mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-18 23:18:20 +00:00
Blackfin arch: unify/cleanup cache code
- to be correct wrt to end ranges - to be optimal with a one-instruction hardware loop Signed-off-by: Mike Frysinger <vapier.adi@gmail.com> Signed-off-by: Bryan Wu <cooloney@kernel.org>
This commit is contained in:
parent
f51501551e
commit
ded963a486
@ -1,148 +1,91 @@
|
||||
/*
|
||||
* File: arch/blackfin/mach-common/cache.S
|
||||
* Based on:
|
||||
* Author: LG Soft India
|
||||
* Blackfin cache control code
|
||||
*
|
||||
* Created:
|
||||
* Description: cache control support
|
||||
* Copyright 2004-2008 Analog Devices Inc.
|
||||
*
|
||||
* Modified:
|
||||
* Copyright 2004-2006 Analog Devices Inc.
|
||||
* Enter bugs at http://blackfin.uclinux.org/
|
||||
*
|
||||
* Bugs: Enter bugs at http://blackfin.uclinux.org/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see the file COPYING, or write
|
||||
* to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
* Licensed under the GPL-2 or later.
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/cplb.h>
|
||||
#include <asm/entry.h>
|
||||
#include <asm/blackfin.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
.text
|
||||
|
||||
/*
|
||||
* blackfin_cache_flush_range(start, end)
|
||||
* Invalidate all cache lines assocoiated with this
|
||||
* area of memory.
|
||||
/* Since all L1 caches work the same way, we use the same method for flushing
|
||||
* them. Only the actual flush instruction differs. We write this in asm as
|
||||
* GCC can be hard to coax into writing nice hardware loops.
|
||||
*
|
||||
* start: Start address
|
||||
* end: End address
|
||||
* Also, we assume the following register setup:
|
||||
* R0 = start address
|
||||
* R1 = end address
|
||||
*/
|
||||
ENTRY(_blackfin_icache_flush_range)
|
||||
.macro do_flush flushins:req optflushins optnopins label
|
||||
|
||||
/* end = ((end - 1) & -L1_CACHE_BYTES) + L1_CACHE_BYTES; */
|
||||
R1 += -1;
|
||||
R2 = -L1_CACHE_BYTES;
|
||||
R2 = R0 & R2;
|
||||
P0 = R2;
|
||||
P1 = R1;
|
||||
CSYNC(R3);
|
||||
IFLUSH [P0];
|
||||
R1 = R1 & R2;
|
||||
R1 += L1_CACHE_BYTES;
|
||||
|
||||
/* count = (end - start) >> L1_CACHE_SHIFT */
|
||||
R2 = R1 - R0;
|
||||
R2 >>= L1_CACHE_SHIFT;
|
||||
P1 = R2;
|
||||
|
||||
.ifnb \label
|
||||
\label :
|
||||
.endif
|
||||
P0 = R0;
|
||||
LSETUP (1f, 2f) LC1 = P1;
|
||||
1:
|
||||
IFLUSH [P0++];
|
||||
CC = P0 < P1 (iu);
|
||||
IF CC JUMP 1b (bp);
|
||||
IFLUSH [P0];
|
||||
SSYNC(R3);
|
||||
.ifnb \optflushins
|
||||
\optflushins [P0];
|
||||
.endif
|
||||
.ifb \optnopins
|
||||
2:
|
||||
.endif
|
||||
\flushins [P0++];
|
||||
.ifnb \optnopins
|
||||
2: \optnopins;
|
||||
.endif
|
||||
|
||||
RTS;
|
||||
.endm
|
||||
|
||||
/* Invalidate all instruction cache lines assocoiated with this memory area */
|
||||
ENTRY(_blackfin_icache_flush_range)
|
||||
do_flush IFLUSH, , nop
|
||||
ENDPROC(_blackfin_icache_flush_range)
|
||||
|
||||
/*
|
||||
* blackfin_icache_dcache_flush_range(start, end)
|
||||
* FLUSH all cache lines assocoiated with this
|
||||
* area of memory.
