mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 19:43:29 +00:00
docs/vm: numa_memory_policy.txt: convert to ReST format
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
16f9f7f924
commit
cb5e4376e5
@ -1,5 +1,11 @@
|
||||
.. _numa_memory_policy:
|
||||
|
||||
===================
|
||||
Linux Memory Policy
|
||||
===================
|
||||
|
||||
What is Linux Memory Policy?
|
||||
============================
|
||||
|
||||
In the Linux kernel, "memory policy" determines from which node the kernel will
|
||||
allocate memory in a NUMA system or in an emulated NUMA system. Linux has
|
||||
@ -9,35 +15,36 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
|
||||
support.
|
||||
|
||||
Memory policies should not be confused with cpusets
|
||||
(Documentation/cgroup-v1/cpusets.txt)
|
||||
(``Documentation/cgroup-v1/cpusets.txt``)
|
||||
which is an administrative mechanism for restricting the nodes from which
|
||||
memory may be allocated by a set of processes. Memory policies are a
|
||||
programming interface that a NUMA-aware application can take advantage of. When
|
||||
both cpusets and policies are applied to a task, the restrictions of the cpuset
|
||||
takes priority. See "MEMORY POLICIES AND CPUSETS" below for more details.
|
||||
takes priority. See :ref:`Memory Policies and cpusets <mem_pol_and_cpusets>`
|
||||
below for more details.
|
||||
|
||||
MEMORY POLICY CONCEPTS
|
||||
Memory Policy Concepts
|
||||
======================
|
||||
|
||||
Scope of Memory Policies
|
||||
------------------------
|
||||
|
||||
The Linux kernel supports _scopes_ of memory policy, described here from
|
||||
most general to most specific:
|
||||
|
||||
System Default Policy: this policy is "hard coded" into the kernel. It
|
||||
is the policy that governs all page allocations that aren't controlled
|
||||
by one of the more specific policy scopes discussed below. When the
|
||||
system is "up and running", the system default policy will use "local
|
||||
allocation" described below. However, during boot up, the system
|
||||
default policy will be set to interleave allocations across all nodes
|
||||
with "sufficient" memory, so as not to overload the initial boot node
|
||||
with boot-time allocations.
|
||||
System Default Policy
|
||||
this policy is "hard coded" into the kernel. It is the policy
|
||||
that governs all page allocations that aren't controlled by
|
||||
one of the more specific policy scopes discussed below. When
|
||||
the system is "up and running", the system default policy will
|
||||
use "local allocation" described below. However, during boot
|
||||
up, the system default policy will be set to interleave
|
||||
allocations across all nodes with "sufficient" memory, so as
|
||||
not to overload the initial boot node with boot-time
|
||||
allocations.
|
||||
|
||||
Task/Process Policy: this is an optional, per-task policy. When defined
|
||||
for a specific task, this policy controls all page allocations made by or
|
||||
on behalf of the task that aren't controlled by a more specific scope.
|
||||
If a task does not define a task policy, then all page allocations that
|
||||
would have been controlled by the task policy "fall back" to the System
|
||||
Default Policy.
|
||||
Task/Process Policy
|
||||
this is an optional, per-task policy. When defined for a specific task, this policy controls all page allocations made by or on behalf of the task that aren't controlled by a more specific scope. If a task does not define a task policy, then all page allocations that would have been controlled by the task policy "fall back" to the System Default Policy.
|
||||
|
||||
The task policy applies to the entire address space of a task. Thus,
|
||||
it is inheritable, and indeed is inherited, across both fork()
|
||||
@ -58,56 +65,66 @@ most general to most specific:
|
||||
changes its task policy remain where they were allocated based on
|
||||
the policy at the time they were allocated.
|
||||
|
||||
VMA Policy: A "VMA" or "Virtual Memory Area" refers to a range of a task's
|
||||
virtual address space. A task may define a specific policy for a range
|
||||
of its virtual address space. See the MEMORY POLICIES APIS section,
|
||||
below, for an overview of the mbind() system call used to set a VMA
|
||||
policy.
|
||||
.. _vma_policy:
|
||||
|
||||
A VMA policy will govern the allocation of pages that back this region of
|
||||
the address space. Any regions of the task's address space that don't
|
||||
have an explicit VMA policy will fall back to the task policy, which may
|
||||
itself fall back to the System Default Policy.
|
||||
VMA Policy
|
||||
A "VMA" or "Virtual Memory Area" refers to a range of a task's
|
||||
virtual address space. A task may define a specific policy for a range
|
||||
of its virtual address space. See the MEMORY POLICIES APIS section,
|
||||
below, for an overview of the mbind() system call used to set a VMA
|
||||
policy.
|
||||
|
||||
VMA policies have a few complicating details:
|
||||
A VMA policy will govern the allocation of pages that back
|
||||
this region ofthe address space. Any regions of the task's
|
||||
address space that don't have an explicit VMA policy will fall
|
||||
back to the task policy, which may itself fall back to the
|
||||
System Default Policy.
|
||||
|
||||
VMA policy applies ONLY to anonymous pages. These include pages
|
||||
allocated for anonymous segments, such as the task stack and heap, and
|
||||
any regions of the address space mmap()ed with the MAP_ANONYMOUS flag.
|
||||
If a VMA policy is applied to a file mapping, it will be ignored if
|
||||
the mapping used the MAP_SHARED flag. If the file mapping used the
|
||||
MAP_PRIVATE flag, the VMA policy will only be applied when an
|
||||
anonymous page is allocated on an attempt to write to the mapping--
|
||||
i.e., at Copy-On-Write.
|
||||
VMA policies have a few complicating details:
|
||||
|
||||
VMA policies are shared between all tasks that share a virtual address
|
||||
space--a.k.a. threads--independent of when the policy is installed; and
|
||||
they are inherited across fork(). However, because VMA policies refer
|
||||
to a specific region of a task's address space, and because the address
|
||||
space is discarded and recreated on exec*(), VMA policies are NOT
|
||||
inheritable across exec(). Thus, only NUMA-aware applications may
|
||||
use VMA policies.
|
||||
* VMA policy applies ONLY to anonymous pages. These include
|
||||
pages allocated for anonymous segments, such as the task
|
||||
stack and heap, and any regions of the address space
|
||||
mmap()ed with the MAP_ANONYMOUS flag. If a VMA policy is
|
||||
applied to a file mapping, it will be ignored if the mapping
|
||||
used the MAP_SHARED flag. If the file mapping used the
|
||||
MAP_PRIVATE flag, the VMA policy will only be applied when
|
||||
an anonymous page is allocated on an attempt to write to the
|
||||
mapping-- i.e., at Copy-On-Write.
|
||||
|
||||
A task may install a new VMA policy on a sub-range of a previously
|
||||
mmap()ed region. When this happens, Linux splits the existing virtual
|
||||
memory area into 2 or 3 VMAs, each with it's own policy.
|
||||
* VMA policies are shared between all tasks that share a
|
||||
virtual address space--a.k.a. threads--independent of when
|
||||
the policy is installed; and they are inherited across
|
||||
fork(). However, because VMA policies refer to a specific
|
||||
region of a task's address space, and because the address
|
||||
space is discarded and recreated on exec*(), VMA policies
|
||||
are NOT inheritable across exec(). Thus, only NUMA-aware
|
||||
applications may use VMA policies.
|
||||
|
||||
By default, VMA policy applies only to pages allocated after the policy
|
||||
is installed. Any pages already faulted into the VMA range remain
|
||||
where they were allocated based on the policy at the time they were
|
||||
allocated. However, since 2.6.16, Linux supports page migration via
|
||||
the mbind() system call, so that page contents can be moved to match
|
||||
a newly installed policy.
|
||||
* A task may install a new VMA policy on a sub-range of a
|
||||
previously mmap()ed region. When this happens, Linux splits
|
||||
the existing virtual memory area into 2 or 3 VMAs, each with
|
||||
it's own policy.
