mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-16 05:50:19 +00:00
0192f17529
9 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Tom Lendacky
|
8f716c9b5f |
x86/mm: Add support to access boot related data in the clear
Boot data (such as EFI related data) is not encrypted when the system is booted because UEFI/BIOS does not run with SME active. In order to access this data properly it needs to be mapped decrypted. Update early_memremap() to provide an arch specific routine to modify the pagetable protection attributes before they are applied to the new mapping. This is used to remove the encryption mask for boot related data. Update memremap() to provide an arch specific routine to determine if RAM remapping is allowed. RAM remapping will cause an encrypted mapping to be generated. By preventing RAM remapping, ioremap_cache() will be used instead, which will provide a decrypted mapping of the boot related data. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/81fb6b4117a5df6b9f2eda342f81bbef4b23d2e5.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Tom Lendacky
|
f88a68facd |
x86/mm: Extend early_memremap() support with additional attrs
Add early_memremap() support to be able to specify encrypted and decrypted mappings with and without write-protection. The use of write-protection is necessary when encrypting data "in place". The write-protect attribute is considered cacheable for loads, but not stores. This implies that the hardware will never give the core a dirty line with this memtype. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/479b5832c30fae3efa7932e48f81794e86397229.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Kuleshov
|
5d57b0146a |
mm/early_ioremap: use offset_in_page macro
linux/mm.h provides offset_in_page() macro. Let's use already predefined macro instead of (addr & ~PAGE_MASK). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ard Biesheuvel
|
4f1af60bcc |
mm/early_ioremap: add explicit #include of asm/early_ioremap.h
Commit
|
||
Linus Torvalds
|
f6f7a63692 |
Merge branch 'akpm' (patches from Andrew)
Merge second patch-bomb from Andrew Morton: "Almost all of the rest of MM. There was an unusually large amount of MM material this time" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (141 commits) zpool: remove no-op module init/exit mm: zbud: constify the zbud_ops mm: zpool: constify the zpool_ops mm: swap: zswap: maybe_preload & refactoring zram: unify error reporting zsmalloc: remove null check from destroy_handle_cache() zsmalloc: do not take class lock in zs_shrinker_count() zsmalloc: use class->pages_per_zspage zsmalloc: consider ZS_ALMOST_FULL as migrate source zsmalloc: partial page ordering within a fullness_list zsmalloc: use shrinker to trigger auto-compaction zsmalloc: account the number of compacted pages zsmalloc/zram: introduce zs_pool_stats api zsmalloc: cosmetic compaction code adjustments zsmalloc: introduce zs_can_compact() function zsmalloc: always keep per-class stats zsmalloc: drop unused variable `nr_to_migrate' mm/memblock.c: fix comment in __next_mem_range() mm/page_alloc.c: fix type information of memoryless node memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node() ... |
||
Mark Salter
|
6b0f68e32e |
mm: add utility for early copy from unmapped ram
When booting an arm64 kernel w/initrd using UEFI/grub, use of mem= will likely cut off part or all of the initrd. This leaves it outside the kernel linear map which leads to failure when unpacking. The x86 code has a similar need to relocate an initrd outside of mapped memory in some cases. The current x86 code uses early_memremap() to copy the original initrd from unmapped to mapped RAM. This patchset creates a generic copy_from_early_mem() utility based on that x86 code and has arm64 and x86 share it in their respective initrd relocation code. This patch (of 3): In some early boot circumstances, it may be necessary to copy from RAM outside the kernel linear mapping to mapped RAM. The need to relocate an initrd is one example in the x86 code. This patch creates a helper function based on current x86 code. Signed-off-by: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Juergen Gross
|
2592dbbbf4 |
mm: provide early_memremap_ro to establish read-only mapping
During early boot as Xen pv domain the kernel needs to map some page tables supplied by the hypervisor read only. This is needed to be able to relocate some data structures conflicting with the physical memory map especially on systems with huge RAM (above 512GB). Provide the function early_memremap_ro() to provide this read only mapping. Signed-off-by: Juergen Gross <jgross@suse.com> Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: David Vrabel <david.vrabel@citrix.com> |
||
Mark Salter
|
9e5c33d7ae |
mm: create generic early_ioremap() support
This patch creates a generic implementation of early_ioremap() support based on the existing x86 implementation. early_ioremp() is useful for early boot code which needs to temporarily map I/O or memory regions before normal mapping functions such as ioremap() are available. Some architectures have optional MMU. In the no-MMU case, the remap functions simply return the passed in physical address and the unmap functions do nothing. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |