Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
A few of the initialization functions are missing the __init annotation.
Fix this and thereby allow ~680 additional bytes of code to be released
after initialization.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1409071785-26015-1-git-send-email-minipli@googlemail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The arch_perf_output_copy_user() default of
__copy_from_user_inatomic() returns bytes not copied, while all other
argument functions given DEFINE_OUTPUT_COPY() return bytes copied.
Since copy_from_user_nmi() is the odd duck out by returning bytes
copied where all other *copy_{to,from}* functions return bytes not
copied, change it over and ammend DEFINE_OUTPUT_COPY() to expect bytes
not copied.
Oddly enough DEFINE_OUTPUT_COPY() already returned bytes not copied
while expecting its worker functions to return bytes copied.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: will.deacon@arm.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20131030201622.GR16117@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Haswell always give an extra LBR record after every TSX abort.
Suppress the extra record.
This only works when the abort is visible in the LBR
If the original abort has already left the 16 LBR entries
the extra entry will will stay.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379688044-14173-7-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Haswell has two additional LBR from flags for TSX: in_tx and
abort_tx, implemented as a new "v4" version of the LBR format.
Handle those in and adjust the sign extension code to still
correctly extend. The flags are exported similarly in the LBR
record to the existing misprediction flag
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Andi Kleen <ak@linux.jf.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: http://lkml.kernel.org/r/1371515812-9646-6-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch moves commit 7cc23cd to the generic code:
perf/x86/intel/lbr: Demand proper privileges for PERF_SAMPLE_BRANCH_KERNEL
The check is now implemented in generic code instead of x86 specific
code. That way we do not have to repeat the test in each arch
supporting branch sampling.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: http://lkml.kernel.org/r/20130521105337.GA2879@quad
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The LBR 'from' adddress is under full userspace control; ensure
we validate it before reading from it.
Note: is_module_text_address() can potentially be quite
expensive; for those running into that with high overhead
in modules optimize it using an RCU backed rb-tree.
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20130503121256.158211806@chello.nl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/n/tip-mk8i82ffzax01cnqo829iy1q@git.kernel.org
This patch enables perf_events support for Intel Cedarview
Atom (model 54) processors. Support includes PEBS and LBR.
Tested on my Atom N2600 netbook.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120820092421.GA11284@quad
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds an internal sofware filter to complement
the (optional) LBR hardware filter.
The software filter is necessary:
- as a substitute when there is no HW LBR filter (e.g., Atom, Core)
- to complement HW LBR filter in case of errata (e.g., Nehalem/Westmere)
- to provide finer grain filtering (e.g., all processors)
Sometimes the LBR HW filter cannot distinguish between two types
of branches. For instance, to capture syscall as CALLS, it is necessary
to enable the LBR_FAR filter which will also capture JMP instructions.
Thus, a second pass is necessary to filter those out, this is what the
SW filter can do.
The SW filter is built on top of the internal x86 disassembler. It
is a best effort filter especially for user level code. It is subject
to the availability of the text page of the program.
The SW filter is enabled on all Intel processors. It is bypassed
when the user is capturing all branches at all priv levels.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-9-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements PERF_SAMPLE_BRANCH support for Intel
x86processors. It connects PERF_SAMPLE_BRANCH to the actual LBR.
The patch adds the hooks in the PMU irq handler to save the LBR
on counter overflow for both regular and PEBS modes.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-8-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The patch adds a restriction for Intel Atom LBR support. Only
steppings 10 (PineView) and more recent are supported. Older models
do not have a functional LBR. Their LBR does not freeze on PMU
interrupt which makes LBR unusable in the context of perf_events.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-7-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the mappings from the generic PERF_SAMPLE_BRANCH_*
filters to the actual Intel x86LBR filters, whenever they exist.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-6-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the LBR definitions for NHM/WSM/SNB and Core.
It also adds the definitions for the architected LBR MSR:
LBR_SELECT, LBRT_TOS.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the ability to sample taken branches to the
perf_event interface.
The ability to capture taken branches is very useful for all
sorts of analysis. For instance, basic block profiling, call
counts, statistical call graph.