|
||||
|
||||
Shared Policy: Conceptually, shared policies apply to "memory objects"
|
||||
mapped shared into one or more tasks' distinct address spaces. An
|
||||
application installs a shared policies the same way as VMA policies--using
|
||||
the mbind() system call specifying a range of virtual addresses that map
|
||||
the shared object. However, unlike VMA policies, which can be considered
|
||||
to be an attribute of a range of a task's address space, shared policies
|
||||
apply directly to the shared object. Thus, all tasks that attach to the
|
||||
object share the policy, and all pages allocated for the shared object,
|
||||
by any task, will obey the shared policy.
|
||||
* By default, VMA policy applies only to pages allocated after
|
||||
the policy is installed. Any pages already faulted into the
|
||||
VMA range remain where they were allocated based on the
|
||||
policy at the time they were allocated. However, since
|
||||
2.6.16, Linux supports page migration via the mbind() system
|
||||
call, so that page contents can be moved to match a newly
|
||||
installed policy.
|
||||
|
||||
Shared Policy
|
||||
Conceptually, shared policies apply to "memory objects" mapped
|
||||
shared into one or more tasks' distinct address spaces. An
|
||||
application installs a shared policies the same way as VMA
|
||||
policies--using the mbind() system call specifying a range of
|
||||
virtual addresses that map the shared object. However, unlike
|
||||
VMA policies, which can be considered to be an attribute of a
|
||||
range of a task's address space, shared policies apply
|
||||
directly to the shared object. Thus, all tasks that attach to
|
||||
the object share the policy, and all pages allocated for the
|
||||
shared object, by any task, will obey the shared policy.
|
||||
|
||||
As of 2.6.22, only shared memory segments, created by shmget() or
|
||||
mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy. When shared
|
||||
@ -118,11 +135,12 @@ most general to most specific:
|
||||
Although hugetlbfs segments now support lazy allocation, their support
|
||||
for shared policy has not been completed.
|
||||
|
||||
As mentioned above [re: VMA policies], allocations of page cache
|
||||
pages for regular files mmap()ed with MAP_SHARED ignore any VMA
|
||||
policy installed on the virtual address range backed by the shared
|
||||
file mapping. Rather, shared page cache pages, including pages backing
|
||||
private mappings that have not yet been written by the task, follow
|
||||
As mentioned above :ref:`VMA policies <vma_policy>`,
|
||||
allocations of page cache pages for regular files mmap()ed
|
||||
with MAP_SHARED ignore any VMA policy installed on the virtual
|
||||
address range backed by the shared file mapping. Rather,
|
||||
shared page cache pages, including pages backing private
|
||||
mappings that have not yet been written by the task, follow
|
||||
task policy, if any, else System Default Policy.
|
||||
|
||||
The shared policy infrastructure supports different policies on subset
|
||||
@ -135,164 +153,175 @@ most general to most specific:
|
||||
one or more ranges of the region.
|
||||
|
||||
Components of Memory Policies
|
||||
-----------------------------
|
||||
|
||||
A Linux memory policy consists of a "mode", optional mode flags, and an
|
||||
optional set of nodes. The mode determines the behavior of the policy,
|
||||
the optional mode flags determine the behavior of the mode, and the
|
||||
optional set of nodes can be viewed as the arguments to the policy
|
||||
behavior.
|
||||
A Linux memory policy consists of a "mode", optional mode flags, and
|
||||
an optional set of nodes. The mode determines the behavior of the
|
||||
policy, the optional mode flags determine the behavior of the mode,
|
||||
and the optional set of nodes can be viewed as the arguments to the
|
||||
policy behavior.
|
||||
|
||||
Internally, memory policies are implemented by a reference counted
|
||||
structure, struct mempolicy. Details of this structure will be discussed
|
||||
in context, below, as required to explain the behavior.
|
||||
Internally, memory policies are implemented by a reference counted
|
||||
structure, struct mempolicy. Details of this structure will be
|
||||
discussed in context, below, as required to explain the behavior.
|
||||
|
||||
Linux memory policy supports the following 4 behavioral modes:
|
||||
Linux memory policy supports the following 4 behavioral modes:
|
||||
|
||||
Default Mode--MPOL_DEFAULT: This mode is only used in the memory
|
||||
policy APIs. Internally, MPOL_DEFAULT is converted to the NULL
|
||||
memory policy in all policy scopes. Any existing non-default policy
|
||||
will simply be removed when MPOL_DEFAULT is specified. As a result,
|
||||
MPOL_DEFAULT means "fall back to the next most specific policy scope."
