This is the 2nd NFC pull request.

With this one we have a new NFC driver for Inside Secure microread and a few
 pn533 fixes.
 Microread is an HCI based NFC IP and the driver we're pushing supports tags
 R/W, and NFC p2p. It's supported over the i2c and MEI busses.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQIcBAABAgAGBQJRFN8vAAoJEIqAPN1PVmxKdMUP/jaXKl80SOEkno5Yjfp8oRln
 smr0LPo/m+jffoQw2Fp8icym2w8YSzrnPDpBOiPTtUI/7pAHT4rI86t3ZkeVU3jE
 U0RHNvGatehDCba87qD2LaN5T5YYLIHb824a5qU37wFQDphPowfhAoI0kfgaO+OY
 8VWeK7ANiEDfrRPNidhRgVflW+GPuh2SsW/3i9txWYRuovpcDTh/AzQjE5/R0vaH
 +IGcIc8ZqJI2kE7375GRhjMgdFXuQVzd/z7B8lMUKevjZAvXWBac+iOTdbLLAHtz
 0kNUiMkHPOoIuGKiJ6P+bBMJR3fckycGSDcpsNxP+ANQ30M8ZZBu+PxMV6tFdnhU
 CDPPiw93Kz93fwX2wzlbOUfRy/UVpMo1uZogWpZLvfljmD1kdzM+kIwMHeUzfOks
 lS9ZqWucZAyXMWCBd6qD617g7wsBGSB+xZi5/l25g0fRlsL4wirooDa/llIgdxE2
 SzkAp9ffthTNfFBh+fnMf17Ycx/CCiSBaPrvzgLR/UP/P1HEz4v/NQ7d/nPp4n4+
 hjU6vuviOU6e1leZppFcO/SgTptsTv4Mgbuz8NkeAUQvZIcTzB81tMhaOqsxwTQh
 R9oFNaPuldxpPyz5xQgtolp4NiaFADdSp+oFb5gk8TyUjqPaPNYZzA86l4yUldIz
 0YjGjDrAfLimDJlpYWkQ
 =YDW6
 -----END PGP SIGNATURE-----

Merge tag 'nfc-next-3.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-next

Samuel says:

"This is the 2nd NFC pull request.

With this one we have a new NFC driver for Inside Secure microread and a few
pn533 fixes.
Microread is an HCI based NFC IP and the driver we're pushing supports tags
R/W, and NFC p2p. It's supported over the i2c and MEI busses."

Signed-off-by: John W. Linville <linville@tuxdriver.com>
This commit is contained in:
John W. Linville 2013-02-08 14:42:37 -05:00
commit c6d3b2046e
10 changed files with 1427 additions and 5 deletions

View File

@ -27,5 +27,6 @@ config NFC_WILINK
into the kernel or say M to compile it as module.
source "drivers/nfc/pn544/Kconfig"
source "drivers/nfc/microread/Kconfig"
endmenu

View File

@ -3,6 +3,7 @@
#
obj-$(CONFIG_NFC_PN544) += pn544/
obj-$(CONFIG_NFC_MICROREAD) += microread/
obj-$(CONFIG_NFC_PN533) += pn533.o
obj-$(CONFIG_NFC_WILINK) += nfcwilink.o

View File

@ -0,0 +1,35 @@
config NFC_MICROREAD
tristate "Inside Secure microread NFC driver"
depends on NFC_HCI
select CRC_CCITT
default n
---help---
This module contains the main code for Inside Secure microread
NFC chipsets. It implements the chipset HCI logic and hooks into
the NFC kernel APIs. Physical layers will register against it.
To compile this driver as a module, choose m here. The module will
be called microread.
Say N if unsure.
config NFC_MICROREAD_I2C
tristate "NFC Microread i2c support"
depends on NFC_MICROREAD && I2C && NFC_SHDLC
---help---
This module adds support for the i2c interface of adapters using
Inside microread chipsets. Select this if your platform is using
the i2c bus.
If you choose to build a module, it'll be called microread_i2c.
Say N if unsure.
config NFC_MICROREAD_MEI
tristate "NFC Microread MEI support"
depends on NFC_MICROREAD && INTEL_MEI_BUS_NFC
---help---
This module adds support for the mei interface of adapters using
Inside microread chipsets. Select this if your microread chipset
is handled by Intel's Management Engine Interface on your platform.
If you choose to build a module, it'll be called microread_mei.
Say N if unsure.

View File

@ -0,0 +1,10 @@
#
# Makefile for Microread HCI based NFC driver
#
microread_i2c-objs = i2c.o
microread_mei-objs = mei.o
obj-$(CONFIG_NFC_MICROREAD) += microread.o
obj-$(CONFIG_NFC_MICROREAD_I2C) += microread_i2c.o
obj-$(CONFIG_NFC_MICROREAD_MEI) += microread_mei.o

