes recursive
reader-writer locks: If you try this with non-recursive locks, and
you allow nested rcu_read_lock() calls, you can deadlock.
However, it is probably the easiest implementation to relate to, so is
a good starting point.
@ -587,20 +589,21 @@ It is extremely simple:
write_unlock(&rcu_gp_mutex);
}
[You can ignore rcu_assign_pointer() and rcu_dereference() without
missing much. But here they are anyway. And whatever you do, don't
forget about them when submitting patches making use of RCU!]
[You can ignore rcu_assign_pointer() and rcu_dereference() without missing
much. But here are simplified versions anyway. And whatever you do,
don't forget about them when submitting patches making use of RCU!]
#define rcu_assign_pointer(p, v) ({ \
smp_wmb(); \
(p) = (v); \
})
#define rcu_assign_pointer(p, v) \
({ \
smp_store_release(&(p), (v)); \
})
#define rcu_dereference(p) ({ \
typeof(p) _________p1 = p; \
smp_read_barrier_depends(); \
(_________p1); \
})
#define rcu_dereference(p) \
({ \
typeof(p) _________p1 = p; \
smp_read_barrier_depends(); \
(_________p1); \
})
The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
@ -925,7 +928,8 @@ d. Do you need RCU grace periods to complete even in the face
e. Is your workload too update-intensive for normal use of
RCU, but inappropriate for other synchronization mechanisms?
If so, consider SLAB_DESTROY_BY_RCU. But please be careful!
If so, consider SLAB_TYPESAFE_BY_RCU (which was originally
named SLAB_DESTROY_BY_RCU). But please be careful!
f. Do you need read-side critical sections that are respected
even though they are in the middle of the idle loop, during

View File

@ -1578,6 +1578,15 @@
extended tables themselves, and also PASID support. With
this option set, extended tables will not be used even
on hardware which claims to support them.
tboot_noforce [Default Off]
Do not force the Intel IOMMU enabled under tboot.
By default, tboot will force Intel IOMMU on, which
could harm performance of some high-throughput
devices like 40GBit network cards, even if identity
mapping is enabled.
Note that using this option lowers the security
provided by tboot because it makes the system
vulnerable to DMA attacks.
intel_idle.max_cstate= [KNL,HW,ACPI,X86]
0 disables intel_idle and fall back on acpi_idle.
@ -1644,6 +1653,12 @@
nobypass [PPC/POWERNV]
Disable IOMMU bypass, using IOMMU for PCI devices.
iommu.passthrough=
[ARM64] Configure DMA to bypass the IOMMU by default.
Format: { "0" | "1" }
0 - Use IOMMU translation for DMA.
1 - Bypass the IOMMU for DMA.
unset - Use IOMMU translation for DMA.
io7= [HW] IO7 for Marvel based alpha systems
See comment before marvel_specify_io7 in
@ -2419,12 +2434,6 @@
and gids from such clients. This is intended to ease
migration from NFSv2/v3.
objlayoutdriver.osd_login_prog=
[NFS] [OBJLAYOUT] sets the pathname to the program which
is used to automatically discover and login into new
osd-targets. Please see:
Documentation/filesystems/pnfs.txt for more explanations
nmi_debug= [KNL,SH] Specify one or more actions to take
when a NMI is triggered.
Format: [state][,regs][,debounce][,die]
@ -3785,6 +3794,14 @@
spia_pedr=
spia_peddr=
srcutree.exp_holdoff [KNL]
Specifies how many nanoseconds must elapse
since the end of the last SRCU grace period for
a given srcu_struct until the next normal SRCU
grace period will be considered for automatic
expediting. Set to zero to disable automatic
expediting.
stacktrace [FTRACE]
Enabled the stack tracer on boot up.

View File

@ -11,24 +11,56 @@ in AArch64 Linux.
The kernel configures the translation tables so that translations made
via TTBR0 (i.e. userspace mappings) have the top byte (bits 63:56) of
the virtual address ignored by the translation hardware. This frees up
this byte for application use, with the following caveats:
this byte for application use.
(1) The kernel requires that all user addresses passed to EL1
are tagged with tag 0x00. This means that any syscall
parameters containing user virtual addresses *must* have
their top byte cleared before trapping to the kernel.
(2) Non-zero tags are not preserved when delivering signals.
This means that signal handlers in applications making use
of tags cannot rely on the tag information for user virtual
addresses being maintained for fields inside siginfo_t.
One exception to this rule is for signals raised in response
to watchpoint debug exceptions, where the tag information
will be preserved.
Passing tagged addresses to the kernel
--------------------------------------
(3) Special care should be taken when using tagged pointers,
since it is likely that C compilers will not hazard two
virtual addresses differing only in the upper byte.
All interpretation of userspace memory addresses by the kernel assumes
an address tag of 0x00.
This includes, but is not limited to, addresses found in:
- pointer arguments to system calls, including pointers in structures
passed to system calls,
- the stack pointer (sp), e.g. when interpreting it to deliver a
signal,
- the frame pointer (x29) and frame records, e.g. when interpreting
them to generate a backtrace or call graph.
Using non-zero address tags in any of these locations may result in an
error code being returned, a (fatal) signal being raised, or other modes
of failure.
For these reasons, passing non-zero address tags to the kernel via
system calls is forbidden, and using a non-zero address tag for sp is
strongly discouraged.
Programs maintaining a frame pointer and frame records that use non-zero
address tags may suffer impaired or inaccurate debug and profiling
visibility.
Preserving tags
---------------
Non-zero tags are not preserved when delivering signals. This means that
signal handlers in applications making use of tags cannot rely on the
tag information for user virtual addresses being maintained for fields
inside siginfo_t. One exception to this rule is for signals raised in
response to watchpoint debug exceptions, where the tag information will
be preserved.
The architecture prevents the use of a tagged PC, so the upper byte will
be set to a sign-extension of bit 55 on exception return.
Other considerations
--------------------
Special care should be taken when using tagged pointers, since it is
likely that C compilers will not hazard two virtual addresses differing
only in the upper byte.

View File

@ -11,6 +11,13 @@ controllers), BFQ's main features are:
groups (switching back to time distribution when needed to keep
throughput high).
In its default configuration, BFQ privileges latency over
throughput. So, when needed for achieving a lower latency, BFQ builds
schedules that may lead to a lower throughput. If your main or only
goal, for a given device, is to achieve the maximum-possible
throughput at all times, then do switch off all low-latency heuristics
for that device, by setting low_latency to 0. Full details in Section 3.
On average CPUs, the current version of BFQ can handle devices
performing at most ~30K IOPS; at most ~50 KIOPS on faster CPUs. As a
reference, 30-50 KIOPS correspond to very high bandwidths with
@ -375,11 +382,19 @@ default, low latency mode is enabled. If enabled, interactive and soft
real-time applications are privileged and experience a lower latency,
as explained in more detail in the description of how BFQ works.
DO NOT enable this mode if you need full control on bandwidth
DISABLE this mode if you need full control on bandwidth
distribution. In fact, if it is enabled, then BFQ automatically
increases the bandwidth share of privileged applications, as the main
means to guarantee a lower latency to them.
In addition, as already highlighted at the beginning of this document,
DISABLE this mode if your only goal is to achieve a high throughput.
In fact, privileging the I/O of some application over the rest may
entail a lower throughput. To achieve the highest-possible throughput
on a non-rotational device, setting slice_idle to 0 may be needed too
(at the cost of giving up any strong guarantee on fairness and low
latency).
timeout_sync
------------

View File

@ -918,6 +918,18 @@ PAGE_SIZE multiple when read back.
Number of major page faults incurred
workingset_refault
Number of refaults of previously evicted pages
workingset_activate
Number of refaulted pages that were immediately activated
workingset_nodereclaim
Number of times a shadow node has been reclaimed
memory.swap.current
A read-only single value file which exists on non-root

View File

@ -0,0 +1,31 @@
OP-TEE Device Tree Bindings
OP-TEE is a piece of software using hardware features to provide a Trusted
Execution Environment. The security can be provided with ARM TrustZone, but
also by virtualization or a separate chip.
We're using "linaro" as the first part of the compatible property for
the reference implementation maintained by Linaro.
* OP-TEE based on ARM TrustZone required properties:
- compatible : should contain "linaro,optee-tz"
- method : The method of calling the OP-TEE Trusted OS. Permitted
values are:
"smc" : SMC #0, with the register assignments specified
in drivers/tee/optee/optee_smc.h
"hvc" : HVC #0, with the register assignments specified
in drivers/tee/optee/optee_smc.h
Example:
firmware {
optee {
compatible = "linaro,optee-tz";
method = "smc";
};
};

View File

@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-apmixedsys"
- "mediatek,mt6797-apmixedsys"
- "mediatek,mt8135-apmixedsys"
- "mediatek,mt8173-apmixedsys"
- #clock-cells: Must be 1

View File

@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-imgsys", "syscon"
- "mediatek,mt6797-imgsys", "syscon"
- "mediatek,mt8173-imgsys", "syscon"
- #clock-cells: Must be 1

View File

@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-infracfg", "syscon"
- "mediatek,mt6797-infracfg", "syscon"
- "mediatek,mt8135-infracfg", "syscon"
- "mediatek,mt8173-infracfg", "syscon"
- #clock-cells: Must be 1

View File

@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-mmsys", "syscon"
- "mediatek,mt6797-mmsys", "syscon"
- "mediatek,mt8173-mmsys", "syscon"
- #clock-cells: Must be 1

View File

@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-topckgen"
- "mediatek,mt6797-topckgen"
- "mediatek,mt8135-topckgen"
- "mediatek,mt8173-topckgen"
- #clock-cells: Must be 1

View File

@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-vdecsys", "syscon"
- "mediatek,mt6797-vdecsys", "syscon"
- "mediatek,mt8173-vdecsys", "syscon"
- #clock-cells: Must be 1

View File

@ -5,7 +5,8 @@ The Mediatek vencsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- compatible: Should be one of:
- "mediatek,mt6797-vencsys", "syscon"
- "mediatek,mt8173-vencsys", "syscon"
- #clock-cells: Must be 1

View File

@ -6,18 +6,21 @@ from 3 to 12 output clocks.
==I2C device node==
Required properties:
- compatible: shall be one of "idt,5p49v5923" , "idt,5p49v5933".
- compatible: shall be one of "idt,5p49v5923" , "idt,5p49v5933" ,
"idt,5p49v5935".
- reg: i2c device address, shall be 0x68 or 0x6a.
- #clock-cells: from common clock binding; shall be set to 1.
- clocks: from common clock binding; list of parent clock handles,
- 5p49v5923: (required) either or both of XTAL or CLKIN
reference clock.
- 5p49v5933: (optional) property not present (internal
- 5p49v5933 and
- 5p49v5935: (optional) property not present (internal
Xtal used) or CLKIN reference
clock.
- clock-names: from common clock binding; clock input names, can be
- 5p49v5923: (required) either or both of "xin", "clkin".
- 5p49v5933: (optional) property not present or "clkin".
- 5p49v5933 and
- 5p49v5935: (optional) property not present or "clkin".
==Mapping between clock specifier and physical pins==
@ -34,6 +37,13 @@ clock specifier, the following mapping applies:
1 -- OUT1
2 -- OUT4
5P49V5935:
0 -- OUT0_SEL_I2CB
1 -- OUT1
2 -- OUT2
3 -- OUT3
4 -- OUT4
==Example==
/* 25MHz reference crystal */

View File

@ -1,12 +1,12 @@
* Rockchip RK1108 Clock and Reset Unit
* Rockchip RV1108 Clock and Reset Unit
The RK1108 clock controller generates and supplies clock to various
The RV1108 clock controller generates and supplies clock to various
controllers within the SoC and also implements a reset controller for SoC
peripherals.
Required Properties:
- compatible: should be "rockchip,rk1108-cru"
- compatible: should be "rockchip,rv1108-cru"
- reg: physical base address of the controller and length of memory mapped
region.
- #clock-cells: should be 1.
@ -19,7 +19,7 @@ Optional Properties:
Each clock is assigned an identifier and client nodes can use this identifier
to specify the clock which they consume. All available clocks are defined as
preprocessor macros in the dt-bindings/clock/rk1108-cru.h headers and can be
preprocessor macros in the dt-bindings/clock/rv1108-cru.h headers and can be
used in device tree sources. Similar macros exist for the reset sources in
these files.
@ -38,7 +38,7 @@ clock-output-names:
Example: Clock controller node:
cru: cru@20200000 {
compatible = "rockchip,rk1108-cru";
compatible = "rockchip,rv1108-cru";
reg = <0x20200000 0x1000>;
rockchip,grf = <&grf>;
@ -50,7 +50,7 @@ Example: UART controller node that consumes the clock generated by the clock
controller:
uart0: serial@10230000 {
compatible = "rockchip,rk1108-uart", "snps,dw-apb-uart";
compatible = "rockchip,rv1108-uart", "snps,dw-apb-uart";
reg = <0x10230000 0x100>;
interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;

View File

@ -7,9 +7,12 @@ Required properties :
- "allwinner,sun8i-a23-ccu"
- "allwinner,sun8i-a33-ccu"
- "allwinner,sun8i-h3-ccu"
- "allwinner,sun8i-h3-r-ccu"
- "allwinner,sun8i-v3s-ccu"
- "allwinner,sun9i-a80-ccu"
- "allwinner,sun50i-a64-ccu"
- "allwinner,sun50i-a64-r-ccu"
- "allwinner,sun50i-h5-ccu"
- reg: Must contain the registers base address and length
- clocks: phandle to the oscillators feeding the CCU. Two are needed:
@ -19,7 +22,10 @@ Required properties :
- #clock-cells : must contain 1
- #reset-cells : must contain 1
Example:
For the PRCM CCUs on H3/A64, one more clock is needed:
- "iosc": the SoC's internal frequency oscillator
Example for generic CCU:
ccu: clock@01c20000 {
compatible = "allwinner,sun8i-h3-ccu";
reg = <0x01c20000 0x400>;
@ -28,3 +34,13 @@ ccu: clock@01c20000 {
#clock-cells = <1>;
#reset-cells = <1>;
};
Example for PRCM CCU:
r_ccu: clock@01f01400 {
compatible = "allwinner,sun50i-a64-r-ccu";
reg = <0x01f01400 0x100>;
clocks = <&osc24M>, <&osc32k>, <&iosc>;
clock-names = "hosc", "losc", "iosc";
#clock-cells = <1>;
#reset-cells = <1>;
};

View File

@ -13,6 +13,8 @@ Required nodes:
Additional, the display node has to define properties:
- bits-per-pixel: Bits per pixel
- fsl,pcr: LCDC PCR value
A display node may optionally define
- fsl,aus-mode: boolean to enable AUS mode (only for imx21)
Optional properties:
- lcd-supply: Regulator for LCD supply voltage.