|
||||
Default Mode--MPOL_DEFAULT
|
||||
This mode is only used in the memory policy APIs. Internally,
|
||||
MPOL_DEFAULT is converted to the NULL memory policy in all
|
||||
policy scopes. Any existing non-default policy will simply be
|
||||
removed when MPOL_DEFAULT is specified. As a result,
|
||||
MPOL_DEFAULT means "fall back to the next most specific policy
|
||||
scope."
|
||||
|
||||
For example, a NULL or default task policy will fall back to the
|
||||
system default policy. A NULL or default vma policy will fall
|
||||
back to the task policy.
|
||||
For example, a NULL or default task policy will fall back to the
|
||||
system default policy. A NULL or default vma policy will fall
|
||||
back to the task policy.
|
||||
|
||||
When specified in one of the memory policy APIs, the Default mode
|
||||
does not use the optional set of nodes.
|
||||
When specified in one of the memory policy APIs, the Default mode
|
||||
does not use the optional set of nodes.
|
||||
|
||||
It is an error for the set of nodes specified for this policy to
|
||||
be non-empty.
|
||||
It is an error for the set of nodes specified for this policy to
|
||||
be non-empty.
|
||||
|
||||
MPOL_BIND: This mode specifies that memory must come from the
|
||||
set of nodes specified by the policy. Memory will be allocated from
|
||||
the node in the set with sufficient free memory that is closest to
|
||||
the node where the allocation takes place.
|
||||
MPOL_BIND
|
||||
This mode specifies that memory must come from the set of
|
||||
nodes specified by the policy. Memory will be allocated from
|
||||
the node in the set with sufficient free memory that is
|
||||
closest to the node where the allocation takes place.
|
||||
|
||||
MPOL_PREFERRED: This mode specifies that the allocation should be
|
||||
attempted from the single node specified in the policy. If that
|
||||
allocation fails, the kernel will search other nodes, in order of
|
||||
increasing distance from the preferred node based on information
|
||||
provided by the platform firmware.
|
||||
MPOL_PREFERRED
|
||||
This mode specifies that the allocation should be attempted
|
||||
from the single node specified in the policy. If that
|
||||
allocation fails, the kernel will search other nodes, in order
|
||||
of increasing distance from the preferred node based on
|
||||
information provided by the platform firmware.
|
||||
|
||||
Internally, the Preferred policy uses a single node--the
|
||||
preferred_node member of struct mempolicy. When the internal
|
||||
mode flag MPOL_F_LOCAL is set, the preferred_node is ignored and
|
||||
the policy is interpreted as local allocation. "Local" allocation
|
||||
policy can be viewed as a Preferred policy that starts at the node
|
||||
containing the cpu where the allocation takes place.
|
||||
Internally, the Preferred policy uses a single node--the
|
||||
preferred_node member of struct mempolicy. When the internal
|
||||
mode flag MPOL_F_LOCAL is set, the preferred_node is ignored
|
||||
and the policy is interpreted as local allocation. "Local"
|
||||
allocation policy can be viewed as a Preferred policy that
|
||||
starts at the node containing the cpu where the allocation
|
||||
takes place.
|
||||
|
||||
It is possible for the user to specify that local allocation is
|
||||
always preferred by passing an empty nodemask with this mode.
|
||||
If an empty nodemask is passed, the policy cannot use the
|
||||
MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags described
|
||||
below.
|
||||
It is possible for the user to specify that local allocation
|
||||
is always preferred by passing an empty nodemask with this
|
||||
mode. If an empty nodemask is passed, the policy cannot use
|
||||
the MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags
|
||||
described below.
|
||||
|
||||
MPOL_INTERLEAVED: This mode specifies that page allocations be
|
||||
interleaved, on a page granularity, across the nodes specified in
|
||||
the policy. This mode also behaves slightly differently, based on
|
||||
the context where it is used:
|
||||
MPOL_INTERLEAVED
|
||||
This mode specifies that page allocations be interleaved, on a
|
||||
page granularity, across the nodes specified in the policy.