|
||||
*
|
||||
* start: Start address
|
||||
* end: End address
|
||||
*/
|
||||
|
||||
/* Flush all cache lines assocoiated with this area of memory. */
|
||||
ENTRY(_blackfin_icache_dcache_flush_range)
|
||||
R2 = -L1_CACHE_BYTES;
|
||||
R2 = R0 & R2;
|
||||
P0 = R2;
|
||||
P1 = R1;
|
||||
CSYNC(R3);
|
||||
IFLUSH [P0];
|
||||
1:
|
||||
FLUSH [P0];
|
||||
IFLUSH [P0++];
|
||||
CC = P0 < P1 (iu);
|
||||
IF CC JUMP 1b (bp);
|
||||
IFLUSH [P0];
|
||||
FLUSH [P0];
|
||||
SSYNC(R3);
|
||||
RTS;
|
||||
do_flush IFLUSH, FLUSH
|
||||
ENDPROC(_blackfin_icache_dcache_flush_range)
|
||||
|
||||
/* Throw away all D-cached data in specified region without any obligation to
|
||||
* write them back. However, we must clean the D-cached entries around the
|
||||
* boundaries of the start and/or end address is not cache aligned.
|
||||
*
|
||||
* Start: start address,
|
||||
* end : end address.
|
||||
* write them back. Since the Blackfin ISA does not have an "invalidate"
|
||||
* instruction, we use flush/invalidate. Perhaps as a speed optimization we
|
||||
* could bang on the DTEST MMRs ...
|
||||
*/
|
||||
|
||||
ENTRY(_blackfin_dcache_invalidate_range)
|
||||
R2 = -L1_CACHE_BYTES;
|
||||
R2 = R0 & R2;
|
||||
P0 = R2;
|
||||
P1 = R1;
|
||||
CSYNC(R3);
|
||||
FLUSHINV[P0];
|
||||
1:
|
||||
FLUSHINV[P0++];
|
||||
CC = P0 < P1 (iu);
|
||||
IF CC JUMP 1b (bp);
|
||||
|
||||
/* If the data crosses a cache line, then we'll be pointing to
|
||||
* the last cache line, but won't have flushed/invalidated it yet,
|
||||
* so do one more.
|
||||
*/
|
||||
FLUSHINV[P0];
|
||||
SSYNC(R3);
|
||||
RTS;
|
||||
do_flush FLUSHINV
|
||||
ENDPROC(_blackfin_dcache_invalidate_range)
|
||||
|
||||
/* Flush all data cache lines assocoiated with this memory area */
|
||||
ENTRY(_blackfin_dcache_flush_range)
|
||||
R2 = -L1_CACHE_BYTES;
|
||||
R2 = R0 & R2;
|
||||
P0 = R2;
|
||||
P1 = R1;
|
||||
CSYNC(R3);
|
||||
FLUSH[P0];
|
||||
1:
|
||||
FLUSH[P0++];
|
||||
CC = P0 < P1 (iu);
|
||||
IF CC JUMP 1b (bp);
|
||||
|
||||
/* If the data crosses a cache line, then we'll be pointing to
|
||||
* the last cache line, but won't have flushed it yet, so do
|
||||
* one more.
|
||||
*/
|
||||
FLUSH[P0];
|
||||
SSYNC(R3);
|
||||
RTS;
|
||||
do_flush FLUSH, , , .Ldfr
|
||||
ENDPROC(_blackfin_dcache_flush_range)
|
||||
|
||||
/* Our headers convert the page structure to an address, so just need to flush
|
||||
* its contents like normal. We know the start address is page aligned (which
|
||||
* greater than our cache alignment), as is the end address. So just jump into
|
||||
* the middle of the dcache flush function.
|
||||
*/
|
||||
ENTRY(_blackfin_dflush_page)
|
||||
P1 = 1 << (PAGE_SHIFT - L1_CACHE_SHIFT);
|
||||
P0 = R0;
|
||||
CSYNC(R3);
|
||||
FLUSH[P0];
|
||||
LSETUP (.Lfl1, .Lfl1) LC0 = P1;
|
||||
.Lfl1: FLUSH [P0++];
|
||||
SSYNC(R3);
|
||||
RTS;
|
||||
jump .Ldfr;
|
||||
ENDPROC(_blackfin_dflush_page)
|
||||
|
Loading…
Reference in New Issue
Block a user