View File

@ -60,6 +60,17 @@ conditions.
aliases of secure registers have to be used during
SMMU configuration.
- stream-match-mask : For SMMUs supporting stream matching and using
#iommu-cells = <1>, specifies a mask of bits to ignore
when matching stream IDs (e.g. this may be programmed
into the SMRn.MASK field of every stream match register
used). For cases where it is desirable to ignore some
portion of every Stream ID (e.g. for certain MMU-500
configurations given globally unique input IDs). This
property is not valid for SMMUs using stream indexing,
or using stream matching with #iommu-cells = <2>, and
may be ignored if present in such cases.
** Deprecated properties:
- mmu-masters (deprecated in favour of the generic "iommus" binding) :
@ -109,3 +120,20 @@ conditions.
master3 {
iommus = <&smmu2 1 0x30>;
};
/* ARM MMU-500 with 10-bit stream ID input configuration */
smmu3: iommu {
compatible = "arm,mmu-500", "arm,smmu-v2";
...
#iommu-cells = <1>;
/* always ignore appended 5-bit TBU number */
stream-match-mask = 0x7c00;
};
bus {
/* bus whose child devices emit one unique 10-bit stream
ID each, but may master through multiple SMMU TBUs */
iommu-map = <0 &smmu3 0 0x400>;
...
};

View File

@ -1,4 +1,109 @@
Atmel NAND flash
Atmel NAND flash controller bindings
The NAND flash controller node should be defined under the EBI bus (see
Documentation/devicetree/bindings/memory-controllers/atmel,ebi.txt).
One or several NAND devices can be defined under this NAND controller.
The NAND controller might be connected to an ECC engine.
* NAND controller bindings:
Required properties:
- compatible: should be one of the following
"atmel,at91rm9200-nand-controller"
"atmel,at91sam9260-nand-controller"
"atmel,at91sam9261-nand-controller"
"atmel,at91sam9g45-nand-controller"
"atmel,sama5d3-nand-controller"
- ranges: empty ranges property to forward EBI ranges definitions.
- #address-cells: should be set to 2.
- #size-cells: should be set to 1.
- atmel,nfc-io: phandle to the NFC IO block. Only required for sama5d3
controllers.
- atmel,nfc-sram: phandle to the NFC SRAM block. Only required for sama5d3
controllers.
Optional properties:
- ecc-engine: phandle to the PMECC block. Only meaningful if the SoC embeds
a PMECC engine.
* NAND device/chip bindings:
Required properties:
- reg: describes the CS lines assigned to the NAND device. If the NAND device
exposes multiple CS lines (multi-dies chips), your reg property will
contain X tuples of 3 entries.
1st entry: the CS line this NAND chip is connected to
2nd entry: the base offset of the memory region assigned to this
device (always 0)
3rd entry: the memory region size (always 0x800000)
Optional properties:
- rb-gpios: the GPIO(s) used to check the Ready/Busy status of the NAND.
- cs-gpios: the GPIO(s) used to control the CS line.
- det-gpios: the GPIO used to detect if a Smartmedia Card is present.
- atmel,rb: an integer identifying the native Ready/Busy pin. Only meaningful
on sama5 SoCs.
All generic properties described in
Documentation/devicetree/bindings/mtd/{common,nand}.txt also apply to the NAND
device node, and NAND partitions should be defined under the NAND node as
described in Documentation/devicetree/bindings/mtd/partition.txt.
* ECC engine (PMECC) bindings:
Required properties:
- compatible: should be one of the following
"atmel,at91sam9g45-pmecc"
"atmel,sama5d4-pmecc"
"atmel,sama5d2-pmecc"
- reg: should contain 2 register ranges. The first one is pointing to the PMECC
block, and the second one to the PMECC_ERRLOC block.
Example:
pmecc: ecc-engine@ffffc070 {
compatible = "atmel,at91sam9g45-pmecc";
reg = <0xffffc070 0x490>,
<0xffffc500 0x100>;
};
ebi: ebi@10000000 {
compatible = "atmel,sama5d3-ebi";
#address-cells = <2>;
#size-cells = <1>;
atmel,smc = <&hsmc>;
reg = <0x10000000 0x10000000
0x40000000 0x30000000>;
ranges = <0x0 0x0 0x10000000 0x10000000
0x1 0x0 0x40000000 0x10000000
0x2 0x0 0x50000000 0x10000000
0x3 0x0 0x60000000 0x10000000>;
clocks = <&mck>;
nand_controller: nand-controller {
compatible = "atmel,sama5d3-nand-controller";
atmel,nfc-sram = <&nfc_sram>;
atmel,nfc-io = <&nfc_io>;
ecc-engine = <&pmecc>;
#address-cells = <2>;
#size-cells = <1>;
ranges;
nand@3 {
reg = <0x3 0x0 0x800000>;
atmel,rb = <0>;
/*
* Put generic NAND/MTD properties and
* subnodes here.
*/
};
};
};
-----------------------------------------------------------------------
Deprecated bindings (should not be used in new device trees):
Required properties:
- compatible: The possible values are:

View File

@ -1,11 +1,11 @@
* Denali NAND controller
Required properties:
- compatible : should be "denali,denali-nand-dt"
- compatible : should be one of the following:
"altr,socfpga-denali-nand" - for Altera SOCFPGA
- reg : should contain registers location and length for data and reg.
- reg-names: Should contain the reg names "nand_data" and "denali_reg"
- interrupts : The interrupt number.
- dm-mask : DMA bit mask
The device tree may optionally contain sub-nodes describing partitions of the
address space. See partition.txt for more detail.
@ -15,9 +15,8 @@ Examples:
nand: nand@ff900000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "denali,denali-nand-dt";
compatible = "altr,socfpga-denali-nand";
reg = <0xff900000 0x100000>, <0xffb80000 0x10000>;
reg-names = "nand_data", "denali_reg";
interrupts = <0 144 4>;
dma-mask = <0xffffffff>;
};

View File

@ -12,7 +12,7 @@ Required properties:
- #address-cells, #size-cells : Must be present if the device has sub-nodes
representing partitions.
- gpios : Specifies the GPIO pins to control the NAND device. The order of
GPIO references is: RDY, nCE, ALE, CLE, and an optional nWP.
GPIO references is: RDY, nCE, ALE, CLE, and nWP. nCE and nWP are optional.
Optional properties:
- bank-width : Width (in bytes) of the device. If not present, the width
@ -36,7 +36,7 @@ gpio-nand@1,0 {
#address-cells = <1>;
#size-cells = <1>;
gpios = <&banka 1 0>, /* RDY */
<&banka 2 0>, /* nCE */
<0>, /* nCE */
<&banka 3 0>, /* ALE */
<&banka 4 0>, /* CLE */
<0>; /* nWP */

View File

@ -0,0 +1,43 @@
* STMicroelectronics Quad Serial Peripheral Interface(QuadSPI)
Required properties:
- compatible: should be "st,stm32f469-qspi"
- reg: the first contains the register location and length.
the second contains the memory mapping address and length
- reg-names: should contain the reg names "qspi" "qspi_mm"
- interrupts: should contain the interrupt for the device
- clocks: the phandle of the clock needed by the QSPI controller
- A pinctrl must be defined to set pins in mode of operation for QSPI transfer
Optional properties:
- resets: must contain the phandle to the reset controller.
A spi flash must be a child of the nor_flash node and could have some
properties. Also see jedec,spi-nor.txt.
Required properties:
- reg: chip-Select number (QSPI controller may connect 2 nor flashes)
- spi-max-frequency: max frequency of spi bus
Optional property:
- spi-rx-bus-width: see ../spi/spi-bus.txt for the description
Example:
qspi: spi@a0001000 {
compatible = "st,stm32f469-qspi";
reg = <0xa0001000 0x1000>, <0x90000000 0x10000000>;
reg-names = "qspi", "qspi_mm";
interrupts = <91>;
resets = <&rcc STM32F4_AHB3_RESET(QSPI)>;
clocks = <&rcc 0 STM32F4_AHB3_CLOCK(QSPI)>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_qspi0>;
flash@0 {
reg = <0>;
spi-rx-bus-width = <4>;
spi-max-frequency = <108000000>;
...
};
};

View File

@ -81,7 +81,7 @@ Example 3:
child: power-controller@12341000 {
compatible = "foo,power-controller";
reg = <0x12341000 0x1000>;
power-domains = <&parent 0>;
power-domains = <&parent>;
#power-domain-cells = <0>;
domain-idle-states = <&DOMAIN_PWR_DN>;
};

View File

@ -0,0 +1,20 @@
AXP20x and AXP22x battery power supply
Required Properties:
- compatible, one of:
"x-powers,axp209-battery-power-supply"
"x-powers,axp221-battery-power-supply"
This node is a subnode of the axp20x/axp22x PMIC.
The AXP20X and AXP22X can read the battery voltage, charge and discharge
currents of the battery by reading ADC channels from the AXP20X/AXP22X
ADC.
Example:
&axp209 {
battery_power_supply: battery-power-supply {
compatible = "x-powers,axp209-battery-power-supply";
}
};