340
drivers/nfc/microread/i2c.c Normal file
View File

@ -0,0 +1,340 @@
/*
* HCI based Driver for Inside Secure microread NFC Chip - i2c layer
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/nfc.h>
#include <net/nfc/hci.h>
#include <net/nfc/llc.h>
#include "microread.h"
#define MICROREAD_I2C_DRIVER_NAME "microread"
#define MICROREAD_I2C_FRAME_HEADROOM 1
#define MICROREAD_I2C_FRAME_TAILROOM 1
/* framing in HCI mode */
#define MICROREAD_I2C_LLC_LEN 1
#define MICROREAD_I2C_LLC_CRC 1
#define MICROREAD_I2C_LLC_LEN_CRC (MICROREAD_I2C_LLC_LEN + \
MICROREAD_I2C_LLC_CRC)
#define MICROREAD_I2C_LLC_MIN_SIZE (1 + MICROREAD_I2C_LLC_LEN_CRC)
#define MICROREAD_I2C_LLC_MAX_PAYLOAD 29
#define MICROREAD_I2C_LLC_MAX_SIZE (MICROREAD_I2C_LLC_LEN_CRC + 1 + \
MICROREAD_I2C_LLC_MAX_PAYLOAD)
struct microread_i2c_phy {
struct i2c_client *i2c_dev;
struct nfc_hci_dev *hdev;
int irq;
int hard_fault; /*
* < 0 if hardware error occured (e.g. i2c err)
* and prevents normal operation.
*/
};
#define I2C_DUMP_SKB(info, skb) \
do { \
pr_debug("%s:\n", info); \
print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET, \
16, 1, (skb)->data, (skb)->len, 0); \
} while (0)
static void microread_i2c_add_len_crc(struct sk_buff *skb)
{
int i;
u8 crc = 0;
int len;
len = skb->len;
*skb_push(skb, 1) = len;
for (i = 0; i < skb->len; i++)
crc = crc ^ skb->data[i];
*skb_put(skb, 1) = crc;
}
static void microread_i2c_remove_len_crc(struct sk_buff *skb)
{
skb_pull(skb, MICROREAD_I2C_FRAME_HEADROOM);
skb_trim(skb, MICROREAD_I2C_FRAME_TAILROOM);
}
static int check_crc(struct sk_buff *skb)
{
int i;
u8 crc = 0;
for (i = 0; i < skb->len - 1; i++)
crc = crc ^ skb->data[i];
if (crc != skb->data[skb->len-1]) {
pr_err(MICROREAD_I2C_DRIVER_NAME
": CRC error 0x%x != 0x%x\n",
crc, skb->data[skb->len-1]);
pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
return -EPERM;
}
return 0;
}
static int microread_i2c_enable(void *phy_id)
{
return 0;
}
static void microread_i2c_disable(void *phy_id)
{
return;
}
static int microread_i2c_write(void *phy_id, struct sk_buff *skb)
{
int r;
struct microread_i2c_phy *phy = phy_id;
struct i2c_client *client = phy->i2c_dev;
if (phy->hard_fault != 0)
return phy->hard_fault;
usleep_range(3000, 6000);
microread_i2c_add_len_crc(skb);
I2C_DUMP_SKB("i2c frame written", skb);
r = i2c_master_send(client, skb->data, skb->len);
if (r == -EREMOTEIO) { /* Retry, chip was in standby */
usleep_range(6000, 10000);
r = i2c_master_send(client, skb->data, skb->len);
}
if (r >= 0) {
if (r != skb->len)
r = -EREMOTEIO;
else
r = 0;
}
microread_i2c_remove_len_crc(skb);
return r;
}
static int microread_i2c_read(struct microread_i2c_phy *phy,
struct sk_buff **skb)
{
int r;
u8 len;
u8 tmp[MICROREAD_I2C_LLC_MAX_SIZE - 1];
struct i2c_client *client = phy->i2c_dev;
pr_debug("%s\n", __func__);
r = i2c_master_recv(client, &len, 1);
if (r != 1) {
dev_err(&client->dev, "cannot read len byte\n");
return -EREMOTEIO;
}
if ((len < MICROREAD_I2C_LLC_MIN_SIZE) ||
(len > MICROREAD_I2C_LLC_MAX_SIZE)) {
dev_err(&client->dev, "invalid len byte\n");
pr_err("invalid len byte\n");
r = -EBADMSG;
goto flush;
}
*skb = alloc_skb(1 + len, GFP_KERNEL);
if (*skb == NULL) {
r = -ENOMEM;
goto flush;
}
*skb_put(*skb, 1) = len;
r = i2c_master_recv(client, skb_put(*skb, len), len);
if (r != len) {
kfree_skb(*skb);
return -EREMOTEIO;
}
I2C_DUMP_SKB("cc frame read", *skb);
r = check_crc(*skb);
if (r != 0) {
kfree_skb(*skb);
r = -EBADMSG;
goto flush;
}
skb_pull(*skb, 1);
skb_trim(*skb, (*skb)->len - MICROREAD_I2C_FRAME_TAILROOM);
usleep_range(3000, 6000);
return 0;
flush:
if (i2c_master_recv(client, tmp, sizeof(tmp)) < 0)
r = -EREMOTEIO;
usleep_range(3000, 6000);
return r;
}
static irqreturn_t microread_i2c_irq_thread_fn(int irq, void *phy_id)
{
struct microread_i2c_phy *phy = phy_id;
struct i2c_client *client;
struct sk_buff *skb = NULL;
int r;
if (!phy || irq != phy->i2c_dev->irq) {
WARN_ON_ONCE(1);
return IRQ_NONE;
}
client = phy->i2c_dev;
dev_dbg(&client->dev, "IRQ\n");
if (phy->hard_fault != 0)
return IRQ_HANDLED;
r = microread_i2c_read(phy, &skb);
if (r == -EREMOTEIO) {
phy->hard_fault = r;
nfc_hci_recv_frame(phy->hdev, NULL);
return IRQ_HANDLED;
} else if ((r == -ENOMEM) || (r == -EBADMSG)) {
return IRQ_HANDLED;
}
nfc_hci_recv_frame(phy->hdev, skb);
return IRQ_HANDLED;
}
static struct nfc_phy_ops i2c_phy_ops = {
.write = microread_i2c_write,
.enable = microread_i2c_enable,
.disable = microread_i2c_disable,
};
static int microread_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct microread_i2c_phy *phy;
struct microread_nfc_platform_data *pdata =
dev_get_platdata(&client->dev);
int r;
dev_dbg(&client->dev, "client %p", client);
if (!pdata) {
dev_err(&client->dev, "client %p: missing platform data",
client);
return -EINVAL;
}
phy = devm_kzalloc(&client->dev, sizeof(struct microread_i2c_phy),
GFP_KERNEL);
if (!phy) {
dev_err(&client->dev, "Can't allocate microread phy");
return -ENOMEM;
}
i2c_set_clientdata(client, phy);
phy->i2c_dev = client;
r = request_threaded_irq(client->irq, NULL, microread_i2c_irq_thread_fn,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
MICROREAD_I2C_DRIVER_NAME, phy);
if (r) {
dev_err(&client->dev, "Unable to register IRQ handler");
return r;
}
r = microread_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
MICROREAD_I2C_FRAME_HEADROOM,
MICROREAD_I2C_FRAME_TAILROOM,
MICROREAD_I2C_LLC_MAX_PAYLOAD, &phy->hdev);
if (r < 0)
goto err_irq;
dev_info(&client->dev, "Probed");
return 0;
err_irq:
free_irq(client->irq, phy);
return r;
}
static int microread_i2c_remove(struct i2c_client *client)
{
struct microread_i2c_phy *phy = i2c_get_clientdata(client);
dev_dbg(&client->dev, "%s\n", __func__);
microread_remove(phy->hdev);
free_irq(client->irq, phy);
return 0;
}
static struct i2c_device_id microread_i2c_id[] = {
{ MICROREAD_I2C_DRIVER_NAME, 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, microread_i2c_id);
static struct i2c_driver microread_i2c_driver = {
.driver = {
.name = MICROREAD_I2C_DRIVER_NAME,
},
.probe = microread_i2c_probe,
.remove = microread_i2c_remove,
.id_table = microread_i2c_id,
};
module_i2c_driver(microread_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);

