Pull btrfs updates from Chris Mason:
"This is a pretty big pull, and most of these changes have been
floating in btrfs-next for a long time. Filipe's properties work is a
cool building block for inheriting attributes like compression down on
a per inode basis.
Jeff Mahoney kicked in code to export filesystem info into sysfs.
Otherwise, lots of performance improvements, cleanups and bug fixes.
Looks like there are still a few other small pending incrementals, but
I wanted to get the bulk of this in first"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (149 commits)
Btrfs: fix spin_unlock in check_ref_cleanup
Btrfs: setup inode location during btrfs_init_inode_locked
Btrfs: don't use ram_bytes for uncompressed inline items
Btrfs: fix btrfs_search_slot_for_read backwards iteration
Btrfs: do not export ulist functions
Btrfs: rework ulist with list+rb_tree
Btrfs: fix memory leaks on walking backrefs failure
Btrfs: fix send file hole detection leading to data corruption
Btrfs: add a reschedule point in btrfs_find_all_roots()
Btrfs: make send's file extent item search more efficient
Btrfs: fix to catch all errors when resolving indirect ref
Btrfs: fix protection between walking backrefs and root deletion
btrfs: fix warning while merging two adjacent extents
Btrfs: fix infinite path build loops in incremental send
btrfs: undo sysfs when open_ctree() fails
Btrfs: fix snprintf usage by send's gen_unique_name
btrfs: fix defrag 32-bit integer overflow
btrfs: sysfs: list the NO_HOLES feature
btrfs: sysfs: don't show reserved incompat feature
btrfs: call permission checks earlier in ioctls and return EPERM
...
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
It is better that the position of the lock is close to the data which is
protected by it, because they may be in the same cache line, we will load
less cache lines when we access them. So we rearrange the members' position
of btrfs_space_info structure to make the lock be closer to the its data.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noinode_cache mount option for btrfs.
Since inode map cache involves all the btrfs_find_free_ino/return_ino
things and if just trigger the mount_opt,
an inode number get from inode map cache will not returned to inode map
cache.
To keep the find and return inode both in the same behavior,
a new bit in mount_opt, CHANGE_INODE_CACHE, is introduced for this idea.
CHANGE_INODE_CACHE is set/cleared in remounting, and the original
INODE_MAP_CACHE is set/cleared according to CHANGE_INODE_CACHE after a
success transaction.
Since find/return inode is all done between btrfs_start_transaction and
btrfs_commit_transaction, this will keep consistent behavior.
Also noinode_cache mount option will not stop the caching_kthread.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is a bug that using btrfs_previous_item() to search metadata extent item.
This is because in btrfs_previous_item(), we need type match, however, since
skinny metada was introduced by josef, we may mix this two types. So just
use btrfs_previous_item() is not working right.
To keep btrfs_previous_item() like normal tree search, i introduce another
function btrfs_previous_extent_item().
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On one of our gluster clusters we noticed some pretty big lag spikes. This
turned out to be because our transaction commit was taking like 3 minutes to
complete. This is because we have like 30 gigs of metadata, so our global
reserve would end up being the max which is like 512 mb. So our throttling code
would allow a ridiculous amount of delayed refs to build up and then they'd all
get run at transaction commit time, and for a cold mounted file system that
could take up to 3 minutes to run. So fix the throttling to be based on both
the size of the global reserve and how long it takes us to run delayed refs.
This patch tracks the time it takes to run delayed refs and then only allows 1
seconds worth of outstanding delayed refs at a time. This way it will auto-tune
itself from cold cache up to when everything is in memory and it no longer has
to go to disk. This makes our transaction commits take much less time to run.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change adds infrastructure to allow for generic properties for
inodes. Properties are name/value pairs that can be associated with
inodes for different purposes. They are stored as xattrs with the
prefix "btrfs."
