Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc:
  mmc: warn about voltage mismatches
  mmc_spi: Add support for OpenFirmware bindings
  pxamci: fix dma_unmap_sg length
  mmc_block: ensure all sectors that do not have errors are read
  drivers/mmc: Move a dereference below a NULL test
  sdhci: handle built-in sdhci with modular leds class
  mmc: balanc pci_iomap with pci_iounmap
  mmc_block: print better error messages
  mmc: Add mmc_vddrange_to_ocrmask() helper function
  ricoh_mmc: Handle newer models of Ricoh controllers
  mmc: Add 8-bit bus width support
  sdhci: activate led support also when module
  mmc: trivial annotation of 'blocks'
  pci: use pci_ioremap_bar() in drivers/mmc
  sdricoh_cs: Add support for Bay Controller devices
  mmc: at91_mci: reorder timer setup and mmc_add_host() call
This commit is contained in:
Linus Torvalds 2009-01-03 12:00:07 -08:00
commit e9e67a8b57
17 changed files with 392 additions and 51 deletions

View File

@ -145,7 +145,7 @@ struct mmc_blk_request {
static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
{
int err;
u32 blocks;
__be32 blocks;
struct mmc_request mrq;
struct mmc_command cmd;
@ -204,9 +204,24 @@ static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
if (cmd.error || data.error)
return (u32)-1;
blocks = ntohl(blocks);
return ntohl(blocks);
}
return blocks;
static u32 get_card_status(struct mmc_card *card, struct request *req)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(card->host))
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err)
printk(KERN_ERR "%s: error %d sending status comand",
req->rq_disk->disk_name, err);
return cmd.resp[0];
}
static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
@ -214,13 +229,13 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_blk_request brq;
int ret = 1;
int ret = 1, disable_multi = 0;
mmc_claim_host(card->host);
do {
struct mmc_command cmd;
u32 readcmd, writecmd;
u32 readcmd, writecmd, status = 0;
memset(&brq, 0, sizeof(struct mmc_blk_request));
brq.mrq.cmd = &brq.cmd;
@ -236,6 +251,14 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
brq.stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
brq.data.blocks = req->nr_sectors;
/*
* After a read error, we redo the request one sector at a time
* in order to accurately determine which sectors can be read
* successfully.
*/
if (disable_multi && brq.data.blocks > 1)
brq.data.blocks = 1;
if (brq.data.blocks > 1) {
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
@ -264,6 +287,25 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
brq.data.sg = mq->sg;
brq.data.sg_len = mmc_queue_map_sg(mq);
/*
* Adjust the sg list so it is the same size as the
* request.
*/
if (brq.data.blocks != req->nr_sectors) {
int i, data_size = brq.data.blocks << 9;
struct scatterlist *sg;
for_each_sg(brq.data.sg, sg, brq.data.sg_len, i) {
data_size -= sg->length;
if (data_size <= 0) {
sg->length += data_size;
i++;
break;
}
}
brq.data.sg_len = i;
}
mmc_queue_bounce_pre(mq);
mmc_wait_for_req(card->host, &brq.mrq);
@ -275,19 +317,40 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
* until later as we need to wait for the card to leave
* programming mode even when things go wrong.
*/
if (brq.cmd.error || brq.data.error || brq.stop.error) {
if (brq.data.blocks > 1 && rq_data_dir(req) == READ) {
/* Redo read one sector at a time */
printk(KERN_WARNING "%s: retrying using single "
"block read\n", req->rq_disk->disk_name);
disable_multi = 1;
continue;
}
status = get_card_status(card, req);
}
if (brq.cmd.error) {
printk(KERN_ERR "%s: error %d sending read/write command\n",
req->rq_disk->disk_name, brq.cmd.error);
printk(KERN_ERR "%s: error %d sending read/write "
"command, response %#x, card status %#x\n",
req->rq_disk->disk_name, brq.cmd.error,
brq.cmd.resp[0], status);
}
if (brq.data.error) {
printk(KERN_ERR "%s: error %d transferring data\n",
req->rq_disk->disk_name, brq.data.error);
if (brq.data.error == -ETIMEDOUT && brq.mrq.stop)
/* 'Stop' response contains card status */
status = brq.mrq.stop->resp[0];
printk(KERN_ERR "%s: error %d transferring data,"
" sector %u, nr %u, card status %#x\n",
req->rq_disk->disk_name, brq.data.error,
(unsigned)req->sector,
(unsigned)req->nr_sectors, status);
}
if (brq.stop.error) {
printk(KERN_ERR "%s: error %d sending stop command\n",
req->rq_disk->disk_name, brq.stop.error);
printk(KERN_ERR "%s: error %d sending stop command, "
"response %#x, card status %#x\n",
req->rq_disk->disk_name, brq.stop.error,
brq.stop.resp[0], status);
}
if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
@ -320,8 +383,20 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
#endif
}
if (brq.cmd.error || brq.data.error || brq.stop.error)
if (brq.cmd.error || brq.stop.error || brq.data.error) {
if (rq_data_dir(req) == READ) {
/*
* After an error, we redo I/O one sector at a
* time, so we only reach here after trying to
* read a single sector.
*/
spin_lock_irq(&md->lock);
ret = __blk_end_request(req, -EIO, brq.data.blksz);
spin_unlock_irq(&md->lock);
continue;
}
goto cmd_err;
}
/*
* A block was successfully transferred.
@ -343,11 +418,7 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
* If the card is not SD, we can still ok written sectors
* as reported by the controller (which might be less than
* the real number of written sectors, but never more).
*
* For reads we just fail the entire chunk as that should
* be safe in all cases.
*/
if (rq_data_dir(req) != READ) {
if (mmc_card_sd(card)) {
u32 blocks;
@ -362,7 +433,6 @@ static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
ret = __blk_end_request(req, 0, brq.data.bytes_xfered);
spin_unlock_irq(&md->lock);
}
}
mmc_release_host(card->host);