|
||||
This mode also behaves slightly differently, based on the
|
||||
context where it is used:
|
||||
|
||||
For allocation of anonymous pages and shared memory pages,
|
||||
Interleave mode indexes the set of nodes specified by the policy
|
||||
using the page offset of the faulting address into the segment
|
||||
[VMA] containing the address modulo the number of nodes specified
|
||||
by the policy. It then attempts to allocate a page, starting at
|
||||
the selected node, as if the node had been specified by a Preferred
|
||||
policy or had been selected by a local allocation. That is,
|
||||
allocation will follow the per node zonelist.
|
||||
For allocation of anonymous pages and shared memory pages,
|
||||
Interleave mode indexes the set of nodes specified by the
|
||||
policy using the page offset of the faulting address into the
|
||||
segment [VMA] containing the address modulo the number of
|
||||
nodes specified by the policy. It then attempts to allocate a
|
||||
page, starting at the selected node, as if the node had been
|
||||
specified by a Preferred policy or had been selected by a
|
||||
local allocation. That is, allocation will follow the per
|
||||
node zonelist.
|
||||
|
||||
For allocation of page cache pages, Interleave mode indexes the set
|
||||
of nodes specified by the policy using a node counter maintained
|
||||
per task. This counter wraps around to the lowest specified node
|
||||
after it reaches the highest specified node. This will tend to
|
||||
spread the pages out over the nodes specified by the policy based
|
||||
on the order in which they are allocated, rather than based on any
|
||||
page offset into an address range or file. During system boot up,
|
||||
the temporary interleaved system default policy works in this
|
||||
mode.
|
||||
For allocation of page cache pages, Interleave mode indexes
|
||||
the set of nodes specified by the policy using a node counter
|
||||
maintained per task. This counter wraps around to the lowest
|
||||
specified node after it reaches the highest specified node.
|
||||
This will tend to spread the pages out over the nodes
|
||||
specified by the policy based on the order in which they are
|
||||
allocated, rather than based on any page offset into an
|
||||
address range or file. During system boot up, the temporary
|
||||
interleaved system default policy works in this mode.
|
||||
|
||||
Linux memory policy supports the following optional mode flags:
|
||||
Linux memory policy supports the following optional mode flags:
|
||||
|
||||
MPOL_F_STATIC_NODES: This flag specifies that the nodemask passed by
|
||||
MPOL_F_STATIC_NODES
|
||||
This flag specifies that the nodemask passed by
|
||||
the user should not be remapped if the task or VMA's set of allowed
|
||||
nodes changes after the memory policy has been defined.
|
||||
|
||||
Without this flag, anytime a mempolicy is rebound because of a
|
||||
change in the set of allowed nodes, the node (Preferred) or
|
||||
nodemask (Bind, Interleave) is remapped to the new set of
|
||||
allowed nodes. This may result in nodes being used that were
|
||||
previously undesired.
|
||||
Without this flag, anytime a mempolicy is rebound because of a
|
||||
change in the set of allowed nodes, the node (Preferred) or
|
||||
nodemask (Bind, Interleave) is remapped to the new set of
|
||||
allowed nodes. This may result in nodes being used that were
|
||||
previously undesired.
|
||||
|
||||
With this flag, if the user-specified nodes overlap with the
|
||||
nodes allowed by the task's cpuset, then the memory policy is
|
||||
applied to their intersection. If the two sets of nodes do not
|
||||
overlap, the Default policy is used.
|
||||
With this flag, if the user-specified nodes overlap with the
|
||||
nodes allowed by the task's cpuset, then the memory policy is
|
||||
applied to their intersection. If the two sets of nodes do not
|
||||
overlap, the Default policy is used.
|
||||
|
||||
For example, consider a task that is attached to a cpuset with
|
||||
mems 1-3 that sets an Interleave policy over the same set. If
|
||||
the cpuset's mems change to 3-5, the Interleave will now occur
|
||||
over nodes 3, 4, and 5. With this flag, however, since only node
|
||||
3 is allowed from the user's nodemask, the "interleave" only
|
||||
occurs over that node. If no nodes from the user's nodemask are
|
||||
now allowed, the Default behavior is used.