Properties can be inherited - this means when a directory inode has
inheritable properties set, these are added to new inodes created
under that directory. Further, subvolumes can also have properties
associated with them, and they can be inherited from their parent
subvolume. Naturally, directory properties have priority over subvolume
properties (in practice a subvolume property is just a regular
property associated with the root inode, objectid 256, of the
subvolume's fs tree).
This change also adds one specific property implementation, named
"compression", whose values can be "lzo" or "zlib" and it's an
inheritable property.
The corresponding changes to btrfs-progs were also implemented.
A patch with xfstests for this feature will follow once there's
agreement on this change/feature.
Further, the script at the bottom of this commit message was used to
do some benchmarks to measure any performance penalties of this feature.
Basically the tests correspond to:
Test 1 - create a filesystem and mount it with compress-force=lzo,
then sequentially create N files of 64Kb each, measure how long it took
to create the files, unmount the filesystem, mount the filesystem and
perform an 'ls -lha' against the test directory holding the N files, and
report the time the command took.
Test 2 - create a filesystem and don't use any compression option when
mounting it - instead set the compression property of the subvolume's
root to 'lzo'. Then create N files of 64Kb, and report the time it took.
The unmount the filesystem, mount it again and perform an 'ls -lha' like
in the former test. This means every single file ends up with a property
(xattr) associated to it.
Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the
compression property, have no real effect other than adding more work
when inheriting properties and taking more btree leaf space.
Test 4 - same as test 3 but with 10 properties per file.
Results (in seconds, and averages of 5 runs each), for different N
numbers of files follow.
* Without properties (test 1)
file creation time ls -lha time
10 000 files 3.49 0.76
100 000 files 47.19 8.37
1 000 000 files 518.51 107.06
* With 1 property (compression property set to lzo - test 2)
file creation time ls -lha time
10 000 files 3.63 0.93
100 000 files 48.56 9.74
1 000 000 files 537.72 125.11
* With 4 properties (test 3)
file creation time ls -lha time
10 000 files 3.94 1.20
100 000 files 52.14 11.48
1 000 000 files 572.70 142.13
* With 10 properties (test 4)
file creation time ls -lha time
10 000 files 4.61 1.35
100 000 files 58.86 13.83
1 000 000 files 656.01 177.61
The increased latencies with properties are essencialy because of:
*) When creating an inode, we now synchronously write 1 more item
(an xattr item) for each property inherited from the parent dir
(or subvolume). This could be done in an asynchronous way such
as we do for dir intex items (delayed-inode.c), which could help
reduce the file creation latency;
*) With properties, we now have larger fs trees. For this particular
test each xattr item uses 75 bytes of leaf space in the fs tree.
This could be less by using a new item for xattr items, instead of
the current btrfs_dir_item, since we could cut the 'location' and
'type' fields (saving 18 bytes) and maybe 'transid' too (saving a
total of 26 bytes per xattr item) from the btrfs_dir_item type.
Also tried batching the xattr insertions (ignoring proper hash
collision handling, since it didn't exist) when creating files that
inherit properties from their parent inode/subvolume, but the end
results were (surprisingly) essentially the same.
Test script:
$ cat test.pl
#!/usr/bin/perl -w
use strict;
use Time::HiRes qw(time);
use constant NUM_FILES => 10_000;
use constant FILE_SIZES => (64 * 1024);
use constant DEV => '/dev/sdb4';
use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev';
use constant TEST_DIR => (MNT_POINT . '/testdir');
system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!";
# following line for testing without properties
#system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!";
# following 2 lines for testing with properties
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!";
system("mkdir", TEST_DIR) == 0 or die "mkdir failed!";
my ($t1, $t2);
$t1 = time();
for (my $i = 1; $i <= NUM_FILES; $i++) {
my $p = TEST_DIR . '/file_' . $i;
open(my $f, '>', $p) or die "Error opening file!";
$f->autoflush(1);
for (my $j = 0; $j < FILE_SIZES; $j += 4096) {
print $f ('A' x 4096) or die "Error writing to file!";
}
close($f);
}
$t2 = time();
print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
$t1 = time();
system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!";
$t2 = time();
print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
All the subvolues that are involved in send must be read-only during the
whole operation. The ioctl SUBVOL_SETFLAGS could be used to change the
status to read-write and the result of send stream is undefined if the
data change unexpectedly.