View File

@ -0,0 +1,248 @@
*** NOTE ***
This document is copied from OPAL firmware
(skiboot/doc/device-tree/ibm,powerpc-cpu-features/binding.txt)
There is more complete overview and documentation of features in that
source tree. All patches and modifications should go there.
************
ibm,powerpc-cpu-features binding
================================
This device tree binding describes CPU features available to software, with
enablement, privilege, and compatibility metadata.
More general description of design and implementation of this binding is
found in design.txt, which also points to documentation of specific features.
/cpus/ibm,powerpc-cpu-features node binding
-------------------------------------------
Node: ibm,powerpc-cpu-features
Description: Container of CPU feature nodes.
The node name must be "ibm,powerpc-cpu-features".
It is implemented as a child of the node "/cpus", but this must not be
assumed by parsers.
The node is optional but should be provided by new OPAL firmware.
Properties:
- compatible
Usage: required
Value type: string
Definition: "ibm,powerpc-cpu-features"
This compatibility refers to backwards compatibility of the overall
design with parsers that behave according to these guidelines. This can
be extended in a backward compatible manner which would not warrant a
revision of the compatible property.
- isa
Usage: required
Value type: <u32>
Definition:
isa that the CPU is currently running in. This provides instruction set
compatibility, less the individual feature nodes. For example, an ISA v3.0
implementation that lacks the "transactional-memory" cpufeature node
should not use transactional memory facilities.
Value corresponds to the "Power ISA Version" multiplied by 1000.
For example, <3000> corresponds to Version 3.0, <2070> to Version 2.07.
The minor digit is available for revisions.
- display-name
Usage: optional
Value type: string
Definition:
A human readable name for the CPU.
/cpus/ibm,powerpc-cpu-features/example-feature node bindings
----------------------------------------------------------------
Each child node of cpu-features represents a CPU feature / capability.
Node: A string describing an architected CPU feature, e.g., "floating-point".
Description: A feature or capability supported by the CPUs.
The name of the node is a human readable string that forms the interface
used to describe features to software. Features are currently documented
in the code where they are implemented in skiboot/core/cpufeatures.c
Presence of the node indicates the feature is available.
Properties:
- isa
Usage: required
Value type: <u32>
Definition:
First level of the Power ISA that the feature appears in.
Software should filter out features when constraining the
environment to a particular ISA version.
Value is defined similarly to /cpus/features/isa
- usable-privilege
Usage: required
Value type: <u32> bit mask
Definition:
Bit numbers are LSB0
bit 0 - PR (problem state / user mode)
bit 1 - OS (privileged state)
bit 2 - HV (hypervisor state)
All other bits reserved and should be zero.
This property describes the privilege levels and/or software components
that can use the feature.
If bit 0 is set, then the hwcap-bit-nr property will exist.
- hv-support
Usage: optional
Value type: <u32> bit mask
Definition:
Bit numbers are LSB0
bit 0 - HFSCR
All other bits reserved and should be zero.
This property describes the HV privilege support required to enable the
feature to lesser privilege levels. If the property does not exist then no
support is required.
If no bits are set, the hypervisor must have explicit/custom support for
this feature.
If the HFSCR bit is set, then the hfscr-bit-nr property will exist and
the feature may be enabled by setting this bit in the HFSCR register.
- os-support
Usage: optional
Value type: <u32> bit mask
Definition:
Bit numbers are LSB0
bit 0 - FSCR
All other bits reserved and should be zero.
This property describes the OS privilege support required to enable the
feature to lesser privilege levels. If the property does not exist then no
support is required.
If no bits are set, the operating system must have explicit/custom support
for this feature.
If the FSCR bit is set, then the fscr-bit-nr property will exist and
the feature may be enabled by setting this bit in the FSCR register.
- hfscr-bit-nr
Usage: optional
Value type: <u32>
Definition: HFSCR bit position (LSB0)
This property exists when the hv-support property HFSCR bit is set. This
property describes the bit number in the HFSCR register that the
hypervisor must set in order to enable this feature.
This property also exists if an HFSCR bit corresponds with this feature.
This makes CPU feature parsing slightly simpler.
- fscr-bit-nr
Usage: optional
Value type: <u32>
Definition: FSCR bit position (LSB0)
This property exists when the os-support property FSCR bit is set. This
property describes the bit number in the FSCR register that the
operating system must set in order to enable this feature.
This property also exists if an FSCR bit corresponds with this feature.
This makes CPU feature parsing slightly simpler.
- hwcap-bit-nr
Usage: optional
Value type: <u32>
Definition: Linux ELF AUX vector bit position (LSB0)
This property may exist when the usable-privilege property value has PR bit set.
This property describes the bit number that should be set in the ELF AUX
hardware capability vectors in order to advertise this feature to userspace.
Bits 0-31 correspond to bits 0-31 in AT_HWCAP vector. Bits 32-63 correspond
to 0-31 in AT_HWCAP2 vector, and so on. Missing AT_HWCAPx vectors implies
that the feature is not enabled or can not be advertised. Operating systems
may provide a number of unassigned hardware capability bits to allow for new
features to be advertised.
Some properties representing features created before this binding are
advertised to userspace without a one-to-one hwcap bit number may not specify
this bit. Operating system will handle those bits specifically. All new
features usable by userspace will have a hwcap-bit-nr property.
- dependencies
Usage: optional
Value type: <prop-encoded-array>
Definition:
If this property exists then it is a list of phandles to cpu feature
nodes that must be enabled for this feature to be enabled.
Example
-------
/cpus/ibm,powerpc-cpu-features {
compatible = "ibm,powerpc-cpu-features";
isa = <3020>;
darn {
isa = <3000>;
usable-privilege = <1 | 2 | 4>;
hwcap-bit-nr = <xx>;
};
scv {
isa = <3000>;
usable-privilege = <1 | 2>;
os-support = <0>;
hwcap-bit-nr = <xx>;
};
stop {
isa = <3000>;
usable-privilege = <2 | 4>;
hv-support = <0>;
os-support = <0>;
};
vsx2 (hypothetical) {
isa = <3010>;
usable-privilege = <1 | 2 | 4>;
hv-support = <0>;
os-support = <0>;
hwcap-bit-nr = <xx>;
};
vsx2-newinsns {
isa = <3020>;
usable-privilege = <1 | 2 | 4>;
os-support = <1>;
fscr-bit-nr = <xx>;
hwcap-bit-nr = <xx>;
dependencies = <&vsx2>;
};
};

View File

@ -4,6 +4,7 @@ Required properties:
- compatible: should be one of:
- "atmel,at91sam9rl-pwm"
- "atmel,sama5d3-pwm"
- "atmel,sama5d2-pwm"
- reg: physical base address and length of the controller's registers
- #pwm-cells: Should be 3. See pwm.txt in this directory for a
description of the cells format.

View File

@ -19,6 +19,19 @@ Required properties:
- reset-names: Must include the following entries:
- pwm
Optional properties:
============================
In some of the interface like PWM based regulator device, it is required
to configure the pins differently in different states, especially in suspend
state of the system. The configuration of pin is provided via the pinctrl
DT node as detailed in the pinctrl DT binding document
Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
The PWM node will have following optional properties.
pinctrl-names: Pin state names. Must be "default" and "sleep".
pinctrl-0: phandle for the default/active state of pin configurations.
pinctrl-1: phandle for the sleep state of pin configurations.
Example:
pwm: pwm@7000a000 {
@ -29,3 +42,35 @@ Example:
resets = <&tegra_car 17>;
reset-names = "pwm";
};
Example with the pin configuration for suspend and resume:
=========================================================
Suppose pin PE7 (On Tegra210) interfaced with the regulator device and
it requires PWM output to be tristated when system enters suspend.
Following will be DT binding to achieve this:
#include <dt-bindings/pinctrl/pinctrl-tegra.h>
pinmux@700008d4 {
pwm_active_state: pwm_active_state {
pe7 {
nvidia,pins = "pe7";
nvidia,tristate = <TEGRA_PIN_DISABLE>;
};
};
pwm_sleep_state: pwm_sleep_state {
pe7 {
nvidia,pins = "pe7";
nvidia,tristate = <TEGRA_PIN_ENABLE>;
};
};
};
pwm@7000a000 {
/* Mandatory PWM properties */
pinctrl-names = "default", "sleep";
pinctrl-0 = <&pwm_active_state>;
pinctrl-1 = <&pwm_sleep_state>;
};

View File

@ -0,0 +1,34 @@
MediaTek PWM controller
Required properties:
- compatible: should be "mediatek,<name>-pwm":
- "mediatek,mt7623-pwm": found on mt7623 SoC.
- reg: physical base address and length of the controller's registers.
- #pwm-cells: must be 2. See pwm.txt in this directory for a description of
the cell format.
- clocks: phandle and clock specifier of the PWM reference clock.
- clock-names: must contain the following:
- "top": the top clock generator
- "main": clock used by the PWM core
- "pwm1-5": the five per PWM clocks
- pinctrl-names: Must contain a "default" entry.
- pinctrl-0: One property must exist for each entry in pinctrl-names.
See pinctrl/pinctrl-bindings.txt for details of the property values.
Example:
pwm0: pwm@11006000 {
compatible = "mediatek,mt7623-pwm";
reg = <0 0x11006000 0 0x1000>;
#pwm-cells = <2>;
clocks = <&topckgen CLK_TOP_PWM_SEL>,
<&pericfg CLK_PERI_PWM>,
<&pericfg CLK_PERI_PWM1>,
<&pericfg CLK_PERI_PWM2>,
<&pericfg CLK_PERI_PWM3>,
<&pericfg CLK_PERI_PWM4>,
<&pericfg CLK_PERI_PWM5>;
clock-names = "top", "main", "pwm1", "pwm2",
"pwm3", "pwm4", "pwm5";
pinctrl-names = "default";
pinctrl-0 = <&pwm0_pins>;
};

View File

@ -0,0 +1,18 @@
Motorola CPCAP PMIC RTC
-----------------------
This module is part of the CPCAP. For more details about the whole
chip see Documentation/devicetree/bindings/mfd/motorola-cpcap.txt.
Requires node properties:
- compatible: should contain "motorola,cpcap-rtc"
- interrupts: An interrupt specifier for alarm and 1 Hz irq
Example:
&cpcap {
cpcap_rtc: rtc {
compatible = "motorola,cpcap-rtc";
interrupts = <39 IRQ_TYPE_NONE>, <26 IRQ_TYPE_NONE>;
};
};

View File

@ -0,0 +1,28 @@
* Real Time Clock for Renesas SH and ARM SoCs
Required properties:
- compatible: Should be "renesas,r7s72100-rtc" and "renesas,sh-rtc" as a
fallback.
- reg: physical base address and length of memory mapped region.
- interrupts: 3 interrupts for alarm, period, and carry.
- interrupt-names: The interrupts should be labeled as "alarm", "period", and
"carry".
- clocks: The functional clock source for the RTC controller must be listed
first (if exists). Additionally, potential clock counting sources are to be
listed.
- clock-names: The functional clock must be labeled as "fck". Other clocks
may be named in accordance to the SoC hardware manuals.
Example:
rtc: rtc@fcff1000 {
compatible = "renesas,r7s72100-rtc", "renesas,sh-rtc";
reg = <0xfcff1000 0x2e>;
interrupts = <GIC_SPI 276 IRQ_TYPE_EDGE_RISING
GIC_SPI 277 IRQ_TYPE_EDGE_RISING
GIC_SPI 278 IRQ_TYPE_EDGE_RISING>;
interrupt-names = "alarm", "period", "carry";
clocks = <&mstp6_clks R7S72100_CLK_RTC>, <&rtc_x1_clk>,
<&rtc_x3_clk>, <&extal_clk>;
clock-names = "fck", "rtc_x1", "rtc_x3", "extal";
};

View File

@ -13,8 +13,17 @@ Required properties:
- #gpio-cells : Should be two. The first cell is the pin number and the
second cell is used to specify optional parameters (currently unused).
- gpio-controller : Marks the port as GPIO controller.
Optional properties:
- fsl,cpm1-gpio-irq-mask : For banks having interrupt capability (like port C
on CPM1), this item tells which ports have an associated interrupt (ports are
listed in the same order as in PCINT register)
- interrupts : This property provides the list of interrupt for each GPIO having
one as described by the fsl,cpm1-gpio-irq-mask property. There should be as
many interrupts as number of ones in the mask property. The first interrupt in
the list corresponds to the most significant bit of the mask.
- interrupt-parent : Parent for the above interrupt property.
Example of three SOC GPIO banks defined as gpio-controller nodes:
Example of four SOC GPIO banks defined as gpio-controller nodes:
CPM1_PIO_A: gpio-controller@950 {
#gpio-cells = <2>;
@ -30,6 +39,16 @@ Example of three SOC GPIO banks defined as gpio-controller nodes:
gpio-controller;
};
CPM1_PIO_C: gpio-controller@960 {
#gpio-cells = <2>;
compatible = "fsl,cpm1-pario-bank-c";
reg = <0x960 0x10>;
fsl,cpm1-gpio-irq-mask = <0x0fff>;
interrupts = <1 2 6 9 10 11 14 15 23 24 26 31>;
interrupt-parent = <&CPM_PIC>;
gpio-controller;
};
CPM1_PIO_E: gpio-controller@ac8 {
#gpio-cells = <2>;
compatible = "fsl,cpm1-pario-bank-e";

View File

@ -3,15 +3,39 @@ Binding for Thermal Sensor driver for BCM2835 SoCs.
Required parameters:
-------------------
compatible: should be one of: "brcm,bcm2835-thermal",
"brcm,bcm2836-thermal" or "brcm,bcm2837-thermal"
reg: Address range of the thermal registers.
clocks: Phandle of the clock used by the thermal sensor.
compatible: should be one of: "brcm,bcm2835-thermal",
"brcm,bcm2836-thermal" or "brcm,bcm2837-thermal"
reg: Address range of the thermal registers.
clocks: Phandle of the clock used by the thermal sensor.
#thermal-sensor-cells: should be 0 (see thermal.txt)
Example:
thermal-zones {
cpu_thermal: cpu-thermal {
polling-delay-passive = <0>;
polling-delay = <1000>;
thermal-sensors = <&thermal>;
trips {
cpu-crit {
temperature = <80000>;
hysteresis = <0>;
type = "critical";
};
};
coefficients = <(-538) 407000>;
cooling-maps {
};
};
};
thermal: thermal@7e212000 {
compatible = "brcm,bcm2835-thermal";
reg = <0x7e212000 0x8>;
clocks = <&clocks BCM2835_CLOCK_TSENS>;
#thermal-sensor-cells = <0>;
};

View File

@ -0,0 +1,37 @@
* Broadcom Northstar Thermal
This binding describes thermal sensor that is part of Northstar's DMU (Device
Management Unit).
Required properties:
- compatible : Must be "brcm,ns-thermal"
- reg : iomem address range of PVTMON registers
- #thermal-sensor-cells : Should be <0>
Example:
thermal: thermal@1800c2c0 {
compatible = "brcm,ns-thermal";
reg = <0x1800c2c0 0x10>;
#thermal-sensor-cells = <0>;
};
thermal-zones {
cpu_thermal: cpu-thermal {
polling-delay-passive = <0>;
polling-delay = <1000>;
coefficients = <(-556) 418000>;
thermal-sensors = <&thermal>;
trips {
cpu-crit {
temperature = <125000>;
hysteresis = <0>;
type = "critical";
};
};
cooling-maps {
};
};
};

View File

@ -0,0 +1,36 @@
* Dialog DA9062/61 TJUNC Thermal Module
This module is part of the DA9061/DA9062. For more details about entire
DA9062 and DA9061 chips see Documentation/devicetree/bindings/mfd/da9062.txt
Junction temperature thermal module uses an interrupt signal to identify
high THERMAL_TRIP_HOT temperatures for the PMIC device.
Required properties:
- compatible: should be one of the following valid compatible string lines:
"dlg,da9061-thermal", "dlg,da9062-thermal"
"dlg,da9062-thermal"
Optional properties:
- polling-delay-passive : Specify the polling period, measured in
milliseconds, between thermal zone device update checks.
Example: DA9062
pmic0: da9062@58 {
thermal {
compatible = "dlg,da9062-thermal";
polling-delay-passive = <3000>;
};
};
Example: DA9061 using a fall-back compatible for the DA9062 onkey driver
pmic0: da9061@58 {
thermal {
compatible = "dlg,da9061-thermal", "dlg,da9062-thermal";
polling-delay-passive = <3000>;
};
};