|
||||
For example, consider a task that is attached to a cpuset with
|
||||
mems 1-3 that sets an Interleave policy over the same set. If
|
||||
the cpuset's mems change to 3-5, the Interleave will now occur
|
||||
over nodes 3, 4, and 5. With this flag, however, since only node
|
||||
3 is allowed from the user's nodemask, the "interleave" only
|
||||
occurs over that node. If no nodes from the user's nodemask are
|
||||
now allowed, the Default behavior is used.
|
||||
|
||||
MPOL_F_STATIC_NODES cannot be combined with the
|
||||
MPOL_F_RELATIVE_NODES flag. It also cannot be used for
|
||||
MPOL_PREFERRED policies that were created with an empty nodemask
|
||||
(local allocation).
|
||||
MPOL_F_STATIC_NODES cannot be combined with the
|
||||
MPOL_F_RELATIVE_NODES flag. It also cannot be used for
|
||||
MPOL_PREFERRED policies that were created with an empty nodemask
|
||||
(local allocation).
|
||||
|
||||
MPOL_F_RELATIVE_NODES: This flag specifies that the nodemask passed
|
||||
MPOL_F_RELATIVE_NODES
|
||||
This flag specifies that the nodemask passed
|
||||
by the user will be mapped relative to the set of the task or VMA's
|
||||
set of allowed nodes. The kernel stores the user-passed nodemask,
|
||||
and if the allowed nodes changes, then that original nodemask will
|
||||
be remapped relative to the new set of allowed nodes.
|
||||
|
||||
Without this flag (and without MPOL_F_STATIC_NODES), anytime a
|
||||
mempolicy is rebound because of a change in the set of allowed
|
||||
nodes, the node (Preferred) or nodemask (Bind, Interleave) is
|
||||
remapped to the new set of allowed nodes. That remap may not
|
||||
preserve the relative nature of the user's passed nodemask to its
|
||||
set of allowed nodes upon successive rebinds: a nodemask of
|
||||
1,3,5 may be remapped to 7-9 and then to 1-3 if the set of
|
||||
allowed nodes is restored to its original state.
|
||||
Without this flag (and without MPOL_F_STATIC_NODES), anytime a
|
||||
mempolicy is rebound because of a change in the set of allowed
|
||||
nodes, the node (Preferred) or nodemask (Bind, Interleave) is
|
||||
remapped to the new set of allowed nodes. That remap may not
|
||||
preserve the relative nature of the user's passed nodemask to its
|
||||
set of allowed nodes upon successive rebinds: a nodemask of
|
||||
1,3,5 may be remapped to 7-9 and then to 1-3 if the set of
|
||||
allowed nodes is restored to its original state.
|
||||
|
||||
With this flag, the remap is done so that the node numbers from
|
||||
the user's passed nodemask are relative to the set of allowed
|
||||
nodes. In other words, if nodes 0, 2, and 4 are set in the user's
|
||||
nodemask, the policy will be effected over the first (and in the
|
||||
Bind or Interleave case, the third and fifth) nodes in the set of
|
||||
allowed nodes. The nodemask passed by the user represents nodes
|
||||
relative to task or VMA's set of allowed nodes.
|
||||
With this flag, the remap is done so that the node numbers from
|
||||
the user's passed nodemask are relative to the set of allowed
|
||||
nodes. In other words, if nodes 0, 2, and 4 are set in the user's
|
||||
nodemask, the policy will be effected over the first (and in the
|
||||
Bind or Interleave case, the third and fifth) nodes in the set of
|
||||
allowed nodes. The nodemask passed by the user represents nodes
|
||||
relative to task or VMA's set of allowed nodes.
|
||||
|
||||
If the user's nodemask includes nodes that are outside the range
|
||||
of the new set of allowed nodes (for example, node 5 is set in
|
||||
the user's nodemask when the set of allowed nodes is only 0-3),
|
||||
then the remap wraps around to the beginning of the nodemask and,
|
||||
if not already set, sets the node in the mempolicy nodemask.