View File

@ -20,6 +20,7 @@
#include <linux/err.h>
#include <linux/leds.h>
#include <linux/scatterlist.h>
#include <linux/log2.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
@ -448,6 +449,80 @@ void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
mmc_set_ios(host);
}
/**
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
* @vdd: voltage (mV)
* @low_bits: prefer low bits in boundary cases
*
* This function returns the OCR bit number according to the provided @vdd
* value. If conversion is not possible a negative errno value returned.
*
* Depending on the @low_bits flag the function prefers low or high OCR bits
* on boundary voltages. For example,
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
*
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
*/
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
{
const int max_bit = ilog2(MMC_VDD_35_36);
int bit;
if (vdd < 1650 || vdd > 3600)
return -EINVAL;
if (vdd >= 1650 && vdd <= 1950)
return ilog2(MMC_VDD_165_195);
if (low_bits)
vdd -= 1;
/* Base 2000 mV, step 100 mV, bit's base 8. */
bit = (vdd - 2000) / 100 + 8;
if (bit > max_bit)
return max_bit;
return bit;
}
/**
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
* @vdd_min: minimum voltage value (mV)
* @vdd_max: maximum voltage value (mV)
*
* This function returns the OCR mask bits according to the provided @vdd_min
* and @vdd_max values. If conversion is not possible the function returns 0.
*
* Notes wrt boundary cases:
* This function sets the OCR bits for all boundary voltages, for example
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
* MMC_VDD_34_35 mask.
*/
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
{
u32 mask = 0;
if (vdd_max < vdd_min)
return 0;
/* Prefer high bits for the boundary vdd_max values. */
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
if (vdd_max < 0)
return 0;
/* Prefer low bits for the boundary vdd_min values. */
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
if (vdd_min < 0)
return 0;
/* Fill the mask, from max bit to min bit. */
while (vdd_max >= vdd_min)
mask |= 1 << vdd_max--;
return mask;
}
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
/*
* Mask off any voltages we don't support and select
* the lowest voltage
@ -467,6 +542,8 @@ u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
host->ios.vdd = bit;
mmc_set_ios(host);
} else {
pr_warning("%s: host doesn't support card's voltages\n",
mmc_hostname(host));
ocr = 0;
}