View File

@ -160,6 +160,7 @@ sii,s35390a 2-wire CMOS real-time clock
silabs,si7020 Relative Humidity and Temperature Sensors
skyworks,sky81452 Skyworks SKY81452: Six-Channel White LED Driver with Touch Panel Bias Supply
st,24c256 i2c serial eeprom (24cxx)
st,m41t0 Serial real-time clock (RTC)
st,m41t00 Serial real-time clock (RTC)
st,m41t62 Serial real-time clock (RTC) with alarm
st,m41t80 M41T80 - SERIAL ACCESS RTC WITH ALARMS

View File

@ -18,10 +18,26 @@ Required properties:
- phy-names: Should be "usb-phy"
- dmas: specifies the dma channels
- dma-names: specifies the names of the channels. Use "rxN" for receive
and "txN" for transmit endpoints. N specifies the endpoint number.
Optional properties:
~~~~~~~~~~~~~~~~~~~~
- vbus-supply: Phandle to a regulator providing the USB bus power.
DMA
~~~
- compatible: ti,da830-cppi41
- reg: offset and length of the following register spaces: CPPI DMA Controller,
CPPI DMA Scheduler, Queue Manager
- reg-names: "controller", "scheduler", "queuemgr"
- #dma-cells: should be set to 2. The first number represents the
channel number (0 … 3 for endpoints 1 … 4).
The second number is 0 for RX and 1 for TX transfers.
- #dma-channels: should be set to 4 representing the 4 endpoints.
Example:
usb_phy: usb-phy {
compatible = "ti,da830-usb-phy";
@ -30,7 +46,10 @@ Example:
};
usb0: usb@200000 {
compatible = "ti,da830-musb";
reg = <0x00200000 0x10000>;
reg = <0x00200000 0x1000>;
ranges;
#address-cells = <1>;
#size-cells = <1>;
interrupts = <58>;
interrupt-names = "mc";
@ -39,5 +58,25 @@ Example:
phys = <&usb_phy 0>;
phy-names = "usb-phy";
dmas = <&cppi41dma 0 0 &cppi41dma 1 0
&cppi41dma 2 0 &cppi41dma 3 0
&cppi41dma 0 1 &cppi41dma 1 1
&cppi41dma 2 1 &cppi41dma 3 1>;
dma-names =
"rx1", "rx2", "rx3", "rx4",
"tx1", "tx2", "tx3", "tx4";
status = "okay";
cppi41dma: dma-controller@201000 {
compatible = "ti,da830-cppi41";
reg = <0x201000 0x1000
0x202000 0x1000
0x204000 0x4000>;
reg-names = "controller", "scheduler", "queuemgr";
interrupts = <58>;
#dma-cells = <2>;
#dma-channels = <4>;
};
};

View File

@ -173,6 +173,7 @@ lego LEGO Systems A/S
lenovo Lenovo Group Ltd.
lg LG Corporation
licheepi Lichee Pi
linaro Linaro Limited
linux Linux-specific binding
lltc Linear Technology Corporation
lsi LSI Corp. (LSI Logic)
@ -196,6 +197,7 @@ minix MINIX Technology Ltd.
miramems MiraMEMS Sensing Technology Co., Ltd.
mitsubishi Mitsubishi Electric Corporation
mosaixtech Mosaix Technologies, Inc.
motorola Motorola, Inc.
moxa Moxa
mpl MPL AG
mqmaker mqmaker Inc.

View File

@ -54,4 +54,4 @@ The first 4 bytes should be 0x1badface.
If you have any patches, questions or suggestions regarding this BFS
implementation please contact the author:
Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Tigran Aivazian <aivazian.tigran@gmail.com>

View File

@ -64,46 +64,9 @@ table which are called by the nfs-client pnfs-core to implement the
different layout types.
Files-layout-driver code is in: fs/nfs/filelayout/.. directory
Objects-layout-driver code is in: fs/nfs/objlayout/.. directory
Blocks-layout-driver code is in: fs/nfs/blocklayout/.. directory
Flexfiles-layout-driver code is in: fs/nfs/flexfilelayout/.. directory
objects-layout setup
--------------------
As part of the full STD implementation the objlayoutdriver.ko needs, at times,
to automatically login to yet undiscovered iscsi/osd devices. For this the
driver makes up-calles to a user-mode script called *osd_login*
The path_name of the script to use is by default:
/sbin/osd_login.
This name can be overridden by the Kernel module parameter:
objlayoutdriver.osd_login_prog
If Kernel does not find the osd_login_prog path it will zero it out
and will not attempt farther logins. An admin can then write new value
to the objlayoutdriver.osd_login_prog Kernel parameter to re-enable it.
The /sbin/osd_login is part of the nfs-utils package, and should usually
be installed on distributions that support this Kernel version.
The API to the login script is as follows:
Usage: $0 -u <URI> -o <OSDNAME> -s <SYSTEMID>
Options:
-u target uri e.g. iscsi://<ip>:<port>
(always exists)
(More protocols can be defined in the future.
The client does not interpret this string it is
passed unchanged as received from the Server)
-o osdname of the requested target OSD
(Might be empty)
(A string which denotes the OSD name, there is a
limit of 64 chars on this string)
-s systemid of the requested target OSD
(Might be empty)
(This string, if not empty is always an hex
representation of the 20 bytes osd_system_id)
blocks-layout setup
-------------------

View File

@ -21,12 +21,19 @@ from accessing the corresponding object from the original filesystem.
This is most obvious from the 'st_dev' field returned by stat(2).
While directories will report an st_dev from the overlay-filesystem,
all non-directory objects will report an st_dev from the lower or
non-directory objects may report an st_dev from the lower filesystem or
upper filesystem that is providing the object. Similarly st_ino will
only be unique when combined with st_dev, and both of these can change
over the lifetime of a non-directory object. Many applications and
tools ignore these values and will not be affected.
In the special case of all overlay layers on the same underlying
filesystem, all objects will report an st_dev from the overlay
filesystem and st_ino from the underlying filesystem. This will
make the overlay mount more compliant with filesystem scanners and
overlay objects will be distinguishable from the corresponding
objects in the original filesystem.
Upper and Lower
---------------

View File

@ -309,6 +309,7 @@ Code Seq#(hex) Include File Comments
0xA3 80-8F Port ACL in development:
<mailto:tlewis@mindspring.com>
0xA3 90-9F linux/dtlk.h
0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
0xAA 00-3F linux/uapi/linux/userfaultfd.h
0xAB 00-1F linux/nbd.h
0xAC 00-1F linux/raw.h

View File

@ -44,11 +44,11 @@ This document describes the Linux kernel Makefiles.
--- 6.11 Post-link pass
=== 7 Kbuild syntax for exported headers
--- 7.1 header-y
--- 7.1 no-export-headers
--- 7.2 genhdr-y
--- 7.3 destination-y
--- 7.4 generic-y
--- 7.5 generated-y
--- 7.3 generic-y
--- 7.4 generated-y
--- 7.5 mandatory-y
=== 8 Kbuild Variables
=== 9 Makefile language
@ -1236,7 +1236,7 @@ When kbuild executes, the following steps are followed (roughly):
that may be shared between individual architectures.
The recommended approach how to use a generic header file is
to list the file in the Kbuild file.
See "7.4 generic-y" for further info on syntax etc.
See "7.3 generic-y" for further info on syntax etc.
--- 6.11 Post-link pass
@ -1263,53 +1263,32 @@ The pre-processing does:
- drop include of compiler.h
- drop all sections that are kernel internal (guarded by ifdef __KERNEL__)
Each relevant directory contains a file name "Kbuild" which specifies the
headers to be exported.
All headers under include/uapi/, include/generated/uapi/,
arch/<arch>/include/uapi/ and arch/<arch>/include/generated/uapi/
are exported.
A Kbuild file may be defined under arch/<arch>/include/uapi/asm/ and
arch/<arch>/include/asm/ to list asm files coming from asm-generic.
See subsequent chapter for the syntax of the Kbuild file.
--- 7.1 header-y
--- 7.1 no-export-headers
header-y specifies header files to be exported.
Example:
#include/linux/Kbuild
header-y += usb/
header-y += aio_abi.h
The convention is to list one file per line and
preferably in alphabetic order.
header-y also specifies which subdirectories to visit.
A subdirectory is identified by a trailing '/' which
can be seen in the example above for the usb subdirectory.
Subdirectories are visited before their parent directories.
no-export-headers is essentially used by include/uapi/linux/Kbuild to
avoid exporting specific headers (e.g. kvm.h) on architectures that do
not support it. It should be avoided as much as possible.
--- 7.2 genhdr-y
genhdr-y specifies generated files to be exported.
Generated files are special as they need to be looked
up in another directory when doing 'make O=...' builds.
genhdr-y specifies asm files to be generated.
Example:
#include/linux/Kbuild
genhdr-y += version.h
#arch/x86/include/uapi/asm/Kbuild
genhdr-y += unistd_32.h
genhdr-y += unistd_64.h
genhdr-y += unistd_x32.h
--- 7.3 destination-y
When an architecture has a set of exported headers that needs to be
exported to a different directory destination-y is used.
destination-y specifies the destination directory for all exported
headers in the file where it is present.
Example:
#arch/xtensa/platforms/s6105/include/platform/Kbuild
destination-y := include/linux
In the example above all exported headers in the Kbuild file
will be located in the directory "include/linux" when exported.
--- 7.4 generic-y
--- 7.3 generic-y
If an architecture uses a verbatim copy of a header from
include/asm-generic then this is listed in the file
@ -1336,7 +1315,7 @@ See subsequent chapter for the syntax of the Kbuild file.
Example: termios.h
#include <asm-generic/termios.h>
--- 7.5 generated-y
--- 7.4 generated-y
If an architecture generates other header files alongside generic-y
wrappers, and not included in genhdr-y, then generated-y specifies
@ -1349,6 +1328,15 @@ See subsequent chapter for the syntax of the Kbuild file.
#arch/x86/include/asm/Kbuild
generated-y += syscalls_32.h
--- 7.5 mandatory-y
mandatory-y is essentially used by include/uapi/asm-generic/Kbuild.asm
to define the minimun set of headers that must be exported in
include/asm.
The convention is to list one subdir per line and
preferably in alphabetic order.
=== 8 Kbuild Variables
The top Makefile exports the following variables:

View File

@ -768,7 +768,7 @@ equal to zero, in which case the compiler is within its rights to
transform the above code into the following:
q = READ_ONCE(a);
WRITE_ONCE(b, 1);
WRITE_ONCE(b, 2);
do_something_else();
Given this transformation, the CPU is not required to respect the ordering

View File

@ -0,0 +1,80 @@
#!/bin/sh
#
# This script illustrates the sequence of operations in configfs to
# create a very simple LIO iSCSI target with a file or block device
# backstore.
#
# (C) Copyright 2014 Christophe Vu-Brugier <cvubrugier@fastmail.fm>
#
print_usage() {
cat <<EOF
Usage: $(basename $0) [-p PORTAL] DEVICE|FILE
Export a block device or a file as an iSCSI target with a single LUN
EOF
}
die() {
echo $1
exit 1
}
while getopts "hp:" arg; do
case $arg in
h) print_usage; exit 0;;
p) PORTAL=${OPTARG};;
esac
done
shift $(($OPTIND - 1))
DEVICE=$1
[ -n "$DEVICE" ] || die "Missing device or file argument"
[ -b $DEVICE -o -f $DEVICE ] || die "Invalid device or file: ${DEVICE}"
IQN="iqn.2003-01.org.linux-iscsi.$(hostname):$(basename $DEVICE)"
[ -n "$PORTAL" ] || PORTAL="0.0.0.0:3260"
CONFIGFS=/sys/kernel/config
CORE_DIR=$CONFIGFS/target/core
ISCSI_DIR=$CONFIGFS/target/iscsi
# Load the target modules and mount the config file system
lsmod | grep -q configfs || modprobe configfs
lsmod | grep -q target_core_mod || modprobe target_core_mod
mount | grep -q ^configfs || mount -t configfs none $CONFIGFS
mkdir -p $ISCSI_DIR
# Create a backstore
if [ -b $DEVICE ]; then
BACKSTORE_DIR=$CORE_DIR/iblock_0/data
mkdir -p $BACKSTORE_DIR
echo "udev_path=${DEVICE}" > $BACKSTORE_DIR/control
else
BACKSTORE_DIR=$CORE_DIR/fileio_0/data
mkdir -p $BACKSTORE_DIR
DEVICE_SIZE=$(du -b $DEVICE | cut -f1)
echo "fd_dev_name=${DEVICE}" > $BACKSTORE_DIR/control
echo "fd_dev_size=${DEVICE_SIZE}" > $BACKSTORE_DIR/control
echo 1 > $BACKSTORE_DIR/attrib/emulate_write_cache
fi
echo 1 > $BACKSTORE_DIR/enable
# Create an iSCSI target and a target portal group (TPG)
mkdir $ISCSI_DIR/$IQN
mkdir $ISCSI_DIR/$IQN/tpgt_1/
# Create a LUN
mkdir $ISCSI_DIR/$IQN/tpgt_1/lun/lun_0
ln -s $BACKSTORE_DIR $ISCSI_DIR/$IQN/tpgt_1/lun/lun_0/data
echo 1 > $ISCSI_DIR/$IQN/tpgt_1/enable
# Create a network portal
mkdir $ISCSI_DIR/$IQN/tpgt_1/np/$PORTAL
# Disable authentication
echo 0 > $ISCSI_DIR/$IQN/tpgt_1/attrib/authentication
echo 1 > $ISCSI_DIR/$IQN/tpgt_1/attrib/generate_node_acls
# Allow write access for non authenticated initiators
echo 0 > $ISCSI_DIR/$IQN/tpgt_1/attrib/demo_mode_write_protect
echo "Target ${IQN}, portal ${PORTAL} has been created"