Fix that by adding a refcount for all involved roots and verify that
there's no send in progress during SUBVOL_SETFLAGS ioctl call that does
read-only -> read-write transition.
We need refcounts because there are no restrictions on number of send
parallel operations currently run on a single subvolume, be it source,
parent or one of the multiple clone sources.
Kernel is silent when the RO checks fail and returns EPERM. The same set
of checks is done already in userspace before send starts.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's not used anywhere, so just drop it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I need to create a fake tree to test qgroups and I don't want to have to setup a
fake btree_inode. The fact is we only use the radix tree for the fs_info, so
everybody else who allocates an extent_io_tree is just wasting the space anyway.
This patch moves the radix tree and its lock into btrfs_fs_info so there is less
stuff I have to fake to do qgroup sanity tests. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The kernel macro pr_debug is defined as a empty statement when DEBUG is
not defined. Make btrfs_debug match pr_debug to avoid spamming
the kernel log with debug messages
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Found by uselex.rb:
> btrfs_get_inode_ref_index: [R]: exported from:
fs/btrfs/inode-item.o fs/btrfs/btrfs.o fs/btrfs/built-in.o
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: David Stebra <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are many btrfs functions that manually search the tree for an
item. They all reimplement the same mechanism and differ in the
conditions that they use to find the item. __inode_info() is one such
example. Zach Brown proposed creating a new interface to take the place
of these functions.
This patch is the first step to creating the interface. A new function,
btrfs_find_item, has been added to ctree.c and prototyped in ctree.h.
It is identical to __inode_info, except that the order of the parameters
has been rearranged to more closely those of similar functions elsewhere
in the code (now, root and path come first, then the objectid, offset
and type, and the key to be filled in last). __inode_info's callers have
been set to call this new function instead, and __inode_info itself has
been removed.
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Suggested-by: Zach Brown <zab@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Now that we have the infrastructure for per-super attributes, we can
publish device membership in /sys/fs/btrfs/<fsid>/devices. The information
is published as symlinks to the block devices.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
While trying to debug ENOSPC issues, it's helpful to understand what the
kernel's view of the available space is. We export this information
via ioctl, but sysfs files are more easily used.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch adds per-super attributes to sysfs.
It doesn't publish any attributes yet, but does the proper lifetime
handling as well as the basic infrastructure to add new attributes.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are some feature bits that require no offline setup and can
be enabled online. I've only reviewed extended irefs, but there will
probably be more.
We introduce three new ioctls:
- BTRFS_IOC_GET_SUPPORTED_FEATURES: query the kernel for supported features.
- BTRFS_IOC_GET_FEATURES: query the kernel for enabled features on a per-fs
basis, as well as querying for which features are changeable with mounted.
- BTRFS_IOC_SET_FEATURES: change features on a per-fs basis.
We introduce two new masks per feature set (_SAFE_SET and _SAFE_CLEAR) that
allow us to define which features are safe to change at runtime.
The failure modes for BTRFS_IOC_SET_FEATURES are as follows:
- Enabling a completely unsupported feature: warns and returns -ENOTSUPP
- Enabling a feature that can only be done offline: warns and returns -EPERM
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were looking at file_extent_num_bytes unconditionally when looking at
referenced data bytes, but this isn't correct for compression. Fix this by
checking the compression of the file extent we are and setting num_bytes to
disk_num_bytes in the case of compression so that we are marking the proper
bytes as referenced. This fixes check_int_data freaking out when running
btrfs/004. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has always had these filler extent data items for holes in inodes. This
has made somethings very easy, like logging hole punches and sending hole
punches. However for large holey files these extent data items are pure
overhead. So add an incompatible feature to no longer add hole extents to
reduce the amount of metadata used by these sort of files. This has a few
changes for logging and send obviously since they will need to detect holes and
log/send the holes if there are any. I've tested this thoroughly with xfstests
and it doesn't cause any issues with and without the incompat format set.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Also don't bother to set up a .get_acl method for symlinks as we do not
support access control (ACLs or even mode bits) for symlinks in Linux.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These two functions are only stated but undefined.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
rename the function -- btrfs_start_all_delalloc_inodes(), and make its
name be compatible to btrfs_wait_ordered_roots(), since they are always
used at the same place.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Originally, we introduced scrub_super_lock to synchronize
tree log code with scrubbing super.