View File

@ -434,13 +434,24 @@ static int mmc_init_card(struct mmc_host *host, u32 ocr,
* Activate wide bus (if supported).
*/
if ((card->csd.mmca_vsn >= CSD_SPEC_VER_4) &&
(host->caps & MMC_CAP_4_BIT_DATA)) {
(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) {
unsigned ext_csd_bit, bus_width;
if (host->caps & MMC_CAP_8_BIT_DATA) {
ext_csd_bit = EXT_CSD_BUS_WIDTH_8;
bus_width = MMC_BUS_WIDTH_8;
} else {
ext_csd_bit = EXT_CSD_BUS_WIDTH_4;
bus_width = MMC_BUS_WIDTH_4;
}
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4);
EXT_CSD_BUS_WIDTH, ext_csd_bit);
if (err)
goto free_card;
mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
mmc_set_bus_width(card->host, bus_width);
}
if (!oldcard)
@ -624,4 +635,3 @@ err:
return err;
}

View File

@ -19,6 +19,9 @@ obj-$(CONFIG_MMC_AT91) += at91_mci.o
obj-$(CONFIG_MMC_ATMELMCI) += atmel-mci.o
obj-$(CONFIG_MMC_TIFM_SD) += tifm_sd.o
obj-$(CONFIG_MMC_SPI) += mmc_spi.o
ifeq ($(CONFIG_OF),y)
obj-$(CONFIG_MMC_SPI) += of_mmc_spi.o
endif
obj-$(CONFIG_MMC_S3C) += s3cmci.o
obj-$(CONFIG_MMC_SDRICOH_CS) += sdricoh_cs.o
obj-$(CONFIG_MMC_TMIO) += tmio_mmc.o

View File

@ -1088,6 +1088,8 @@ static int __init at91_mci_probe(struct platform_device *pdev)
goto fail0;
}
setup_timer(&host->timer, at91_timeout_timer, (unsigned long)host);
platform_set_drvdata(pdev, mmc);
/*
@ -1101,8 +1103,6 @@ static int __init at91_mci_probe(struct platform_device *pdev)
mmc_add_host(mmc);
setup_timer(&host->timer, at91_timeout_timer, (unsigned long)host);
/*
* monitor card insertion/removal if we can
*/

View File

@ -1285,7 +1285,7 @@ static int mmc_spi_probe(struct spi_device *spi)
/* Platform data is used to hook up things like card sensing
* and power switching gpios.
*/
host->pdata = spi->dev.platform_data;
host->pdata = mmc_spi_get_pdata(spi);
if (host->pdata)
mmc->ocr_avail = host->pdata->ocr_mask;
if (!mmc->ocr_avail) {
@ -1368,6 +1368,7 @@ fail_glue_init:
fail_nobuf1:
mmc_free_host(mmc);
mmc_spi_put_pdata(spi);
dev_set_drvdata(&spi->dev, NULL);
nomem:
@ -1402,6 +1403,7 @@ static int __devexit mmc_spi_remove(struct spi_device *spi)
spi->max_speed_hz = mmc->f_max;
mmc_free_host(mmc);
mmc_spi_put_pdata(spi);
dev_set_drvdata(&spi->dev, NULL);
}
return 0;