241
drivers/nfc/microread/mei.c Normal file
View File

@ -0,0 +1,241 @@
/*
* HCI based Driver for Inside Secure microread NFC Chip
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/mei_bus.h>
#include <linux/nfc.h>
#include <net/nfc/hci.h>
#include <net/nfc/llc.h>
#include "microread.h"
#define MICROREAD_DRIVER_NAME "microread"
#define MICROREAD_UUID UUID_LE(0x0bb17a78, 0x2a8e, 0x4c50, 0x94, \
0xd4, 0x50, 0x26, 0x67, 0x23, 0x77, 0x5c)
struct mei_nfc_hdr {
u8 cmd;
u8 status;
u16 req_id;
u32 reserved;
u16 data_size;
} __attribute__((packed));
#define MEI_NFC_HEADER_SIZE 10
#define MEI_NFC_MAX_HCI_PAYLOAD 300
#define MEI_NFC_MAX_READ (MEI_NFC_HEADER_SIZE + MEI_NFC_MAX_HCI_PAYLOAD)
struct microread_mei_phy {
struct mei_bus_client *client;
struct nfc_hci_dev *hdev;
int powered;
int hard_fault; /*
* < 0 if hardware error occured (e.g. i2c err)
* and prevents normal operation.
*/
};
#define MEI_DUMP_SKB_IN(info, skb) \
do { \
pr_debug("%s:\n", info); \
print_hex_dump(KERN_DEBUG, "mei in : ", DUMP_PREFIX_OFFSET, \
16, 1, (skb)->data, (skb)->len, 0); \
} while (0)
#define MEI_DUMP_SKB_OUT(info, skb) \
do { \
pr_debug("%s:\n", info); \
print_hex_dump(KERN_DEBUG, "mei out: ", DUMP_PREFIX_OFFSET, \
16, 1, (skb)->data, (skb)->len, 0); \
} while (0)
static int microread_mei_enable(void *phy_id)
{
struct microread_mei_phy *phy = phy_id;
pr_info(DRIVER_DESC ": %s\n", __func__);
phy->powered = 1;
return 0;
}
static void microread_mei_disable(void *phy_id)
{
struct microread_mei_phy *phy = phy_id;
pr_info(DRIVER_DESC ": %s\n", __func__);
phy->powered = 0;
}
/*
* Writing a frame must not return the number of written bytes.
* It must return either zero for success, or <0 for error.
* In addition, it must not alter the skb
*/
static int microread_mei_write(void *phy_id, struct sk_buff *skb)
{
struct microread_mei_phy *phy = phy_id;
int r;
MEI_DUMP_SKB_OUT("mei frame sent", skb);
r = mei_bus_send(phy->client, skb->data, skb->len);
if (r > 0)
r = 0;
return r;
}
static void microread_event_cb(struct mei_bus_client *client, u32 events,
void *context)
{
struct microread_mei_phy *phy = context;
if (phy->hard_fault != 0)
return;
if (events & BIT(MEI_BUS_EVENT_RX)) {
struct sk_buff *skb;
int reply_size;
skb = alloc_skb(MEI_NFC_MAX_READ, GFP_KERNEL);
if (!skb)
return;
reply_size = mei_bus_recv(client, skb->data, MEI_NFC_MAX_READ);
if (reply_size < MEI_NFC_HEADER_SIZE) {
kfree(skb);
return;
}
skb_put(skb, reply_size);
skb_pull(skb, MEI_NFC_HEADER_SIZE);
MEI_DUMP_SKB_IN("mei frame read", skb);
nfc_hci_recv_frame(phy->hdev, skb);
}
}
static struct nfc_phy_ops mei_phy_ops = {
.write = microread_mei_write,
.enable = microread_mei_enable,
.disable = microread_mei_disable,
};
static int microread_mei_probe(struct mei_bus_client *client)
{
struct microread_mei_phy *phy;
int r;
pr_info("Probing NFC microread\n");
phy = kzalloc(sizeof(struct microread_mei_phy), GFP_KERNEL);
if (!phy) {
pr_err("Cannot allocate memory for microread mei phy.\n");
return -ENOMEM;
}
phy->client = client;
mei_bus_set_clientdata(client, phy);
r = mei_bus_register_event_cb(client, microread_event_cb, phy);
if (r) {
pr_err(MICROREAD_DRIVER_NAME ": event cb registration failed\n");
goto err_out;
}
r = microread_probe(phy, &mei_phy_ops, LLC_NOP_NAME,
MEI_NFC_HEADER_SIZE, 0, MEI_NFC_MAX_HCI_PAYLOAD,
&phy->hdev);
if (r < 0)
goto err_out;
return 0;
err_out:
kfree(phy);
return r;
}
static int microread_mei_remove(struct mei_bus_client *client)
{
struct microread_mei_phy *phy = mei_bus_get_clientdata(client);
pr_info("Removing microread\n");
microread_remove(phy->hdev);
if (phy->powered)
microread_mei_disable(phy);
kfree(phy);
return 0;
}
static struct mei_bus_driver microread_driver = {
.driver = {
.name = MICROREAD_DRIVER_NAME,
},
.id = {
.name = MICROREAD_DRIVER_NAME,
.uuid = MICROREAD_UUID,
},
.probe = microread_mei_probe,
.remove = microread_mei_remove,
};
static int microread_mei_init(void)
{
int r;
pr_debug(DRIVER_DESC ": %s\n", __func__);
r = mei_driver_register(&microread_driver);
if (r) {
pr_err(MICROREAD_DRIVER_NAME ": driver registration failed\n");
return r;
}
return 0;
}
static void microread_mei_exit(void)
{
mei_driver_unregister(&microread_driver);
}
module_init(microread_mei_init);
module_exit(microread_mei_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);