However we can replace scrub_super_lock with device_list_mutex,
because writing super will hold this mutex, this will reduce an extra
lock holding when writing supers in sync log code.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I'm going to be removing hole extents in the near future so I wanted to make a
sanity test for btrfs_get_extent to make sure I don't break anything in the
meantime. This patch just puts btrfs_get_extent through its paces by giving it
a completely unreasonable mapping to look at and make sure it is giving us back
maps that make sense. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
So both Liu and I made huge messes of find_lock_delalloc_range trying to fix
stuff, me first by fixing extent size, then him by fixing something I broke and
then me again telling him to fix it a different way. So this is obviously a
candidate for some testing. This patch adds a pseudo fs so we can allocate fake
inodes for tests that need an inode or pages. Then it addes a bunch of tests to
make sure find_lock_delalloc_range is acting the way it is supposed to. With
this patch and all of our previous patches to find_lock_delalloc_range I am sure
it is working as expected now. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It is not used for anything.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused parameter, 'eb'. Unused since introduction in
5f39d397dfbe140a14edecd4e73c34ce23c4f9ee
Updated to be rebased against current upstream and correct diff supplied this time!
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While looking at somebodys corruption I became completely convinced that
btrfs_split_item was broken, so I wrote this test to verify that it was working
as it was supposed to. Thankfully it appears to be working as intended, so just
add this test to make sure nobody breaks it in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused eb parameter from btrfs_item_nr
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This isn't used for anything anymore, just remove it.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Forever ago I made the worst case calculator say that we could potentially split
into 3 blocks for every level on the way down, which isn't right. If we split
we're only going to get two new blocks, the one we originally cow'ed and the new
one we're going to split. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If we failed to actually allocate the correct size of the extent to relocate we
will end up in an infinite loop because we won't return an error, we'll just
move on to the next extent. So fix this up by returning an error, and then fix
all the callers to return an error up the stack rather than BUG_ON()'ing.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
One of the complaints we get a lot is how many BUG_ON()'s we have. So to help
with this I'm introducing a kconfig option to enable/disable a new ASSERT()
mechanism much like what XFS does. This will allow us developers to still get
our nice panics but allow users/distros to compile them out. With this we can
go through and convert any BUG_ON()'s that we have to catch actual programming
mistakes to the new ASSERT() and then fix everybody else to return errors. This
will also allow developers to leave sanity checks in their new code to make sure
we don't trip over problems while testing stuff and vetting new features.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Internally, btrfs_header_chunk_tree_uuid() calculates an unsigned long, but
casts it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Internally, btrfs_header_fsid() calculates an unsigned long, but casts
it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Internally, btrfs_dev_extent_chunk_tree_uuid() calculates an unsigned long,
but casts it to a pointer, while all callers cast it to unsigned long
again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
All callers of btrfs_device_fsid() cast its return type to unsigned long.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
All callers of btrfs_device_uuid() cast its return type to unsigned long.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The internal btrfs device id is a u64, hence make the constant
BTRFS_DEV_REPLACE_DEVID "unsigned long long" as well, so we no longer need
a cast to print it.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This should never be needed, but since all functions are there
to check and rebuild the UUID tree, a mount option is added that
allows to force this check and rebuild procedure.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If the filesystem was mounted with an old kernel that was not
aware of the UUID tree, this is detected by looking at the
uuid_tree_generation field of the superblock (similar to how
the free space cache is doing it). If a mismatch is detected
at mount time, a thread is started that does two things:
1. Iterate through the UUID tree, check each entry, delete those
entries that are not valid anymore (i.e., the subvol does not
exist anymore or the value changed).