View File

@ -0,0 +1,149 @@
/*
* OpenFirmware bindings for the MMC-over-SPI driver
*
* Copyright (c) MontaVista Software, Inc. 2008.
*
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/mmc_spi.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
enum {
CD_GPIO = 0,
WP_GPIO,
NUM_GPIOS,
};
struct of_mmc_spi {
int gpios[NUM_GPIOS];
bool alow_gpios[NUM_GPIOS];
struct mmc_spi_platform_data pdata;
};
static struct of_mmc_spi *to_of_mmc_spi(struct device *dev)
{
return container_of(dev->platform_data, struct of_mmc_spi, pdata);
}
static int of_mmc_spi_read_gpio(struct device *dev, int gpio_num)
{
struct of_mmc_spi *oms = to_of_mmc_spi(dev);
bool active_low = oms->alow_gpios[gpio_num];
bool value = gpio_get_value(oms->gpios[gpio_num]);
return active_low ^ value;
}
static int of_mmc_spi_get_cd(struct device *dev)
{
return of_mmc_spi_read_gpio(dev, CD_GPIO);
}
static int of_mmc_spi_get_ro(struct device *dev)
{
return of_mmc_spi_read_gpio(dev, WP_GPIO);
}
struct mmc_spi_platform_data *mmc_spi_get_pdata(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct device_node *np = dev_archdata_get_node(&dev->archdata);
struct of_mmc_spi *oms;
const u32 *voltage_ranges;
int num_ranges;
int i;
int ret = -EINVAL;
if (dev->platform_data || !np)
return dev->platform_data;
oms = kzalloc(sizeof(*oms), GFP_KERNEL);
if (!oms)
return NULL;
voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
if (!voltage_ranges || !num_ranges) {
dev_err(dev, "OF: voltage-ranges unspecified\n");
goto err_ocr;
}
for (i = 0; i < num_ranges; i++) {
const int j = i * 2;
u32 mask;
mask = mmc_vddrange_to_ocrmask(voltage_ranges[j],
voltage_ranges[j + 1]);
if (!mask) {
ret = -EINVAL;
dev_err(dev, "OF: voltage-range #%d is invalid\n", i);
goto err_ocr;
}
oms->pdata.ocr_mask |= mask;
}
for (i = 0; i < ARRAY_SIZE(oms->gpios); i++) {
enum of_gpio_flags gpio_flags;
oms->gpios[i] = of_get_gpio_flags(np, i, &gpio_flags);
if (!gpio_is_valid(oms->gpios[i]))
continue;
ret = gpio_request(oms->gpios[i], dev->bus_id);
if (ret < 0) {
oms->gpios[i] = -EINVAL;
continue;
}
if (gpio_flags & OF_GPIO_ACTIVE_LOW)
oms->alow_gpios[i] = true;
}
if (gpio_is_valid(oms->gpios[CD_GPIO]))
oms->pdata.get_cd = of_mmc_spi_get_cd;
if (gpio_is_valid(oms->gpios[WP_GPIO]))
oms->pdata.get_ro = of_mmc_spi_get_ro;
/* We don't support interrupts yet, let's poll. */
oms->pdata.caps |= MMC_CAP_NEEDS_POLL;
dev->platform_data = &oms->pdata;
return dev->platform_data;
err_ocr:
kfree(oms);
return NULL;
}
EXPORT_SYMBOL(mmc_spi_get_pdata);
void mmc_spi_put_pdata(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct device_node *np = dev_archdata_get_node(&dev->archdata);
struct of_mmc_spi *oms = to_of_mmc_spi(dev);
int i;
if (!dev->platform_data || !np)
return;
for (i = 0; i < ARRAY_SIZE(oms->gpios); i++) {
if (gpio_is_valid(oms->gpios[i]))
gpio_free(oms->gpios[i]);
}
kfree(oms);
dev->platform_data = NULL;
}
EXPORT_SYMBOL(mmc_spi_put_pdata);

View File

@ -283,7 +283,7 @@ static int pxamci_data_done(struct pxamci_host *host, unsigned int stat)
return 0;
DCSR(host->dma) = 0;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len,
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->dma_dir);
if (stat & STAT_READ_TIME_OUT)