View File

@ -0,0 +1,728 @@
/*
* HCI based Driver for Inside Secure microread NFC Chip
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/crc-ccitt.h>
#include <linux/nfc.h>
#include <net/nfc/nfc.h>
#include <net/nfc/hci.h>
#include <net/nfc/llc.h>
#include "microread.h"
/* Proprietary gates, events, commands and registers */
/* Admin */
#define MICROREAD_GATE_ID_ADM NFC_HCI_ADMIN_GATE
#define MICROREAD_GATE_ID_MGT 0x01
#define MICROREAD_GATE_ID_OS 0x02
#define MICROREAD_GATE_ID_TESTRF 0x03
#define MICROREAD_GATE_ID_LOOPBACK NFC_HCI_LOOPBACK_GATE
#define MICROREAD_GATE_ID_IDT NFC_HCI_ID_MGMT_GATE
#define MICROREAD_GATE_ID_LMS NFC_HCI_LINK_MGMT_GATE
/* Reader */
#define MICROREAD_GATE_ID_MREAD_GEN 0x10
#define MICROREAD_GATE_ID_MREAD_ISO_B NFC_HCI_RF_READER_B_GATE
#define MICROREAD_GATE_ID_MREAD_NFC_T1 0x12
#define MICROREAD_GATE_ID_MREAD_ISO_A NFC_HCI_RF_READER_A_GATE
#define MICROREAD_GATE_ID_MREAD_NFC_T3 0x14
#define MICROREAD_GATE_ID_MREAD_ISO_15_3 0x15
#define MICROREAD_GATE_ID_MREAD_ISO_15_2 0x16
#define MICROREAD_GATE_ID_MREAD_ISO_B_3 0x17
#define MICROREAD_GATE_ID_MREAD_BPRIME 0x18
#define MICROREAD_GATE_ID_MREAD_ISO_A_3 0x19
/* Card */
#define MICROREAD_GATE_ID_MCARD_GEN 0x20
#define MICROREAD_GATE_ID_MCARD_ISO_B 0x21
#define MICROREAD_GATE_ID_MCARD_BPRIME 0x22
#define MICROREAD_GATE_ID_MCARD_ISO_A 0x23
#define MICROREAD_GATE_ID_MCARD_NFC_T3 0x24
#define MICROREAD_GATE_ID_MCARD_ISO_15_3 0x25
#define MICROREAD_GATE_ID_MCARD_ISO_15_2 0x26
#define MICROREAD_GATE_ID_MCARD_ISO_B_2 0x27
#define MICROREAD_GATE_ID_MCARD_ISO_CUSTOM 0x28
#define MICROREAD_GATE_ID_SECURE_ELEMENT 0x2F
/* P2P */
#define MICROREAD_GATE_ID_P2P_GEN 0x30
#define MICROREAD_GATE_ID_P2P_TARGET 0x31
#define MICROREAD_PAR_P2P_TARGET_MODE 0x01
#define MICROREAD_PAR_P2P_TARGET_GT 0x04
#define MICROREAD_GATE_ID_P2P_INITIATOR 0x32
#define MICROREAD_PAR_P2P_INITIATOR_GI 0x01
#define MICROREAD_PAR_P2P_INITIATOR_GT 0x03
/* Those pipes are created/opened by default in the chip */
#define MICROREAD_PIPE_ID_LMS 0x00
#define MICROREAD_PIPE_ID_ADMIN 0x01
#define MICROREAD_PIPE_ID_MGT 0x02
#define MICROREAD_PIPE_ID_OS 0x03
#define MICROREAD_PIPE_ID_HDS_LOOPBACK 0x04
#define MICROREAD_PIPE_ID_HDS_IDT 0x05
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B 0x08
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_BPRIME 0x09
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_A 0x0A
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_3 0x0B
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_2 0x0C
#define MICROREAD_PIPE_ID_HDS_MCARD_NFC_T3 0x0D
#define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B_2 0x0E
#define MICROREAD_PIPE_ID_HDS_MCARD_CUSTOM 0x0F
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B 0x10
#define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1 0x11
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A 0x12
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_3 0x13
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_2 0x14
#define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3 0x15
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B_3 0x16
#define MICROREAD_PIPE_ID_HDS_MREAD_BPRIME 0x17
#define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3 0x18
#define MICROREAD_PIPE_ID_HDS_MREAD_GEN 0x1B
#define MICROREAD_PIPE_ID_HDS_STACKED_ELEMENT 0x1C
#define MICROREAD_PIPE_ID_HDS_INSTANCES 0x1D
#define MICROREAD_PIPE_ID_HDS_TESTRF 0x1E
#define MICROREAD_PIPE_ID_HDS_P2P_TARGET 0x1F
#define MICROREAD_PIPE_ID_HDS_P2P_INITIATOR 0x20
/* Events */
#define MICROREAD_EVT_MREAD_DISCOVERY_OCCURED NFC_HCI_EVT_TARGET_DISCOVERED
#define MICROREAD_EVT_MREAD_CARD_FOUND 0x3D
#define MICROREAD_EMCF_A_ATQA 0
#define MICROREAD_EMCF_A_SAK 2
#define MICROREAD_EMCF_A_LEN 3
#define MICROREAD_EMCF_A_UID 4
#define MICROREAD_EMCF_A3_ATQA 0
#define MICROREAD_EMCF_A3_SAK 2
#define MICROREAD_EMCF_A3_LEN 3
#define MICROREAD_EMCF_A3_UID 4
#define MICROREAD_EMCF_B_UID 0
#define MICROREAD_EMCF_T1_ATQA 0
#define MICROREAD_EMCF_T1_UID 4
#define MICROREAD_EMCF_T3_UID 0
#define MICROREAD_EVT_MREAD_DISCOVERY_START NFC_HCI_EVT_READER_REQUESTED
#define MICROREAD_EVT_MREAD_DISCOVERY_START_SOME 0x3E
#define MICROREAD_EVT_MREAD_DISCOVERY_STOP NFC_HCI_EVT_END_OPERATION
#define MICROREAD_EVT_MREAD_SIM_REQUESTS 0x3F
#define MICROREAD_EVT_MCARD_EXCHANGE NFC_HCI_EVT_TARGET_DISCOVERED
#define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF 0x20
#define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF 0x21
#define MICROREAD_EVT_MCARD_FIELD_ON 0x11