118
Documentation/tee.txt Normal file
View File

@ -0,0 +1,118 @@
TEE subsystem
This document describes the TEE subsystem in Linux.
A TEE (Trusted Execution Environment) is a trusted OS running in some
secure environment, for example, TrustZone on ARM CPUs, or a separate
secure co-processor etc. A TEE driver handles the details needed to
communicate with the TEE.
This subsystem deals with:
- Registration of TEE drivers
- Managing shared memory between Linux and the TEE
- Providing a generic API to the TEE
The TEE interface
=================
include/uapi/linux/tee.h defines the generic interface to a TEE.
User space (the client) connects to the driver by opening /dev/tee[0-9]* or
/dev/teepriv[0-9]*.
- TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor
which user space can mmap. When user space doesn't need the file
descriptor any more, it should be closed. When shared memory isn't needed
any longer it should be unmapped with munmap() to allow the reuse of
memory.
- TEE_IOC_VERSION lets user space know which TEE this driver handles and
the its capabilities.
- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
- TEE_IOC_INVOKE invokes a function in a Trusted Application.
- TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE.
- TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application.
There are two classes of clients, normal clients and supplicants. The latter is
a helper process for the TEE to access resources in Linux, for example file
system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
/dev/teepriv[0-9].
Much of the communication between clients and the TEE is opaque to the
driver. The main job for the driver is to receive requests from the
clients, forward them to the TEE and send back the results. In the case of
supplicants the communication goes in the other direction, the TEE sends
requests to the supplicant which then sends back the result.
OP-TEE driver
=============
The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
TrustZone based OP-TEE solution that is supported.
Lowest level of communication with OP-TEE builds on ARM SMC Calling
Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
[3] used internally by the driver. Stacked on top of that is OP-TEE Message
Protocol [4].
OP-TEE SMC interface provides the basic functions required by SMCCC and some
additional functions specific for OP-TEE. The most interesting functions are:
- OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
which is then returned by TEE_IOC_VERSION
- OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
separate secure co-processor.
- OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
- OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
range to used for shared memory between Linux and OP-TEE.
The GlobalPlatform TEE Client API [5] is implemented on top of the generic
TEE API.
Picture of the relationship between the different components in the
OP-TEE architecture.
User space Kernel Secure world
~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~
+--------+ +-------------+
| Client | | Trusted |
+--------+ | Application |
/\ +-------------+
|| +----------+ /\
|| |tee- | ||
|| |supplicant| \/
|| +----------+ +-------------+
\/ /\ | TEE Internal|
+-------+ || | API |
+ TEE | || +--------+--------+ +-------------+
| Client| || | TEE | OP-TEE | | OP-TEE |
| API | \/ | subsys | driver | | Trusted OS |
+-------+----------------+----+-------+----+-----------+-------------+
| Generic TEE API | | OP-TEE MSG |
| IOCTL (TEE_IOC_*) | | SMCCC (OPTEE_SMC_CALL_*) |
+-----------------------------+ +------------------------------+
RPC (Remote Procedure Call) are requests from secure world to kernel driver
or tee-supplicant. An RPC is identified by a special range of SMCCC return
values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
kernel are handled by the kernel driver. Other RPC messages will be forwarded to
tee-supplicant without further involvement of the driver, except switching
shared memory buffer representation.
References:
[1] https://github.com/OP-TEE/optee_os
[2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
[3] drivers/tee/optee/optee_smc.h
[4] drivers/tee/optee/optee_msg.h
[5] http://www.globalplatform.org/specificationsdevice.asp look for
"TEE Client API Specification v1.0" and click download.

View File

@ -582,3 +582,24 @@ platform data is provided, this uses the step_wise throttling policy.
This function serves as an arbitrator to set the state of a cooling
device. It sets the cooling device to the deepest cooling state if
possible.
6. thermal_emergency_poweroff:
On an event of critical trip temperature crossing. Thermal framework
allows the system to shutdown gracefully by calling orderly_poweroff().
In the event of a failure of orderly_poweroff() to shut down the system
we are in danger of keeping the system alive at undesirably high
temperatures. To mitigate this high risk scenario we program a work
queue to fire after a pre-determined number of seconds to start
an emergency shutdown of the device using the kernel_power_off()
function. In case kernel_power_off() fails then finally
emergency_restart() is called in the worst case.
The delay should be carefully profiled so as to give adequate time for
orderly_poweroff(). In case of failure of an orderly_poweroff() the
emergency poweroff kicks in after the delay has elapsed and shuts down
the system.
If set to 0 emergency poweroff will not be supported. So a carefully
profiled non-zero positive value is a must for emergerncy poweroff to be
triggered.

View File

@ -32,7 +32,128 @@ Groups:
KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the ITS, no additional parameter in
kvm_device_attr.addr.
KVM_DEV_ARM_ITS_SAVE_TABLES
save the ITS table data into guest RAM, at the location provisioned
by the guest in corresponding registers/table entries.
The layout of the tables in guest memory defines an ABI. The entries
are laid out in little endian format as described in the last paragraph.
KVM_DEV_ARM_ITS_RESTORE_TABLES
restore the ITS tables from guest RAM to ITS internal structures.
The GICV3 must be restored before the ITS and all ITS registers but
the GITS_CTLR must be restored before restoring the ITS tables.
The GITS_IIDR read-only register must also be restored before
calling KVM_DEV_ARM_ITS_RESTORE_TABLES as the IIDR revision field
encodes the ABI revision.
The expected ordering when restoring the GICv3/ITS is described in section
"ITS Restore Sequence".
Errors:
-ENXIO: ITS not properly configured as required prior to setting
this attribute
-ENOMEM: Memory shortage when allocating ITS internal data
-EINVAL: Inconsistent restored data
-EFAULT: Invalid guest ram access
-EBUSY: One or more VCPUS are running
KVM_DEV_ARM_VGIC_GRP_ITS_REGS
Attributes:
The attr field of kvm_device_attr encodes the offset of the
ITS register, relative to the ITS control frame base address
(ITS_base).
kvm_device_attr.addr points to a __u64 value whatever the width
of the addressed register (32/64 bits). 64 bit registers can only
be accessed with full length.
Writes to read-only registers are ignored by the kernel except for:
- GITS_CREADR. It must be restored otherwise commands in the queue
will be re-executed after restoring CWRITER. GITS_CREADR must be
restored before restoring the GITS_CTLR which is likely to enable the
ITS. Also it must be restored after GITS_CBASER since a write to
GITS_CBASER resets GITS_CREADR.
- GITS_IIDR. The Revision field encodes the table layout ABI revision.
In the future we might implement direct injection of virtual LPIs.
This will require an upgrade of the table layout and an evolution of
the ABI. GITS_IIDR must be restored before calling
KVM_DEV_ARM_ITS_RESTORE_TABLES.
For other registers, getting or setting a register has the same
effect as reading/writing the register on real hardware.
Errors:
-ENXIO: Offset does not correspond to any supported register
-EFAULT: Invalid user pointer for attr->addr
-EINVAL: Offset is not 64-bit aligned
-EBUSY: one or more VCPUS are running
ITS Restore Sequence:
-------------------------
The following ordering must be followed when restoring the GIC and the ITS:
a) restore all guest memory and create vcpus
b) restore all redistributors
c) provide the its base address
(KVM_DEV_ARM_VGIC_GRP_ADDR)
d) restore the ITS in the following order:
1. Restore GITS_CBASER
2. Restore all other GITS_ registers, except GITS_CTLR!
3. Load the ITS table data (KVM_DEV_ARM_ITS_RESTORE_TABLES)
4. Restore GITS_CTLR
Then vcpus can be started.
ITS Table ABI REV0:
-------------------
Revision 0 of the ABI only supports the features of a virtual GICv3, and does
not support a virtual GICv4 with support for direct injection of virtual
interrupts for nested hypervisors.
The device table and ITT are indexed by the DeviceID and EventID,
respectively. The collection table is not indexed by CollectionID, and the
entries in the collection are listed in no particular order.
All entries are 8 bytes.
Device Table Entry (DTE):
bits: | 63| 62 ... 49 | 48 ... 5 | 4 ... 0 |
values: | V | next | ITT_addr | Size |
where;
- V indicates whether the entry is valid. If not, other fields
are not meaningful.
- next: equals to 0 if this entry is the last one; otherwise it
corresponds to the DeviceID offset to the next DTE, capped by
2^14 -1.
- ITT_addr matches bits [51:8] of the ITT address (256 Byte aligned).
- Size specifies the supported number of bits for the EventID,
minus one
Collection Table Entry (CTE):
bits: | 63| 62 .. 52 | 51 ... 16 | 15 ... 0 |
values: | V | RES0 | RDBase | ICID |
where:
- V indicates whether the entry is valid. If not, other fields are
not meaningful.
- RES0: reserved field with Should-Be-Zero-or-Preserved behavior.
- RDBase is the PE number (GICR_TYPER.Processor_Number semantic),
- ICID is the collection ID
Interrupt Translation Entry (ITE):
bits: | 63 ... 48 | 47 ... 16 | 15 ... 0 |
values: | next | pINTID | ICID |
where:
- next: equals to 0 if this entry is the last one; otherwise it corresponds
to the EventID offset to the next ITE capped by 2^16 -1.
- pINTID is the physical LPI ID; if zero, it means the entry is not valid
and other fields are not meaningful.
- ICID is the collection ID

View File

@ -167,11 +167,17 @@ Groups:
KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the VGIC, no additional parameter in
kvm_device_attr.addr.
KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
save all LPI pending bits into guest RAM pending tables.
The first kB of the pending table is not altered by this operation.
Errors:
-ENXIO: VGIC not properly configured as required prior to calling
this attribute
-ENODEV: no online VCPU
-ENOMEM: memory shortage when allocating vgic internal data
-EFAULT: Invalid guest ram access
-EBUSY: One or more VCPUS are running
KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO

View File

@ -295,7 +295,7 @@ kernel and the tasks running there get 50% of the cache. They should
also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
siblings and only the real time threads are scheduled on the cores 4-7.
# echo C0 > p0/cpus
# echo F0 > p0/cpus
4) Locking between applications

25
Kbuild
View File

@ -7,31 +7,6 @@
# 4) Check for missing system calls
# 5) Generate constants.py (may need bounds.h)
# Default sed regexp - multiline due to syntax constraints
define sed-y
"/^->/{s:->#\(.*\):/* \1 */:; \
s:^->\([^ ]*\) [\$$#]*\([-0-9]*\) \(.*\):#define \1 \2 /* \3 */:; \
s:^->\([^ ]*\) [\$$#]*\([^ ]*\) \(.*\):#define \1 \2 /* \3 */:; \
s:->::; p;}"
endef
# Use filechk to avoid rebuilds when a header changes, but the resulting file
# does not
define filechk_offsets
(set -e; \
echo "#ifndef $2"; \
echo "#define $2"; \
echo "/*"; \
echo " * DO NOT MODIFY."; \
echo " *"; \
echo " * This file was generated by Kbuild"; \
echo " */"; \
echo ""; \
sed -ne $(sed-y); \
echo ""; \
echo "#endif" )
endef
#####
# 1) Generate bounds.h