View File

@ -11,9 +11,10 @@
/*
* This is a conceptually ridiculous driver, but it is required by the way
* the Ricoh multi-function R5C832 works. This chip implements firewire
* and four different memory card controllers. Two of those controllers are
* an SDHCI controller and a proprietary MMC controller. The linux SDHCI
* the Ricoh multi-function chips (R5CXXX) work. These chips implement
* the four main memory card controllers (SD, MMC, MS, xD) and one or both
* of cardbus or firewire. It happens that they implement SD and MMC
* support as separate controllers (and PCI functions). The linux SDHCI
* driver supports MMC cards but the chip detects MMC cards in hardware
* and directs them to the MMC controller - so the SDHCI driver never sees
* them. To get around this, we must disable the useless MMC controller.
@ -21,8 +22,10 @@
* a detection event occurs immediately, even if the MMC card is already
* in the reader.
*
* The relevant registers live on the firewire function, so this is unavoidably
* ugly. Such is life.
* It seems to be the case that the relevant PCI registers to deactivate the
* MMC controller live on PCI function 0, which might be the cardbus controller
* or the firewire controller, depending on the particular chip in question. As
* such, it makes what this driver has to do unavoidably ugly. Such is life.
*/
#include <linux/pci.h>
@ -143,6 +146,7 @@ static int __devinit ricoh_mmc_probe(struct pci_dev *pdev,
pci_get_device(PCI_VENDOR_ID_RICOH,
PCI_DEVICE_ID_RICOH_RL5C476, fw_dev))) {
if (PCI_SLOT(pdev->devfn) == PCI_SLOT(fw_dev->devfn) &&
PCI_FUNC(fw_dev->devfn) == 0 &&
pdev->bus == fw_dev->bus) {
if (ricoh_mmc_disable(fw_dev) != 0)
return -ENODEV;
@ -160,6 +164,7 @@ static int __devinit ricoh_mmc_probe(struct pci_dev *pdev,
(fw_dev = pci_get_device(PCI_VENDOR_ID_RICOH,
PCI_DEVICE_ID_RICOH_R5C832, fw_dev))) {
if (PCI_SLOT(pdev->devfn) == PCI_SLOT(fw_dev->devfn) &&
PCI_FUNC(fw_dev->devfn) == 0 &&
pdev->bus == fw_dev->bus) {
if (ricoh_mmc_disable(fw_dev) != 0)
return -ENODEV;
@ -172,7 +177,7 @@ static int __devinit ricoh_mmc_probe(struct pci_dev *pdev,
if (!ctrlfound) {
printk(KERN_WARNING DRIVER_NAME
": Main firewire function not found. Cannot disable controller.\n");
": Main Ricoh function not found. Cannot disable controller.\n");
return -ENODEV;
}

View File

@ -545,7 +545,7 @@ static struct sdhci_pci_slot * __devinit sdhci_pci_probe_slot(
}
addr = pci_resource_start(pdev, bar);
host->ioaddr = ioremap_nocache(addr, pci_resource_len(pdev, bar));
host->ioaddr = pci_ioremap_bar(pdev, bar);
if (!host->ioaddr) {
dev_err(&pdev->dev, "failed to remap registers\n");
goto release;

View File

@ -30,6 +30,11 @@
#define DBG(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x)
#if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \
defined(CONFIG_MMC_SDHCI_MODULE))
#define SDHCI_USE_LEDS_CLASS
#endif
static unsigned int debug_quirks = 0;
static void sdhci_prepare_data(struct sdhci_host *, struct mmc_data *);
@ -149,7 +154,7 @@ static void sdhci_deactivate_led(struct sdhci_host *host)
writeb(ctrl, host->ioaddr + SDHCI_HOST_CONTROL);
}
#ifdef CONFIG_LEDS_CLASS
#ifdef SDHCI_USE_LEDS_CLASS
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
@ -994,7 +999,7 @@ static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
WARN_ON(host->mrq != NULL);
#ifndef CONFIG_LEDS_CLASS
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_activate_led(host);
#endif
@ -1201,7 +1206,7 @@ static void sdhci_tasklet_finish(unsigned long param)
host->cmd = NULL;
host->data = NULL;
#ifndef CONFIG_LEDS_CLASS
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_deactivate_led(host);
#endif
@ -1717,7 +1722,7 @@ int sdhci_add_host(struct sdhci_host *host)
sdhci_dumpregs(host);
#endif
#ifdef CONFIG_LEDS_CLASS
#ifdef SDHCI_USE_LEDS_CLASS
host->led.name = mmc_hostname(mmc);
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
@ -1739,7 +1744,7 @@ int sdhci_add_host(struct sdhci_host *host)
return 0;
#ifdef CONFIG_LEDS_CLASS
#ifdef SDHCI_USE_LEDS_CLASS
reset:
sdhci_reset(host, SDHCI_RESET_ALL);
free_irq(host->irq, host);
@ -1775,7 +1780,7 @@ void sdhci_remove_host(struct sdhci_host *host, int dead)
mmc_remove_host(host->mmc);
#ifdef CONFIG_LEDS_CLASS
#ifdef SDHCI_USE_LEDS_CLASS
led_classdev_unregister(&host->led);
#endif