#define MICROREAD_EVT_P2P_TARGET_ACTIVATED 0x13
#define MICROREAD_EVT_P2P_TARGET_DEACTIVATED 0x12
#define MICROREAD_EVT_MCARD_FIELD_OFF 0x14
/* Commands */
#define MICROREAD_CMD_MREAD_EXCHANGE 0x10
#define MICROREAD_CMD_MREAD_SUBSCRIBE 0x3F
/* Hosts IDs */
#define MICROREAD_ELT_ID_HDS NFC_HCI_TERMINAL_HOST_ID
#define MICROREAD_ELT_ID_SIM NFC_HCI_UICC_HOST_ID
#define MICROREAD_ELT_ID_SE1 0x03
#define MICROREAD_ELT_ID_SE2 0x04
#define MICROREAD_ELT_ID_SE3 0x05
static struct nfc_hci_gate microread_gates[] = {
{MICROREAD_GATE_ID_ADM, MICROREAD_PIPE_ID_ADMIN},
{MICROREAD_GATE_ID_LOOPBACK, MICROREAD_PIPE_ID_HDS_LOOPBACK},
{MICROREAD_GATE_ID_IDT, MICROREAD_PIPE_ID_HDS_IDT},
{MICROREAD_GATE_ID_LMS, MICROREAD_PIPE_ID_LMS},
{MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_PIPE_ID_HDS_MREAD_ISO_B},
{MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A},
{MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3},
{MICROREAD_GATE_ID_MGT, MICROREAD_PIPE_ID_MGT},
{MICROREAD_GATE_ID_OS, MICROREAD_PIPE_ID_OS},
{MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1},
{MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3},
{MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PIPE_ID_HDS_P2P_TARGET},
{MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PIPE_ID_HDS_P2P_INITIATOR}
};
/* Largest headroom needed for outgoing custom commands */
#define MICROREAD_CMDS_HEADROOM 2
#define MICROREAD_CMD_TAILROOM 2
struct microread_info {
struct nfc_phy_ops *phy_ops;
void *phy_id;
struct nfc_hci_dev *hdev;
int async_cb_type;
data_exchange_cb_t async_cb;
void *async_cb_context;
};
static int microread_open(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
return info->phy_ops->enable(info->phy_id);
}
static void microread_close(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
info->phy_ops->disable(info->phy_id);
}
static int microread_hci_ready(struct nfc_hci_dev *hdev)
{
int r;
u8 param[4];
param[0] = 0x03;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 1, NULL);
if (r)
return r;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A_3,
MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
if (r)
return r;
param[0] = 0x00;
param[1] = 0x03;
param[2] = 0x00;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_B,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 3, NULL);
if (r)
return r;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T1,
MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
if (r)
return r;
param[0] = 0xFF;
param[1] = 0xFF;
param[2] = 0x00;
param[3] = 0x00;
r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T3,
MICROREAD_CMD_MREAD_SUBSCRIBE, param, 4, NULL);
return r;
}
static int microread_xmit(struct nfc_hci_dev *hdev, struct sk_buff *skb)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
return info->phy_ops->write(info->phy_id, skb);
}
static int microread_start_poll(struct nfc_hci_dev *hdev,
u32 im_protocols, u32 tm_protocols)
{
int r;
u8 param[2];
u8 mode;
param[0] = 0x00;
param[1] = 0x00;
if (im_protocols & NFC_PROTO_ISO14443_MASK)
param[0] |= (1 << 2);
if (im_protocols & NFC_PROTO_ISO14443_B_MASK)
param[0] |= 1;
if (im_protocols & NFC_PROTO_MIFARE_MASK)
param[1] |= 1;
if (im_protocols & NFC_PROTO_JEWEL_MASK)
param[0] |= (1 << 1);
if (im_protocols & NFC_PROTO_FELICA_MASK)
param[0] |= (1 << 5);
if (im_protocols & NFC_PROTO_NFC_DEP_MASK)
param[1] |= (1 << 1);
if ((im_protocols | tm_protocols) & NFC_PROTO_NFC_DEP_MASK) {
hdev->gb = nfc_get_local_general_bytes(hdev->ndev,
&hdev->gb_len);
if (hdev->gb == NULL || hdev->gb_len == 0) {
im_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
tm_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
}
}
r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
if (r)
return r;
mode = 0xff;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
return r;
if (im_protocols & NFC_PROTO_NFC_DEP_MASK) {
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
MICROREAD_PAR_P2P_INITIATOR_GI,
hdev->gb, hdev->gb_len);
if (r)
return r;
}
if (tm_protocols & NFC_PROTO_NFC_DEP_MASK) {
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_GT,
hdev->gb, hdev->gb_len);
if (r)
return r;
mode = 0x02;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
return r;
}
return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
MICROREAD_EVT_MREAD_DISCOVERY_START_SOME,
param, 2);
}
static int microread_dep_link_up(struct nfc_hci_dev *hdev,
struct nfc_target *target, u8 comm_mode,
u8 *gb, size_t gb_len)
{
struct sk_buff *rgb_skb = NULL;
int r;