View File

@ -1085,6 +1085,16 @@ F: drivers/pinctrl/meson/
F: drivers/mmc/host/meson*
N: meson
ARM/Amlogic Meson SoC CLOCK FRAMEWORK
M: Neil Armstrong <narmstrong@baylibre.com>
M: Jerome Brunet <jbrunet@baylibre.com>
L: linux-amlogic@lists.infradead.org
S: Maintained
F: drivers/clk/meson/
F: include/dt-bindings/clock/meson*
F: include/dt-bindings/clock/gxbb*
F: Documentation/devicetree/bindings/clock/amlogic*
ARM/Annapurna Labs ALPINE ARCHITECTURE
M: Tsahee Zidenberg <tsahee@annapurnalabs.com>
M: Antoine Tenart <antoine.tenart@free-electrons.com>
@ -2264,7 +2274,7 @@ M: Wenyou Yang <wenyou.yang@atmel.com>
M: Josh Wu <rainyfeeling@outlook.com>
L: linux-mtd@lists.infradead.org
S: Supported
F: drivers/mtd/nand/atmel_nand*
F: drivers/mtd/nand/atmel/*
ATMEL SDMMC DRIVER
M: Ludovic Desroches <ludovic.desroches@microchip.com>
@ -2473,7 +2483,7 @@ S: Maintained
F: drivers/net/ethernet/ec_bhf.c
BFS FILE SYSTEM
M: "Tigran A. Aivazian" <tigran@aivazian.fsnet.co.uk>
M: "Tigran A. Aivazian" <aivazian.tigran@gmail.com>
S: Maintained
F: Documentation/filesystems/bfs.txt
F: fs/bfs/
@ -2926,6 +2936,8 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs.git
S: Maintained
F: Documentation/filesystems/btrfs.txt
F: fs/btrfs/
F: include/linux/btrfs*
F: include/uapi/linux/btrfs*
BTTV VIDEO4LINUX DRIVER
M: Mauro Carvalho Chehab <mchehab@s-opensource.com>
@ -5588,6 +5600,7 @@ L: linux-pm@vger.kernel.org
S: Supported
F: drivers/base/power/domain*.c
F: include/linux/pm_domain.h
F: Documentation/devicetree/bindings/power/power_domain.txt
GENERIC UIO DRIVER FOR PCI DEVICES
M: "Michael S. Tsirkin" <mst@redhat.com>
@ -7910,7 +7923,7 @@ L: linux-man@vger.kernel.org
S: Maintained
MARDUK (CREATOR CI40) DEVICE TREE SUPPORT
M: Rahul Bedarkar <rahul.bedarkar@imgtec.com>
M: Rahul Bedarkar <rahulbedarkar89@gmail.com>
L: linux-mips@linux-mips.org
S: Maintained
F: arch/mips/boot/dts/img/pistachio_marduk.dts
@ -8363,12 +8376,12 @@ M: Brian Norris <computersforpeace@gmail.com>
M: Boris Brezillon <boris.brezillon@free-electrons.com>
M: Marek Vasut <marek.vasut@gmail.com>
M: Richard Weinberger <richard@nod.at>
M: Cyrille Pitchen <cyrille.pitchen@atmel.com>
M: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://git.infradead.org/linux-mtd.git
T: git git://git.infradead.org/l2-mtd.git
T: git git://git.infradead.org/linux-mtd.git master
T: git git://git.infradead.org/l2-mtd.git master
S: Maintained
F: Documentation/devicetree/bindings/mtd/
F: drivers/mtd/
@ -8743,7 +8756,8 @@ R: Richard Weinberger <richard@nod.at>
L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://github.com/linux-nand/linux.git
T: git git://git.infradead.org/linux-mtd.git nand/fixes
T: git git://git.infradead.org/l2-mtd.git nand/next
S: Maintained
F: drivers/mtd/nand/
F: include/linux/mtd/nand*.h
@ -9515,6 +9529,11 @@ F: arch/*/oprofile/
F: drivers/oprofile/
F: include/linux/oprofile.h
OP-TEE DRIVER
M: Jens Wiklander <jens.wiklander@linaro.org>
S: Maintained
F: drivers/tee/optee/
ORACLE CLUSTER FILESYSTEM 2 (OCFS2)
M: Mark Fasheh <mfasheh@versity.com>
M: Joel Becker <jlbec@evilplan.org>
@ -11296,6 +11315,14 @@ F: drivers/hwtracing/stm/
F: include/linux/stm.h
F: include/uapi/linux/stm.h
TEE SUBSYSTEM
M: Jens Wiklander <jens.wiklander@linaro.org>
S: Maintained
F: include/linux/tee_drv.h
F: include/uapi/linux/tee.h
F: drivers/tee/
F: Documentation/tee.txt
THUNDERBOLT DRIVER
M: Andreas Noever <andreas.noever@gmail.com>
S: Maintained
@ -12087,7 +12114,7 @@ S: Maintained
F: drivers/clk/spear/
SPI NOR SUBSYSTEM
M: Cyrille Pitchen <cyrille.pitchen@atmel.com>
M: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
M: Marek Vasut <marek.vasut@gmail.com>
L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
@ -13540,8 +13567,8 @@ F: include/uapi/linux/virtio_*.h
F: drivers/crypto/virtio/
VIRTIO DRIVERS FOR S390
M: Christian Borntraeger <borntraeger@de.ibm.com>
M: Cornelia Huck <cornelia.huck@de.ibm.com>
M: Halil Pasic <pasic@linux.vnet.ibm.com>
L: linux-s390@vger.kernel.org
L: virtualization@lists.linux-foundation.org
L: kvm@vger.kernel.org

View File

@ -1,7 +1,7 @@
VERSION = 4
PATCHLEVEL = 11
PATCHLEVEL = 12
SUBLEVEL = 0
EXTRAVERSION =
EXTRAVERSION = -rc1
NAME = Fearless Coyote
# *DOCUMENTATION*
@ -632,13 +632,9 @@ include arch/$(SRCARCH)/Makefile
KBUILD_CFLAGS += $(call cc-option,-fno-delete-null-pointer-checks,)
KBUILD_CFLAGS += $(call cc-disable-warning,frame-address,)
ifdef CONFIG_LD_DEAD_CODE_DATA_ELIMINATION
KBUILD_CFLAGS += $(call cc-option,-ffunction-sections,)
KBUILD_CFLAGS += $(call cc-option,-fdata-sections,)
endif
ifdef CONFIG_CC_OPTIMIZE_FOR_SIZE
KBUILD_CFLAGS += -Os $(call cc-disable-warning,maybe-uninitialized,)
KBUILD_CFLAGS += $(call cc-option,-Oz,-Os)
KBUILD_CFLAGS += $(call cc-disable-warning,maybe-uninitialized,)
else
ifdef CONFIG_PROFILE_ALL_BRANCHES
KBUILD_CFLAGS += -O2 $(call cc-disable-warning,maybe-uninitialized,)
@ -698,8 +694,16 @@ endif
KBUILD_CFLAGS += $(stackp-flag)
ifeq ($(cc-name),clang)
ifneq ($(CROSS_COMPILE),)
CLANG_TARGET := -target $(notdir $(CROSS_COMPILE:%-=%))
GCC_TOOLCHAIN := $(realpath $(dir $(shell which $(LD)))/..)
endif
ifneq ($(GCC_TOOLCHAIN),)
CLANG_GCC_TC := -gcc-toolchain $(GCC_TOOLCHAIN)
endif
KBUILD_CFLAGS += $(CLANG_TARGET) $(CLANG_GCC_TC)
KBUILD_AFLAGS += $(CLANG_TARGET) $(CLANG_GCC_TC)
KBUILD_CPPFLAGS += $(call cc-option,-Qunused-arguments,)
KBUILD_CPPFLAGS += $(call cc-option,-Wno-unknown-warning-option,)
KBUILD_CFLAGS += $(call cc-disable-warning, unused-variable)
KBUILD_CFLAGS += $(call cc-disable-warning, format-invalid-specifier)
KBUILD_CFLAGS += $(call cc-disable-warning, gnu)
@ -710,10 +714,12 @@ KBUILD_CFLAGS += $(call cc-disable-warning, tautological-compare)
# See modpost pattern 2
KBUILD_CFLAGS += $(call cc-option, -mno-global-merge,)
KBUILD_CFLAGS += $(call cc-option, -fcatch-undefined-behavior)
KBUILD_CFLAGS += $(call cc-option, -no-integrated-as)
KBUILD_AFLAGS += $(call cc-option, -no-integrated-as)
else
# These warnings generated too much noise in a regular build.
# Use make W=1 to enable them (see scripts/Makefile.build)
# Use make W=1 to enable them (see scripts/Makefile.extrawarn)
KBUILD_CFLAGS += $(call cc-disable-warning, unused-but-set-variable)
KBUILD_CFLAGS += $(call cc-disable-warning, unused-const-variable)
endif
@ -773,6 +779,11 @@ ifdef CONFIG_DEBUG_SECTION_MISMATCH
KBUILD_CFLAGS += $(call cc-option, -fno-inline-functions-called-once)
endif
ifdef CONFIG_LD_DEAD_CODE_DATA_ELIMINATION
KBUILD_CFLAGS += $(call cc-option,-ffunction-sections,)
KBUILD_CFLAGS += $(call cc-option,-fdata-sections,)
endif
# arch Makefile may override CC so keep this after arch Makefile is included
NOSTDINC_FLAGS += -nostdinc -isystem $(shell $(CC) -print-file-name=include)
CHECKFLAGS += $(NOSTDINC_FLAGS)
@ -801,6 +812,9 @@ KBUILD_CFLAGS += $(call cc-option,-Werror=date-time)
# enforce correct pointer usage
KBUILD_CFLAGS += $(call cc-option,-Werror=incompatible-pointer-types)
# Require designated initializers for all marked structures
KBUILD_CFLAGS += $(call cc-option,-Werror=designated-init)
# use the deterministic mode of AR if available
KBUILD_ARFLAGS := $(call ar-option,D)
@ -815,7 +829,7 @@ KBUILD_AFLAGS += $(ARCH_AFLAGS) $(KAFLAGS)
KBUILD_CFLAGS += $(ARCH_CFLAGS) $(KCFLAGS)
# Use --build-id when available.
LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,\
LDFLAGS_BUILD_ID := $(patsubst -Wl$(comma)%,%,\
$(call cc-ldoption, -Wl$(comma)--build-id,))
KBUILD_LDFLAGS_MODULE += $(LDFLAGS_BUILD_ID)
LDFLAGS_vmlinux += $(LDFLAGS_BUILD_ID)
@ -1128,7 +1142,7 @@ firmware_install:
export INSTALL_HDR_PATH = $(objtree)/usr
# If we do an all arch process set dst to asm-$(hdr-arch)
hdr-dst = $(if $(KBUILD_HEADERS), dst=include/asm-$(hdr-arch), dst=include/asm)
hdr-dst = $(if $(KBUILD_HEADERS), dst=include/arch-$(hdr-arch), dst=include)
PHONY += archheaders
archheaders:
@ -1149,7 +1163,7 @@ headers_install: __headers
$(if $(wildcard $(srctree)/arch/$(hdr-arch)/include/uapi/asm/Kbuild),, \
$(error Headers not exportable for the $(SRCARCH) architecture))
$(Q)$(MAKE) $(hdr-inst)=include/uapi
$(Q)$(MAKE) $(hdr-inst)=arch/$(hdr-arch)/include/uapi/asm $(hdr-dst)
$(Q)$(MAKE) $(hdr-inst)=arch/$(hdr-arch)/include/uapi $(hdr-dst)
PHONY += headers_check_all
headers_check_all: headers_install_all
@ -1158,7 +1172,7 @@ headers_check_all: headers_install_all
PHONY += headers_check
headers_check: headers_install
$(Q)$(MAKE) $(hdr-inst)=include/uapi HDRCHECK=1
$(Q)$(MAKE) $(hdr-inst)=arch/$(hdr-arch)/include/uapi/asm $(hdr-dst) HDRCHECK=1
$(Q)$(MAKE) $(hdr-inst)=arch/$(hdr-arch)/include/uapi/ $(hdr-dst) HDRCHECK=1
# ---------------------------------------------------------------------------
# Kernel selftest
@ -1315,8 +1329,8 @@ PHONY += distclean
distclean: mrproper
@find $(srctree) $(RCS_FIND_IGNORE) \
\( -name '*.orig' -o -name '*.rej' -o -name '*~' \
-o -name '*.bak' -o -name '#*#' -o -name '.*.orig' \
-o -name '.*.rej' -o -name '*%' -o -name 'core' \) \
-o -name '*.bak' -o -name '#*#' -o -name '*%' \
-o -name 'core' \) \
-type f -print | xargs rm -f
@ -1361,6 +1375,8 @@ help:
@echo ' (default: $$(INSTALL_MOD_PATH)/lib/firmware)'
@echo ' dir/ - Build all files in dir and below'
@echo ' dir/file.[ois] - Build specified target only'
@echo ' dir/file.ll - Build the LLVM assembly file'
@echo ' (requires compiler support for LLVM assembly generation)'
@echo ' dir/file.lst - Build specified mixed source/assembly target only'
@echo ' (requires a recent binutils and recent build (System.map))'
@echo ' dir/file.ko - Build module including final link'
@ -1549,6 +1565,7 @@ clean: $(clean-dirs)
-o -name '*.symtypes' -o -name 'modules.order' \
-o -name modules.builtin -o -name '.tmp_*.o.*' \
-o -name '*.c.[012]*.*' \
-o -name '*.ll' \
-o -name '*.gcno' \) -type f -print | xargs rm -f
# Generate tags for editors
@ -1652,6 +1669,8 @@ endif
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
%.symtypes: %.c prepare scripts FORCE
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
%.ll: %.c prepare scripts FORCE
$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
# Modules
/: prepare scripts FORCE

View File

@ -324,6 +324,9 @@ config HAVE_CMPXCHG_LOCAL
config HAVE_CMPXCHG_DOUBLE
bool
config ARCH_WEAK_RELEASE_ACQUIRE
bool
config ARCH_WANT_IPC_PARSE_VERSION
bool

View File

@ -1,43 +1,2 @@
# UAPI Header export list
include include/uapi/asm-generic/Kbuild.asm
header-y += a.out.h
header-y += auxvec.h
header-y += bitsperlong.h
header-y += byteorder.h
header-y += compiler.h
header-y += console.h
header-y += errno.h
header-y += fcntl.h
header-y += fpu.h
header-y += gentrap.h
header-y += ioctl.h
header-y += ioctls.h
header-y += ipcbuf.h
header-y += kvm_para.h
header-y += mman.h
header-y += msgbuf.h
header-y += pal.h
header-y += param.h
header-y += poll.h
header-y += posix_types.h
header-y += ptrace.h
header-y += reg.h
header-y += regdef.h
header-y += resource.h
header-y += sembuf.h
header-y += setup.h
header-y += shmbuf.h
header-y += sigcontext.h
header-y += siginfo.h
header-y += signal.h
header-y += socket.h
header-y += sockios.h
header-y += stat.h
header-y += statfs.h
header-y += swab.h
header-y += sysinfo.h
header-y += termbits.h
header-y += termios.h
header-y += types.h
header-y += unistd.h