|
||||
If the user's nodemask includes nodes that are outside the range
|
||||
of the new set of allowed nodes (for example, node 5 is set in
|
||||
the user's nodemask when the set of allowed nodes is only 0-3),
|
||||
then the remap wraps around to the beginning of the nodemask and,
|
||||
if not already set, sets the node in the mempolicy nodemask.
|
||||
|
||||
For example, consider a task that is attached to a cpuset with
|
||||
mems 2-5 that sets an Interleave policy over the same set with
|
||||
MPOL_F_RELATIVE_NODES. If the cpuset's mems change to 3-7, the
|
||||
interleave now occurs over nodes 3,5-7. If the cpuset's mems
|
||||
then change to 0,2-3,5, then the interleave occurs over nodes
|
||||
0,2-3,5.
|
||||
For example, consider a task that is attached to a cpuset with
|
||||
mems 2-5 that sets an Interleave policy over the same set with
|
||||
MPOL_F_RELATIVE_NODES. If the cpuset's mems change to 3-7, the
|
||||
interleave now occurs over nodes 3,5-7. If the cpuset's mems
|
||||
then change to 0,2-3,5, then the interleave occurs over nodes
|
||||
0,2-3,5.
|
||||
|
||||
Thanks to the consistent remapping, applications preparing
|
||||
nodemasks to specify memory policies using this flag should
|
||||
disregard their current, actual cpuset imposed memory placement
|
||||
and prepare the nodemask as if they were always located on
|
||||
memory nodes 0 to N-1, where N is the number of memory nodes the
|
||||
policy is intended to manage. Let the kernel then remap to the
|
||||
set of memory nodes allowed by the task's cpuset, as that may
|
||||
change over time.
|
||||
Thanks to the consistent remapping, applications preparing
|
||||
nodemasks to specify memory policies using this flag should
|
||||
disregard their current, actual cpuset imposed memory placement
|
||||
and prepare the nodemask as if they were always located on
|
||||
memory nodes 0 to N-1, where N is the number of memory nodes the
|
||||
policy is intended to manage. Let the kernel then remap to the
|
||||
set of memory nodes allowed by the task's cpuset, as that may
|
||||
change over time.
|
||||
|
||||
MPOL_F_RELATIVE_NODES cannot be combined with the
|
||||
MPOL_F_STATIC_NODES flag. It also cannot be used for
|
||||
MPOL_PREFERRED policies that were created with an empty nodemask
|
||||
(local allocation).
|
||||
MPOL_F_RELATIVE_NODES cannot be combined with the
|
||||
MPOL_F_STATIC_NODES flag. It also cannot be used for
|
||||
MPOL_PREFERRED policies that were created with an empty nodemask
|
||||
(local allocation).
|
||||
|
||||
MEMORY POLICY REFERENCE COUNTING
|
||||
Memory Policy Reference Counting
|
||||
================================
|
||||
|
||||
To resolve use/free races, struct mempolicy contains an atomic reference
|
||||
count field. Internal interfaces, mpol_get()/mpol_put() increment and
|
||||
@ -360,60 +389,62 @@ follows:
|
||||
or by prefaulting the entire shared memory region into memory and locking
|
||||
it down. However, this might not be appropriate for all applications.
|
||||
|
||||
MEMORY POLICY APIs
|
||||
Memory Policy APIs
|
||||
|
||||
Linux supports 3 system calls for controlling memory policy. These APIS
|
||||
always affect only the calling task, the calling task's address space, or
|
||||
some shared object mapped into the calling task's address space.
|
||||
|
||||
Note: the headers that define these APIs and the parameter data types
|
||||
for user space applications reside in a package that is not part of
|
||||
the Linux kernel. The kernel system call interfaces, with the 'sys_'
|
||||
prefix, are defined in <linux/syscalls.h>; the mode and flag
|
||||
definitions are defined in <linux/mempolicy.h>.
|
||||
.. note::
|
||||
the headers that define these APIs and the parameter data types for
|
||||
user space applications reside in a package that is not part of the
|
||||
Linux kernel. The kernel system call interfaces, with the 'sys\_'
|
||||
prefix, are defined in <linux/syscalls.h>; the mode and flag
|
||||
definitions are defined in <linux/mempolicy.h>.