r = nfc_hci_get_param(hdev, target->hci_reader_gate,
MICROREAD_PAR_P2P_INITIATOR_GT, &rgb_skb);
if (r < 0)
return r;
if (rgb_skb->len == 0 || rgb_skb->len > NFC_GB_MAXSIZE) {
r = -EPROTO;
goto exit;
}
r = nfc_set_remote_general_bytes(hdev->ndev, rgb_skb->data,
rgb_skb->len);
if (r == 0)
r = nfc_dep_link_is_up(hdev->ndev, target->idx, comm_mode,
NFC_RF_INITIATOR);
exit:
kfree_skb(rgb_skb);
return r;
}
static int microread_dep_link_down(struct nfc_hci_dev *hdev)
{
return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
}
static int microread_target_from_gate(struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target)
{
switch (gate) {
case MICROREAD_GATE_ID_P2P_INITIATOR:
target->supported_protocols = NFC_PROTO_NFC_DEP_MASK;
break;
default:
return -EPROTO;
}
return 0;
}
static int microread_complete_target_discovered(struct nfc_hci_dev *hdev,
u8 gate,
struct nfc_target *target)
{
return 0;
}
#define MICROREAD_CB_TYPE_READER_ALL 1
static void microread_im_transceive_cb(void *context, struct sk_buff *skb,
int err)
{
struct microread_info *info = context;
switch (info->async_cb_type) {
case MICROREAD_CB_TYPE_READER_ALL:
if (err == 0) {
if (skb->len == 0) {
err = -EPROTO;
kfree_skb(skb);
info->async_cb(info->async_cb_context, NULL,
-EPROTO);
return;
}
if (skb->data[skb->len - 1] != 0) {
err = nfc_hci_result_to_errno(
skb->data[skb->len - 1]);
kfree_skb(skb);
info->async_cb(info->async_cb_context, NULL,
err);
return;
}
skb_trim(skb, skb->len - 1); /* RF Error ind. */
}
info->async_cb(info->async_cb_context, skb, err);
break;
default:
if (err == 0)
kfree_skb(skb);
break;
}
}
/*
* Returns:
* <= 0: driver handled the data exchange
* 1: driver doesn't especially handle, please do standard processing
*/
static int microread_im_transceive(struct nfc_hci_dev *hdev,
struct nfc_target *target,
struct sk_buff *skb, data_exchange_cb_t cb,
void *cb_context)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
u8 control_bits;
u16 crc;
pr_info("data exchange to gate 0x%x\n", target->hci_reader_gate);
if (target->hci_reader_gate == MICROREAD_GATE_ID_P2P_INITIATOR) {
*skb_push(skb, 1) = 0;
return nfc_hci_send_event(hdev, target->hci_reader_gate,
MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF,
skb->data, skb->len);
}
switch (target->hci_reader_gate) {
case MICROREAD_GATE_ID_MREAD_ISO_A:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_ISO_A_3:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_ISO_B:
control_bits = 0xCB;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T1:
control_bits = 0x1B;
crc = crc_ccitt(0xffff, skb->data, skb->len);
crc = ~crc;
*skb_put(skb, 1) = crc & 0xff;
*skb_put(skb, 1) = crc >> 8;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T3:
control_bits = 0xDB;
break;
default:
pr_info("Abort im_transceive to invalid gate 0x%x\n",
target->hci_reader_gate);
return 1;
}
*skb_push(skb, 1) = control_bits;
info->async_cb_type = MICROREAD_CB_TYPE_READER_ALL;
info->async_cb = cb;
info->async_cb_context = cb_context;
return nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
MICROREAD_CMD_MREAD_EXCHANGE,
skb->data, skb->len,
microread_im_transceive_cb, info);
}
static int microread_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb)
{
int r;
r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_EVT_MCARD_EXCHANGE,
skb->data, skb->len);
kfree_skb(skb);
return r;
}
static void microread_target_discovered(struct nfc_hci_dev *hdev, u8 gate,
struct sk_buff *skb)
{
struct nfc_target *targets;
int r = 0;
pr_info("target discovered to gate 0x%x\n", gate);
targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
if (targets == NULL) {
r = -ENOMEM;
goto exit;
}
targets->hci_reader_gate = gate;
switch (gate) {
case MICROREAD_GATE_ID_MREAD_ISO_A:
targets->supported_protocols =
nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A_SAK]);
targets->sens_res =
be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A_ATQA]);
targets->sel_res = skb->data[MICROREAD_EMCF_A_SAK];
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A_UID],
skb->data[MICROREAD_EMCF_A_LEN]);
targets->nfcid1_len = skb->data[MICROREAD_EMCF_A_LEN];
break;
case MICROREAD_GATE_ID_MREAD_ISO_A_3:
targets->supported_protocols =
nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A3_SAK]);
targets->sens_res =
be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A3_ATQA]);
targets->sel_res = skb->data[MICROREAD_EMCF_A3_SAK];
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A3_UID],
skb->data[MICROREAD_EMCF_A3_LEN]);