2. Iterate through the root tree, for each found subvolume, add
the UUID tree entries for the subvolume (if they are not
already there).
This mechanism is also used to handle and repair errors that
happened during the initial creation and filling of the tree.
The update of the uuid_tree_generation field (which indicates
that the state of the UUID tree is up to date) is blocked until
all create and repair operations are successfully completed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In order to be able to detect the case that a filesystem is mounted
with an old kernel, add a uuid-tree-gen field like the free space
cache is doing it. It is part of the super block and written with
each commit. Old kernels do not know this field and don't update it.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When the UUID tree is initially created, a task is spawned that
walks through the root tree. For each found subvolume root_item,
the uuid and received_uuid entries in the UUID tree are added.
This is such a quick operation so that in case somebody wants
to unmount the filesystem while the task is still running, the
unmount is delayed until the UUID tree building task is finished.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When a new subvolume or snapshot is created, a new UUID item is added
to the UUID tree. Such items are removed when the subvolume is deleted.
The ioctl to set the received subvolume UUID is also touched and will
now also add this received UUID into the UUID tree together with the
ID of the subvolume. The latter is also done when read-only snapshots
are created which inherit all the send/receive information from the
parent subvolume.
User mode programs use the BTRFS_IOC_TREE_SEARCH ioctl to search and
read in the UUID tree.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This tree is not created by mkfs.btrfs. Therefore when a filesystem
is mounted writable and the UUID tree does not exist, this tree is
created if required. The tree is also added to the fs_info structure
and initialized, but this commit does not yet read or write UUID tree
elements.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Mapping UUIDs to subvolume IDs is an operation with a high effort
today. Today, the algorithm even has quadratic effort (based on the
number of existing subvolumes), which means, that it takes minutes
to send/receive a single subvolume if 10,000 subvolumes exist. But
even linear effort would be too much since it is a waste. And these
data structures to allow mapping UUIDs to subvolume IDs are created
every time a btrfs send/receive instance is started.
It is much more efficient to maintain a searchable persistent data
structure in the filesystem, one that is updated whenever a
subvolume/snapshot is created and deleted, and when the received
subvolume UUID is set by the btrfs-receive tool.
Therefore kernel code is added with this commit that is able to
maintain data structures in the filesystem that allow to quickly
search for a given UUID and to retrieve data that is assigned to
this UUID, like which subvolume ID is related to this UUID.
This commit adds a new tree to hold UUID-to-data mapping items. The
key of the items is the full UUID plus the key type BTRFS_UUID_KEY.
Multiple data blocks can be stored for a given UUID, a type/length/
value scheme is used.
Now follows the lengthy justification, why a new tree was added
instead of using the existing root tree:
The first approach was to not create another tree that holds UUID
items. Instead, the items should just go into the top root tree.
Unfortunately this confused the algorithm to assign the objectid
of subvolumes and snapshots. The reason is that
btrfs_find_free_objectid() calls btrfs_find_highest_objectid() for
the first created subvol or snapshot after mounting a filesystem,
and this function simply searches for the largest used objectid in
the root tree keys to pick the next objectid to assign. Of course,
the UUID keys have always been the ones with the highest offset
value, and the next assigned subvol ID was wastefully huge.
To use any other existing tree did not look proper. To apply a
workaround such as setting the objectid to zero in the UUID item
key and to implement collision handling would either add
limitations (in case of a btrfs_extend_item() approach to handle
the collisions) or a lot of complexity and source code (in case a
key would be looked up that is free of collisions). Adding new code
that introduces limitations is not good, and adding code that is
complex and lengthy for no good reason is also not good. That's the
justification why a completely new tree was introduced.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>