View File

@ -220,7 +220,7 @@ struct sdhci_host {
struct mmc_host *mmc; /* MMC structure */
u64 dma_mask; /* custom DMA mask */
#ifdef CONFIG_LEDS_CLASS
#if defined(CONFIG_LEDS_CLASS) || defined(CONFIG_LEDS_CLASS_MODULE)
struct led_classdev led; /* LED control */
#endif

View File

@ -82,6 +82,8 @@ static struct pcmcia_device_id pcmcia_ids[] = {
/* vendor and device strings followed by their crc32 hashes */
PCMCIA_DEVICE_PROD_ID12("RICOH", "Bay1Controller", 0xd9f522ed,
0xc3901202),
PCMCIA_DEVICE_PROD_ID12("RICOH", "Bay Controller", 0xd9f522ed,
0xace80909),
PCMCIA_DEVICE_NULL,
};
@ -463,7 +465,7 @@ static int sdricoh_init_mmc(struct pci_dev *pci_dev,
err:
if (iobase)
iounmap(iobase);
pci_iounmap(pci_dev, iobase);
if (mmc)
mmc_free_host(mmc);

View File

@ -224,7 +224,7 @@ static inline void tmio_mmc_data_irq(struct tmio_mmc_host *host)
{
void __iomem *ctl = host->ctl;
struct mmc_data *data = host->data;
struct mmc_command *stop = data->stop;
struct mmc_command *stop;
host->data = NULL;
@ -232,6 +232,7 @@ static inline void tmio_mmc_data_irq(struct tmio_mmc_host *host)
pr_debug("Spurious data end IRQ\n");
return;
}
stop = data->stop;
/* FIXME - return correct transfer count on errors */
if (!data->error)

View File

@ -151,4 +151,6 @@ static inline void mmc_claim_host(struct mmc_host *host)
__mmc_claim_host(host, NULL);
}
extern u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max);
#endif

View File

@ -41,6 +41,7 @@ struct mmc_ios {
#define MMC_BUS_WIDTH_1 0
#define MMC_BUS_WIDTH_4 2
#define MMC_BUS_WIDTH_8 3
unsigned char timing; /* timing specification used */
@ -116,6 +117,7 @@ struct mmc_host {
#define MMC_CAP_SDIO_IRQ (1 << 3) /* Can signal pending SDIO IRQs */
#define MMC_CAP_SPI (1 << 4) /* Talks only SPI protocols */
#define MMC_CAP_NEEDS_POLL (1 << 5) /* Needs polling for card-detection */
#define MMC_CAP_8_BIT_DATA (1 << 6) /* Can the host do 8 bit transfers */
/* host specific block data */
unsigned int max_seg_size; /* see blk_queue_max_segment_size */

View File

@ -1,9 +1,10 @@
#ifndef __LINUX_SPI_MMC_SPI_H
#define __LINUX_SPI_MMC_SPI_H
#include <linux/device.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
struct device;
struct mmc_host;
/* Put this in platform_data of a device being used to manage an MMC/SD
@ -41,4 +42,16 @@ struct mmc_spi_platform_data {
void (*setpower)(struct device *, unsigned int maskval);
};
#ifdef CONFIG_OF
extern struct mmc_spi_platform_data *mmc_spi_get_pdata(struct spi_device *spi);
extern void mmc_spi_put_pdata(struct spi_device *spi);
#else
static inline struct mmc_spi_platform_data *
mmc_spi_get_pdata(struct spi_device *spi)
{
return spi->dev.platform_data;
}
static inline void mmc_spi_put_pdata(struct spi_device *spi) {}
#endif /* CONFIG_OF */
#endif /* __LINUX_SPI_MMC_SPI_H */