targets->nfcid1_len = skb->data[MICROREAD_EMCF_A3_LEN];
break;
case MICROREAD_GATE_ID_MREAD_ISO_B:
targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_B_UID], 4);
targets->nfcid1_len = 4;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T1:
targets->supported_protocols = NFC_PROTO_JEWEL_MASK;
targets->sens_res =
le16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_T1_ATQA]);
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T1_UID], 4);
targets->nfcid1_len = 4;
break;
case MICROREAD_GATE_ID_MREAD_NFC_T3:
targets->supported_protocols = NFC_PROTO_FELICA_MASK;
memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T3_UID], 8);
targets->nfcid1_len = 8;
break;
default:
pr_info("discard target discovered to gate 0x%x\n", gate);
goto exit_free;
}
r = nfc_targets_found(hdev->ndev, targets, 1);
exit_free:
kfree(targets);
exit:
kfree_skb(skb);
if (r)
pr_err("Failed to handle discovered target err=%d", r);
}
static int microread_event_received(struct nfc_hci_dev *hdev, u8 gate,
u8 event, struct sk_buff *skb)
{
int r;
u8 mode;
pr_info("Microread received event 0x%x to gate 0x%x\n", event, gate);
switch (event) {
case MICROREAD_EVT_MREAD_CARD_FOUND:
microread_target_discovered(hdev, gate, skb);
return 0;
case MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF:
if (skb->len < 1) {
kfree_skb(skb);
return -EPROTO;
}
if (skb->data[skb->len - 1]) {
kfree_skb(skb);
return -EIO;
}
skb_trim(skb, skb->len - 1);
r = nfc_tm_data_received(hdev->ndev, skb);
break;
case MICROREAD_EVT_MCARD_FIELD_ON:
case MICROREAD_EVT_MCARD_FIELD_OFF:
kfree_skb(skb);
return 0;
case MICROREAD_EVT_P2P_TARGET_ACTIVATED:
r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
NFC_COMM_PASSIVE, skb->data,
skb->len);
kfree_skb(skb);
break;
case MICROREAD_EVT_MCARD_EXCHANGE:
if (skb->len < 1) {
kfree_skb(skb);
return -EPROTO;
}
if (skb->data[skb->len-1]) {
kfree_skb(skb);
return -EIO;
}
skb_trim(skb, skb->len - 1);
r = nfc_tm_data_received(hdev->ndev, skb);
break;
case MICROREAD_EVT_P2P_TARGET_DEACTIVATED:
kfree_skb(skb);
mode = 0xff;
r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
if (r)
break;
r = nfc_hci_send_event(hdev, gate,
MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL,
0);
break;
default:
return 1;
}
return r;
}
static struct nfc_hci_ops microread_hci_ops = {
.open = microread_open,
.close = microread_close,
.hci_ready = microread_hci_ready,
.xmit = microread_xmit,
.start_poll = microread_start_poll,
.dep_link_up = microread_dep_link_up,
.dep_link_down = microread_dep_link_down,
.target_from_gate = microread_target_from_gate,
.complete_target_discovered = microread_complete_target_discovered,
.im_transceive = microread_im_transceive,
.tm_send = microread_tm_send,
.check_presence = NULL,
.event_received = microread_event_received,
};
int microread_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
int phy_headroom, int phy_tailroom, int phy_payload,
struct nfc_hci_dev **hdev)
{
struct microread_info *info;
unsigned long quirks = 0;
u32 protocols, se;
struct nfc_hci_init_data init_data;
int r;
info = kzalloc(sizeof(struct microread_info), GFP_KERNEL);
if (!info) {
pr_err("Cannot allocate memory for microread_info.\n");
r = -ENOMEM;
goto err_info_alloc;
}
info->phy_ops = phy_ops;
info->phy_id = phy_id;
init_data.gate_count = ARRAY_SIZE(microread_gates);
memcpy(init_data.gates, microread_gates, sizeof(microread_gates));
strcpy(init_data.session_id, "MICROREA");
set_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &quirks);
protocols = NFC_PROTO_JEWEL_MASK |
NFC_PROTO_MIFARE_MASK |
NFC_PROTO_FELICA_MASK |
NFC_PROTO_ISO14443_MASK |
NFC_PROTO_ISO14443_B_MASK |
NFC_PROTO_NFC_DEP_MASK;
se = NFC_SE_UICC | NFC_SE_EMBEDDED;
info->hdev = nfc_hci_allocate_device(&microread_hci_ops, &init_data,
quirks, protocols, se, llc_name,
phy_headroom +
MICROREAD_CMDS_HEADROOM,
phy_tailroom +
MICROREAD_CMD_TAILROOM,
phy_payload);
if (!info->hdev) {
pr_err("Cannot allocate nfc hdev.\n");
r = -ENOMEM;
goto err_alloc_hdev;
}
nfc_hci_set_clientdata(info->hdev, info);
r = nfc_hci_register_device(info->hdev);
if (r)
goto err_regdev;
*hdev = info->hdev;
return 0;
err_regdev:
nfc_hci_free_device(info->hdev);
err_alloc_hdev:
kfree(info);
err_info_alloc:
return r;
}
EXPORT_SYMBOL(microread_probe);
void microread_remove(struct nfc_hci_dev *hdev)
{
struct microread_info *info = nfc_hci_get_clientdata(hdev);
nfc_hci_unregister_device(hdev);
nfc_hci_free_device(hdev);
kfree(info);
}
EXPORT_SYMBOL(microread_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);