|
||||
|
||||
Set [Task] Memory Policy:
|
||||
Set [Task] Memory Policy::
|
||||
|
||||
long set_mempolicy(int mode, const unsigned long *nmask,
|
||||
unsigned long maxnode);
|
||||
|
||||
Set's the calling task's "task/process memory policy" to mode
|
||||
specified by the 'mode' argument and the set of nodes defined
|
||||
by 'nmask'. 'nmask' points to a bit mask of node ids containing
|
||||
at least 'maxnode' ids. Optional mode flags may be passed by
|
||||
combining the 'mode' argument with the flag (for example:
|
||||
MPOL_INTERLEAVE | MPOL_F_STATIC_NODES).
|
||||
Set's the calling task's "task/process memory policy" to mode
|
||||
specified by the 'mode' argument and the set of nodes defined by
|
||||
'nmask'. 'nmask' points to a bit mask of node ids containing at least
|
||||
'maxnode' ids. Optional mode flags may be passed by combining the
|
||||
'mode' argument with the flag (for example: MPOL_INTERLEAVE |
|
||||
MPOL_F_STATIC_NODES).
|
||||
|
||||
See the set_mempolicy(2) man page for more details
|
||||
See the set_mempolicy(2) man page for more details
|
||||
|
||||
|
||||
Get [Task] Memory Policy or Related Information
|
||||
Get [Task] Memory Policy or Related Information::
|
||||
|
||||
long get_mempolicy(int *mode,
|
||||
const unsigned long *nmask, unsigned long maxnode,
|
||||
void *addr, int flags);
|
||||
|
||||
Queries the "task/process memory policy" of the calling task, or
|
||||
the policy or location of a specified virtual address, depending
|
||||
on the 'flags' argument.
|
||||
Queries the "task/process memory policy" of the calling task, or the
|
||||
policy or location of a specified virtual address, depending on the
|
||||
'flags' argument.
|
||||
|
||||
See the get_mempolicy(2) man page for more details
|
||||
See the get_mempolicy(2) man page for more details
|
||||
|
||||
|
||||
Install VMA/Shared Policy for a Range of Task's Address Space
|
||||
Install VMA/Shared Policy for a Range of Task's Address Space::
|
||||
|
||||
long mbind(void *start, unsigned long len, int mode,
|
||||
const unsigned long *nmask, unsigned long maxnode,
|
||||
unsigned flags);
|
||||
|
||||
mbind() installs the policy specified by (mode, nmask, maxnodes) as
|
||||
a VMA policy for the range of the calling task's address space
|
||||
specified by the 'start' and 'len' arguments. Additional actions
|
||||
may be requested via the 'flags' argument.
|
||||
mbind() installs the policy specified by (mode, nmask, maxnodes) as a
|
||||
VMA policy for the range of the calling task's address space specified
|
||||
by the 'start' and 'len' arguments. Additional actions may be
|
||||
requested via the 'flags' argument.
|
||||
|
||||
See the mbind(2) man page for more details.
|
||||
See the mbind(2) man page for more details.
|
||||
|
||||
MEMORY POLICY COMMAND LINE INTERFACE
|
||||
Memory Policy Command Line Interface
|
||||
====================================
|
||||
|
||||
Although not strictly part of the Linux implementation of memory policy,
|
||||
a command line tool, numactl(8), exists that allows one to:
|
||||
@ -428,8 +459,10 @@ containing the memory policy system call wrappers. Some distributions
|
||||
package the headers and compile-time libraries in a separate development
|
||||
package.
|
||||
|
||||
.. _mem_pol_and_cpusets:
|
||||
|
||||
MEMORY POLICIES AND CPUSETS
|
||||
Memory Policies and cpusets
|
||||
===========================
|
||||
|
||||
Memory policies work within cpusets as described above. For memory policies
|
||||
that require a node or set of nodes, the nodes are restricted to the set of
|
||||
|
Loading…
x
Reference in New Issue
Block a user