This new capability requires hardware assist and as such may
not be available on all HW platforms. On Intel x86 it is
implemented on top of the Last Branch Record (LBR) facility.
To enable taken branches sampling, the PERF_SAMPLE_BRANCH_STACK
bit must be set in attr->sample_type.
Sampled taken branches may be filtered by type and/or priv
levels.
The patch adds a new field, called branch_sample_type, to the
perf_event_attr structure. It contains a bitmask of filters
to apply to the sampled taken branches.
Filters may be implemented in HW. If the HW filter does not exist
or is not good enough, some arch may also implement a SW filter.
The following generic filters are currently defined:
- PERF_SAMPLE_USER
only branches whose targets are at the user level
- PERF_SAMPLE_KERNEL
only branches whose targets are at the kernel level
- PERF_SAMPLE_HV
only branches whose targets are at the hypervisor level
- PERF_SAMPLE_ANY
any type of branches (subject to priv levels filters)
- PERF_SAMPLE_ANY_CALL
any call branches (may incl. syscall on some arch)
- PERF_SAMPLE_ANY_RET
any return branches (may incl. syscall returns on some arch)
- PERF_SAMPLE_IND_CALL
indirect call branches
Obviously filter may be combined. The priv level bits are optional.
If not provided, the priv level of the associated event are used. It
is possible to collect branches at a priv level different from the
associated event. Use of kernel, hv priv levels is subject to permissions
and availability (hv).
The number of taken branch records present in each sample may vary based
on HW, the type of sampled branches, the executed code. Therefore
each sample contains the number of taken branches it contains.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the new throttling/unthrottling code introduced with
commit:
e050e3f0a71b ("perf: Fix broken interrupt rate throttling")
we occasionally hit two WARN_ON_ONCE() checks in:
- intel_pmu_pebs_enable()
- intel_pmu_lbr_enable()
- x86_pmu_start()
The assertions are no longer problematic. There is a valid
path where they can trigger but it is harmless.
The assertion can be triggered with:
$ perf record -e instructions:pp ....
Leading to paths:
intel_pmu_pebs_enable
intel_pmu_enable_event
x86_perf_event_set_period
x86_pmu_start
perf_adjust_freq_unthr_context
perf_event_task_tick
scheduler_tick
And:
intel_pmu_lbr_enable
intel_pmu_enable_event
x86_perf_event_set_period
x86_pmu_start
perf_adjust_freq_unthr_context.
perf_event_task_tick
scheduler_tick
cpuc->enabled is always on because when we get to
perf_adjust_freq_unthr_context() the PMU is not totally
disabled. Furthermore when we need to adjust a period,
we only stop the event we need to change and not the
entire PMU. Thus, when we re-enable, cpuc->enabled is
already set. Note that when we stop the event, both
pebs and lbr are stopped if necessary (and possible).
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/20120202110401.GA30911@quad
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The CPU support for perf events on x86 was implemented via included C files
with #ifdefs. Clean this up by creating a new header file and compiling
the vendor-specific files as needed.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1314747665-2090-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If we reset the LBR on each first counter, simple counter rotation which
first deschedules all counters and then reschedules the new ones will
lead to LBR reset, even though we're still in the same task context.
Reduce this by not flushing on the first counter but only flushing on
different task contexts.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We should never call ->enable with the pmu enabled, and we _can_ have
->disable called with the pmu enabled.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some CPUs have errata where the LBR is not cleared on Power-On. So always
clear the LBRs before use.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100305154128.966563424@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Saner PERF_CAPABILITIES support, which also exposes pebs_trap. Use that
latter to make PEBS's use of LBR conditional since a fault-like pebs
should already report the correct IP.
( As of this writing there is no known hardware that implements
!pebs_trap )
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.770650663@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement simple suport Intel Last-Branch-Record, it supports all
hardware that implements FREEZE_LBRS_ON_PMI, but does not (yet) implement
the LBR config register.
The Intel LBR is a FIFO of From,To addresses describing the last few
branches the hardware took.
This patch does not add perf interface to the LBR, but merely provides an
interface for internal use.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.544191154@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>