View File

@ -0,0 +1,33 @@
/*
* Copyright (C) 2011 - 2012 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef __LOCAL_MICROREAD_H_
#define __LOCAL_MICROREAD_H_
#include <net/nfc/hci.h>
#define DRIVER_DESC "NFC driver for microread"
int microread_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
int phy_headroom, int phy_tailroom, int phy_payload,
struct nfc_hci_dev **hdev);
void microread_remove(struct nfc_hci_dev *hdev);
#endif /* __LOCAL_MICROREAD_H_ */

View File

@ -219,7 +219,7 @@ struct pn533_poll_modulations {
u8 len;
};
const struct pn533_poll_modulations poll_mod[] = {
static const struct pn533_poll_modulations poll_mod[] = {
[PN533_POLL_MOD_106KBPS_A] = {
.data = {
.maxtg = 1,
@ -485,7 +485,7 @@ static u8 pn533_get_cmd_code(void *frame)
return PN533_FRAME_CMD(f);
}
struct pn533_frame_ops pn533_std_frame_ops = {
static struct pn533_frame_ops pn533_std_frame_ops = {
.tx_frame_init = pn533_tx_frame_init,
.tx_frame_finish = pn533_tx_frame_finish,
.tx_update_payload_len = pn533_tx_update_payload_len,
@ -532,7 +532,6 @@ static void pn533_recv_response(struct urb *urb)
urb->status);
dev->wq_in_error = urb->status;
goto sched_wq;
break;
case -ESHUTDOWN:
default:
nfc_dev_err(&dev->interface->dev,
@ -589,7 +588,6 @@ static void pn533_recv_ack(struct urb *urb)
urb->status);
dev->wq_in_error = urb->status;
goto sched_wq;
break;
case -ESHUTDOWN:
default:
nfc_dev_err(&dev->interface->dev,
@ -1380,7 +1378,7 @@ static struct sk_buff *pn533_alloc_poll_tg_frame(struct pn533 *dev)
return NULL;
/* DEP support only */
*skb_put(skb, 1) |= PN533_INIT_TARGET_DEP;
*skb_put(skb, 1) = PN533_INIT_TARGET_DEP;
/* MIFARE params */
memcpy(skb_put(skb, 6), mifare_params, 6);

View File

@ -0,0 +1,35 @@
/*
* Driver include for the PN544 NFC chip.
*
* Copyright (C) 2011 Tieto Poland
* Copyright (C) 2012 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _MICROREAD_H
#define _MICROREAD_H
#include <linux/i2c.h>
#define MICROREAD_DRIVER_NAME "microread"
/* board config platform data for microread */
struct microread_nfc_platform_data {
unsigned int rst_gpio;
unsigned int irq_gpio;
unsigned int ioh_gpio;
};
#endif /* _MICROREAD_H */