View File

@ -46,11 +46,6 @@ AFLAGS___remqu.o = -DREM
AFLAGS___divlu.o = -DDIV -DINTSIZE
AFLAGS___remlu.o = -DREM -DINTSIZE
$(obj)/__divqu.o: $(obj)/$(ev6-y)divide.S
$(cmd_as_o_S)
$(obj)/__remqu.o: $(obj)/$(ev6-y)divide.S
$(cmd_as_o_S)
$(obj)/__divlu.o: $(obj)/$(ev6-y)divide.S
$(cmd_as_o_S)
$(obj)/__remlu.o: $(obj)/$(ev6-y)divide.S
$(cmd_as_o_S)
$(addprefix $(obj)/,__divqu.o __remqu.o __divlu.o __remlu.o): \
$(src)/$(ev6-y)divide.S FORCE
$(call if_changed_rule,as_o_S)

View File

@ -123,9 +123,9 @@ libs-y += arch/arc/lib/ $(LIBGCC)
boot := arch/arc/boot
#default target for make without any arguments.
KBUILD_IMAGE := bootpImage
KBUILD_IMAGE := $(boot)/bootpImage
all: $(KBUILD_IMAGE)
all: bootpImage
bootpImage: vmlinux
boot_targets += uImage uImage.bin uImage.gz

View File

@ -1,5 +1,2 @@
# UAPI Header export list
include include/uapi/asm-generic/Kbuild.asm
header-y += elf.h
header-y += page.h
header-y += cachectl.h

View File

@ -297,10 +297,11 @@ drivers-$(CONFIG_OPROFILE) += arch/arm/oprofile/
libs-y := arch/arm/lib/ $(libs-y)
# Default target when executing plain make
boot := arch/arm/boot
ifeq ($(CONFIG_XIP_KERNEL),y)
KBUILD_IMAGE := xipImage
KBUILD_IMAGE := $(boot)/xipImage
else
KBUILD_IMAGE := zImage
KBUILD_IMAGE := $(boot)/zImage
endif
# Build the DT binary blobs if we have OF configured
@ -308,9 +309,8 @@ ifeq ($(CONFIG_USE_OF),y)
KBUILD_DTBS := dtbs
endif
all: $(KBUILD_IMAGE) $(KBUILD_DTBS)
all: $(notdir $(KBUILD_IMAGE)) $(KBUILD_DTBS)
boot := arch/arm/boot
archheaders:
$(Q)$(MAKE) $(build)=arch/arm/tools uapi

View File

@ -41,7 +41,7 @@
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/interrupt-controller/irq.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/rk1108-cru.h>
#include <dt-bindings/clock/rv1108-cru.h>
#include <dt-bindings/pinctrl/rockchip.h>
/ {
#address-cells = <1>;

View File

@ -1,23 +1,6 @@
# UAPI Header export list
include include/uapi/asm-generic/Kbuild.asm
header-y += auxvec.h
header-y += byteorder.h
header-y += fcntl.h
header-y += hwcap.h
header-y += ioctls.h
header-y += kvm_para.h
header-y += mman.h
header-y += perf_regs.h
header-y += posix_types.h
header-y += ptrace.h
header-y += setup.h
header-y += sigcontext.h
header-y += signal.h
header-y += stat.h
header-y += statfs.h
header-y += swab.h
header-y += unistd.h
genhdr-y += unistd-common.h
genhdr-y += unistd-oabi.h
genhdr-y += unistd-eabi.h

View File

@ -196,13 +196,17 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5
#define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6
#define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7
#define KVM_DEV_ARM_VGIC_GRP_ITS_REGS 8
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \
(0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT)
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK 0x3ff
#define VGIC_LEVEL_INFO_LINE_LEVEL 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24

View File

@ -40,8 +40,15 @@
#ifdef CONFIG_MMU
void *module_alloc(unsigned long size)
{
void *p = __vmalloc_node_range(size, 1, MODULES_VADDR, MODULES_END,
GFP_KERNEL, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
gfp_t gfp_mask = GFP_KERNEL;
void *p;
/* Silence the initial allocation */
if (IS_ENABLED(CONFIG_ARM_MODULE_PLTS))
gfp_mask |= __GFP_NOWARN;
p = __vmalloc_node_range(size, 1, MODULES_VADDR, MODULES_END,
gfp_mask, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
__builtin_return_address(0));
if (!IS_ENABLED(CONFIG_ARM_MODULE_PLTS) || p)
return p;

View File

@ -18,9 +18,12 @@ KVM := ../../../virt/kvm
kvm-arm-y = $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp/
obj-y += kvm-arm.o init.o interrupts.o
obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o vgic-v3-coproc.o
obj-y += handle_exit.o guest.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o vgic-v3-coproc.o
obj-y += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
obj-y += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
obj-y += $(KVM)/arm/aarch32.o
obj-y += $(KVM)/arm/vgic/vgic.o

View File

@ -6,133 +6,6 @@
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
/*
* Tracepoints for entry/exit to guest
*/
TRACE_EVENT(kvm_entry,
TP_PROTO(unsigned long vcpu_pc),
TP_ARGS(vcpu_pc),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
),
TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
);
TRACE_EVENT(kvm_exit,
TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc),
TP_ARGS(idx, exit_reason, vcpu_pc),
TP_STRUCT__entry(
__field( int, idx )
__field( unsigned int, exit_reason )
__field( unsigned long, vcpu_pc )
),
TP_fast_assign(
__entry->idx = idx;
__entry->exit_reason = exit_reason;
__entry->vcpu_pc = vcpu_pc;
),
TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx",
__print_symbolic(__entry->idx, kvm_arm_exception_type),
__entry->exit_reason,
__print_symbolic(__entry->exit_reason, kvm_arm_exception_class),
__entry->vcpu_pc)
);
TRACE_EVENT(kvm_guest_fault,
TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
unsigned long hxfar,
unsigned long long ipa),
TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, hsr )
__field( unsigned long, hxfar )
__field( unsigned long long, ipa )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->hsr = hsr;
__entry->hxfar = hxfar;
__entry->ipa = ipa;
),
TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
__entry->ipa, __entry->hsr,
__entry->hxfar, __entry->vcpu_pc)
);
TRACE_EVENT(kvm_access_fault,
TP_PROTO(unsigned long ipa),
TP_ARGS(ipa),
TP_STRUCT__entry(
__field( unsigned long, ipa )
),
TP_fast_assign(
__entry->ipa = ipa;
),
TP_printk("IPA: %lx", __entry->ipa)
);
TRACE_EVENT(kvm_irq_line,
TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
TP_ARGS(type, vcpu_idx, irq_num, level),
TP_STRUCT__entry(
__field( unsigned int, type )
__field( int, vcpu_idx )
__field( int, irq_num )
__field( int, level )
),
TP_fast_assign(
__entry->type = type;
__entry->vcpu_idx = vcpu_idx;
__entry->irq_num = irq_num;
__entry->level = level;
),
TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
(__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
(__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
(__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
__entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
);
TRACE_EVENT(kvm_mmio_emulate,
TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
unsigned long cpsr),
TP_ARGS(vcpu_pc, instr, cpsr),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( unsigned long, instr )
__field( unsigned long, cpsr )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->instr = instr;
__entry->cpsr = cpsr;
),
TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
__entry->vcpu_pc, __entry->instr, __entry->cpsr)
);
/* Architecturally implementation defined CP15 register access */
TRACE_EVENT(kvm_emulate_cp15_imp,
TP_PROTO(unsigned long Op1, unsigned long Rt1, unsigned long CRn,
@ -181,87 +54,6 @@ TRACE_EVENT(kvm_wfx,
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_unmap_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_unmap_hva_range,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_set_spte_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_age_hva,
TP_PROTO(unsigned long start, unsigned long end),
TP_ARGS(start, end),
TP_STRUCT__entry(
__field( unsigned long, start )
__field( unsigned long, end )
),
TP_fast_assign(
__entry->start = start;
__entry->end = end;
),
TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
__entry->start, __entry->end)
);
TRACE_EVENT(kvm_test_age_hva,
TP_PROTO(unsigned long hva),
TP_ARGS(hva),
TP_STRUCT__entry(
__field( unsigned long, hva )
),
TP_fast_assign(
__entry->hva = hva;
),
TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
);
TRACE_EVENT(kvm_hvc,
TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
TP_ARGS(vcpu_pc, r0, imm),
@ -282,45 +74,6 @@ TRACE_EVENT(kvm_hvc,
__entry->vcpu_pc, __entry->r0, __entry->imm)
);
TRACE_EVENT(kvm_set_way_flush,
TP_PROTO(unsigned long vcpu_pc, bool cache),
TP_ARGS(vcpu_pc, cache),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, cache )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->cache = cache;
),
TP_printk("S/W flush at 0x%016lx (cache %s)",
__entry->vcpu_pc, __entry->cache ? "on" : "off")
);
TRACE_EVENT(kvm_toggle_cache,
TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
TP_ARGS(vcpu_pc, was, now),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, was )
__field( bool, now )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->was = was;
__entry->now = now;
),
TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
__entry->vcpu_pc, __entry->was ? "on" : "off",
__entry->now ? "on" : "off")
);
#endif /* _TRACE_KVM_H */
#undef TRACE_INCLUDE_PATH

View File

@ -138,7 +138,8 @@ int omap2_reprogram_dpllcore(struct clk_hw *hw, unsigned long rate,
if (!dd)
return -EINVAL;
tmpset.cm_clksel1_pll = readl_relaxed(dd->mult_div1_reg);
tmpset.cm_clksel1_pll =
omap_clk_ll_ops.clk_readl(&dd->mult_div1_reg);
tmpset.cm_clksel1_pll &= ~(dd->mult_mask |
dd->div1_mask);
div = ((curr_prcm_set->xtal_speed / 1000000) - 1);

View File

@ -54,9 +54,10 @@ u16 cpu_mask;
#define OMAP3PLUS_DPLL_FINT_MIN 32000
#define OMAP3PLUS_DPLL_FINT_MAX 52000000
static struct ti_clk_ll_ops omap_clk_ll_ops = {
struct ti_clk_ll_ops omap_clk_ll_ops = {
.clkdm_clk_enable = clkdm_clk_enable,
.clkdm_clk_disable = clkdm_clk_disable,
.clkdm_lookup = clkdm_lookup,
.cm_wait_module_ready = omap_cm_wait_module_ready,
.cm_split_idlest_reg = cm_split_idlest_reg,
};
@ -78,38 +79,6 @@ int __init omap2_clk_setup_ll_ops(void)
* OMAP2+ specific clock functions
*/
/* Public functions */
/**
* omap2_init_clk_clkdm - look up a clockdomain name, store pointer in clk
* @clk: OMAP clock struct ptr to use
*
* Convert a clockdomain name stored in a struct clk 'clk' into a
* clockdomain pointer, and save it into the struct clk. Intended to be
* called during clk_register(). No return value.
*/
void omap2_init_clk_clkdm(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct clockdomain *clkdm;
const char *clk_name;
if (!clk->clkdm_name)
return;
clk_name = __clk_get_name(hw->clk);
clkdm = clkdm_lookup(clk->clkdm_name);
if (clkdm) {
pr_debug("clock: associated clk %s to clkdm %s\n",
clk_name, clk->clkdm_name);
clk->clkdm = clkdm;
} else {
pr_debug("clock: could not associate clk %s to clkdm %s\n",
clk_name, clk->clkdm_name);
}
}
/**
* ti_clk_init_features - init clock features struct for the SoC
*

View File

@ -64,6 +64,8 @@
#define OMAP4XXX_EN_DPLL_FRBYPASS 0x6
#define OMAP4XXX_EN_DPLL_LOCKED 0x7
extern struct ti_clk_ll_ops omap_clk_ll_ops;
extern u16 cpu_mask;
extern const struct clkops clkops_omap2_dflt_wait;

View File

@ -23,6 +23,7 @@
#define MAX_MODULE_READY_TIME 2000
# ifndef __ASSEMBLER__
#include <linux/clk/ti.h>
extern void __iomem *cm_base;
extern void __iomem *cm2_base;
extern void omap2_set_globals_cm(void __iomem *cm, void __iomem *cm2);
@ -50,7 +51,7 @@ extern void omap2_set_globals_cm(void __iomem *cm, void __iomem *cm2);
* @module_disable: ptr to the SoC CM-specific module_disable impl
*/
struct cm_ll_data {
int (*split_idlest_reg)(void __iomem *idlest_reg, s16 *prcm_inst,
int (*split_idlest_reg)(struct clk_omap_reg *idlest_reg, s16 *prcm_inst,
u8 *idlest_reg_id);
int (*wait_module_ready)(u8 part, s16 prcm_mod, u16 idlest_reg,
u8 idlest_shift);
@ -60,7 +61,7 @@ struct cm_ll_data {
void (*module_disable)(u8 part, u16 inst, u16 clkctrl_offs);
};
extern int cm_split_idlest_reg(void __iomem *idlest_reg, s16 *prcm_inst,
extern int cm_split_idlest_reg(struct clk_omap_reg *idlest_reg, s16 *prcm_inst,
u8 *idlest_reg_id);
int omap_cm_wait_module_ready(u8 part, s16 prcm_mod, u16 idlest_reg,
u8 idlest_shift);

View File

@ -204,7 +204,7 @@ void omap2xxx_cm_apll96_disable(void)
* XXX This function is only needed until absolute register addresses are
* removed from the OMAP struct clk records.
*/
static int omap2xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
static int omap2xxx_cm_split_idlest_reg(struct clk_omap_reg *idlest_reg,
s16 *prcm_inst,
u8 *idlest_reg_id)
{
@ -212,10 +212,7 @@ static int omap2xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
u8 idlest_offs;
int i;
if (idlest_reg < cm_base || idlest_reg > (cm_base + 0x0fff))
return -EINVAL;
idlest_offs = (unsigned long)idlest_reg & 0xff;
idlest_offs = idlest_reg->offset & 0xff;
for (i = 0; i < ARRAY_SIZE(omap2xxx_cm_idlest_offs); i++) {
if (idlest_offs == omap2xxx_cm_idlest_offs[i]) {
*idlest_reg_id = i + 1;
@ -226,7 +223,7 @@ static int omap2xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
if (i == ARRAY_SIZE(omap2xxx_cm_idlest_offs))
return -EINVAL;
offs = idlest_reg - cm_base;
offs = idlest_reg->offset;
offs &= 0xff00;
*prcm_inst = offs;

View File

@ -118,7 +118,7 @@ static int omap3xxx_cm_wait_module_ready(u8 part, s16 prcm_mod, u16 idlest_id,
* XXX This function is only needed until absolute register addresses are
* removed from the OMAP struct clk records.
*/
static int omap3xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
static int omap3xxx_cm_split_idlest_reg(struct clk_omap_reg *idlest_reg,
s16 *prcm_inst,
u8 *idlest_reg_id)
{
@ -126,11 +126,7 @@ static int omap3xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
u8 idlest_offs;
int i;
if (idlest_reg < (cm_base + OMAP3430_IVA2_MOD) ||
idlest_reg > (cm_base + 0x1ffff))
return -EINVAL;
idlest_offs = (unsigned long)idlest_reg & 0xff;
idlest_offs = idlest_reg->offset & 0xff;
for (i = 0; i < ARRAY_SIZE(omap3xxx_cm_idlest_offs); i++) {
if (idlest_offs == omap3xxx_cm_idlest_offs[i]) {
*idlest_reg_id = i + 1;
@ -141,7 +137,7 @@ static int omap3xxx_cm_split_idlest_reg(void __iomem *idlest_reg,
if (i == ARRAY_SIZE(omap3xxx_cm_idlest_offs))
return -EINVAL;
offs = idlest_reg - cm_base;
offs = idlest_reg->offset;
offs &= 0xff00;
*prcm_inst = offs;

View File

@ -65,7 +65,7 @@ void __init omap2_set_globals_cm(void __iomem *cm, void __iomem *cm2)
* or 0 upon success. XXX This function is only needed until absolute
* register addresses are removed from the OMAP struct clk records.
*/
int cm_split_idlest_reg(void __iomem *idlest_reg, s16 *prcm_inst,
int cm_split_idlest_reg(struct clk_omap_reg *idlest_reg, s16 *prcm_inst,
u8 *idlest_reg_id)
{
if (!cm_ll_data->split_idlest_reg) {

View File

@ -2408,6 +2408,15 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct dma_map_ops *dma_ops;
dev->archdata.dma_coherent = coherent;
/*
* Don't override the dma_ops if they have already been set. Ideally
* this should be the only location where dma_ops are set, remove this
* check when all other callers of set_dma_ops will have disappeared.
*/
if (dev->dma_ops)
return;
if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
dma_ops = arm_get_iommu_dma_map_ops(coherent);
else

View File

@ -10,7 +10,6 @@
* published by the Free Software Foundation.
*/
#include <linux/amba/pl330.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>

View File

@ -102,12 +102,12 @@ libs-y := arch/arm64/lib/ $(libs-y)
core-$(CONFIG_EFI_STUB) += $(objtree)/drivers/firmware/efi/libstub/lib.a
# Default target when executing plain make
KBUILD_IMAGE := Image.gz
boot := arch/arm64/boot
KBUILD_IMAGE := $(boot)/Image.gz
KBUILD_DTBS := dtbs
all: $(KBUILD_IMAGE) $(KBUILD_DTBS)
all: Image.gz $(KBUILD_DTBS)
boot := arch/arm64/boot
Image: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@

View File

@ -411,6 +411,13 @@
};
};
};
firmware {
optee {
compatible = "linaro,optee-tz";
method = "smc";
};
};
};
&uart2 {

View File

@ -62,4 +62,13 @@ alternative_if ARM64_ALT_PAN_NOT_UAO
alternative_else_nop_endif
.endm
/*
* Remove the address tag from a virtual address, if present.
*/
.macro clear_address_tag, dst, addr
tst \addr, #(1 << 55)
bic \dst, \addr, #(0xff << 56)
csel \dst, \dst, \addr, eq
.endm
#endif

View File

@ -322,7 +322,7 @@ static inline void atomic64_and(long i, atomic64_t *v)
#define ATOMIC64_FETCH_OP_AND(name, mb, cl...) \
static inline long atomic64_fetch_and##name(long i, atomic64_t *v) \
{ \
register long x0 asm ("w0") = i; \
register long x0 asm ("x0") = i; \
register atomic64_t *x1 asm ("x1") = v; \
\
asm volatile(ARM64_LSE_ATOMIC_INSN( \
@ -394,7 +394,7 @@ ATOMIC64_OP_SUB_RETURN( , al, "memory")
#define ATOMIC64_FETCH_OP_SUB(name, mb, cl...) \
static inline long atomic64_fetch_sub##name(long i, atomic64_t *v) \
{ \
register long x0 asm ("w0") = i; \
register long x0 asm ("x0") = i; \
register atomic64_t *x1 asm ("x1") = v; \
\
asm volatile(ARM64_LSE_ATOMIC_INSN( \

View File

@ -42,25 +42,35 @@
#define __smp_rmb() dmb(ishld)
#define __smp_wmb() dmb(ishst)
#define __smp_store_release(p, v) \
#define __smp_store_release(p, v) \
do { \
union { typeof(*p) __val; char __c[1]; } __u = \
{ .__val = (__force typeof(*p)) (v) }; \
compiletime_assert_atomic_type(*p); \
switch (sizeof(*p)) { \
case 1: \
asm volatile ("stlrb %w1, %0" \
: "=Q" (*p) : "r" (v) : "memory"); \
: "=Q" (*p) \
: "r" (*(__u8 *)__u.__c) \
: "memory"); \
break; \
case 2: \
asm volatile ("stlrh %w1, %0" \
: "=Q" (*p) : "r" (v) : "memory"); \
: "=Q" (*p) \
: "r" (*(__u16 *)__u.__c) \
: "memory"); \
break; \
case 4: \
asm volatile ("stlr %w1, %0" \
: "=Q" (*p) : "r" (v) : "memory"); \
: "=Q" (*p) \
: "r" (*(__u32 *)__u.__c) \
: "memory"); \
break; \
case 8: \
asm volatile ("stlr %1, %0" \
: "=Q" (*p) : "r" (v) : "memory"); \
: "=Q" (*p) \
: "r" (*(__u64 *)__u.__c) \
: "memory"); \
break; \
} \
} while (0)

View File

@ -46,7 +46,7 @@ static inline unsigned long __xchg_case_##name(unsigned long x, \
" swp" #acq_lse #rel #sz "\t%" #w "3, %" #w "0, %2\n" \
__nops(3) \
" " #nop_lse) \
: "=&r" (ret), "=&r" (tmp), "+Q" (*(u8 *)ptr) \
: "=&r" (ret), "=&r" (tmp), "+Q" (*(unsigned long *)ptr) \
: "r" (x) \
: cl); \
\

View File

@ -240,6 +240,12 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE;
}
static inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
{
u32 esr = kvm_vcpu_get_hsr(vcpu);
return (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
}
static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;

View File

@ -69,20 +69,21 @@ static inline void set_fs(mm_segment_t fs)
*/
#define __range_ok(addr, size) \
({ \
unsigned long __addr = (unsigned long __force)(addr); \
unsigned long flag, roksum; \
__chk_user_ptr(addr); \
asm("adds %1, %1, %3; ccmp %1, %4, #2, cc; cset %0, ls" \
: "=&r" (flag), "=&r" (roksum) \
: "1" (addr), "Ir" (size), \
: "1" (__addr), "Ir" (size), \
"r" (current_thread_info()->addr_limit) \
: "cc"); \
flag; \
})
/*
* When dealing with data aborts or instruction traps we may end up with
* a tagged userland pointer. Clear the tag to get a sane pointer to pass
* on to access_ok(), for instance.
* When dealing with data aborts, watchpoints, or instruction traps we may end
* up with a tagged userland pointer. Clear the tag to get a sane pointer to
* pass on to access_ok(), for instance.
*/
#define untagged_addr(addr) sign_extend64(addr, 55)
@ -230,7 +231,7 @@ do { \
(err), ARM64_HAS_UAO); \
break; \
case 8: \
__get_user_asm("ldr", "ldtr", "%", __gu_val, (ptr), \
__get_user_asm("ldr", "ldtr", "%x", __gu_val, (ptr), \
(err), ARM64_HAS_UAO); \
break; \
default: \
@ -297,7 +298,7 @@ do { \
(err), ARM64_HAS_UAO); \
break; \
case 8: \
__put_user_asm("str", "sttr", "%", __pu_val, (ptr), \
__put_user_asm("str", "sttr", "%x", __pu_val, (ptr), \
(err), ARM64_HAS_UAO); \
break; \
default: \

View File

@ -2,21 +2,3 @@
include include/uapi/asm-generic/Kbuild.asm
generic-y += kvm_para.h
header-y += auxvec.h
header-y += bitsperlong.h
header-y += byteorder.h
header-y += fcntl.h
header-y += hwcap.h
header-y += kvm_para.h
header-y += perf_regs.h
header-y += param.h
header-y += ptrace.h
header-y += setup.h
header-y += sigcontext.h
header-y += siginfo.h
header-y += signal.h
header-y += stat.h
header-y += statfs.h
header-y += ucontext.h
header-y += unistd.h

View File

@ -216,13 +216,17 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5
#define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6
#define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7
#define KVM_DEV_ARM_VGIC_GRP_ITS_REGS 8
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK \
(0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT)
#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK 0x3ff
#define VGIC_LEVEL_INFO_LINE_LEVEL 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
/* Device Control API on vcpu fd */
#define KVM_ARM_VCPU_PMU_V3_CTRL 0

View File

@ -306,7 +306,8 @@ do { \
_ASM_EXTABLE(0b, 4b) \
_ASM_EXTABLE(1b, 4b) \
: "=&r" (res), "+r" (data), "=&r" (temp), "=&r" (temp2) \
: "r" (addr), "i" (-EAGAIN), "i" (-EFAULT), \
: "r" ((unsigned long)addr), "i" (-EAGAIN), \
"i" (-EFAULT), \
"i" (__SWP_LL_SC_LOOPS) \
: "memory"); \
uaccess_disable(); \

View File

@ -428,12 +428,13 @@ el1_da:
/*
* Data abort handling
*/
mrs x0, far_el1
mrs x3, far_el1
enable_dbg
// re-enable interrupts if they were enabled in the aborted context
tbnz x23, #7, 1f // PSR_I_BIT
enable_irq
1:
clear_address_tag x0, x3
mov x2, sp // struct pt_regs
bl do_mem_abort
@ -594,7 +595,7 @@ el0_da:
// enable interrupts before calling the main handler
enable_dbg_and_irq
ct_user_exit
bic x0, x26, #(0xff << 56)
clear_address_tag x0, x26
mov x1, x25
mov x2, sp
bl do_mem_abort

View File

@ -36,6 +36,7 @@
#include <asm/traps.h>
#include <asm/cputype.h>
#include <asm/system_misc.h>
#include <asm/uaccess.h>
/* Breakpoint currently in use for each BRP. */
static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
@ -721,6 +722,8 @@ static u64 get_distance_from_watchpoint(unsigned long addr, u64 val,
u64 wp_low, wp_high;
u32 lens, lene;
addr = untagged_addr(addr);
lens = __ffs(ctrl->len);
lene = __fls(ctrl->len);

View File

@ -32,11 +32,16 @@
void *module_alloc(unsigned long size)
{
gfp_t gfp_mask = GFP_KERNEL;
void *p;
/* Silence the initial allocation */
if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
gfp_mask |= __GFP_NOWARN;
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
module_alloc_base + MODULES_VSIZE,
GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
gfp_mask, PAGE_KERNEL_EXEC, 0,
NUMA_NO_NODE, __builtin_return_address(0));
if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&

View File

@ -443,7 +443,7 @@ int cpu_enable_cache_maint_trap(void *__unused)
}
#define __user_cache_maint(insn, address, res) \
if (untagged_addr(address) >= user_addr_max()) { \
if (address >= user_addr_max()) { \
res = -EFAULT; \
} else { \
uaccess_ttbr0_enable(); \
@ -469,7 +469,7 @@ static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
int ret = 0;
address = pt_regs_read_reg(regs, rt);
address = untagged_addr(pt_regs_read_reg(regs, rt));
switch (crm) {
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */

View File

@ -7,14 +7,13 @@ CFLAGS_arm.o := -I.
CFLAGS_mmu.o := -I.
KVM=../../../virt/kvm
ARM=../../../arch/arm/kvm
obj-$(CONFIG_KVM_ARM_HOST) += kvm.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp/
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(ARM)/arm.o $(ARM)/mmu.o $(ARM)/mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(ARM)/psci.o $(ARM)/perf.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
kvm-$(CONFIG_KVM_ARM_HOST) += inject_fault.o regmap.o
kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o

Some files were not shown because too many files have changed in this diff Show More