btrfs-transacion:5657
[stack snip]
btrfs_bio_map()
btrfs_bio_counter_inc_blocked()
percpu_counter_inc(&fs_info->bio_counter) ###bio_counter > 0(A)
__btrfs_bio_map()
btrfs_dev_replace_lock()
mutex_lock(dev_replace->lock) ###wait mutex(B)
btrfs:32612
[stack snip]
btrfs_dev_replace_start()
btrfs_dev_replace_lock()
mutex_lock(dev_replace->lock) ###hold mutex(B)
btrfs_dev_replace_finishing()
btrfs_rm_dev_replace_blocked()
wait until percpu_counter_sum == 0 ###wait on bio_counter(A)
This bug can be triggered quite easily by the following test script:
http://pastebin.com/MQmb37Cy
This patch will fix the ABBA problem by calling
btrfs_dev_replace_unlock() before btrfs_rm_dev_replace_blocked().
The consistency of btrfs devices list and their superblocks is protected
by device_list_mutex, not btrfs_dev_replace_lock/unlock().
So it is safe the move btrfs_dev_replace_unlock() before
btrfs_rm_dev_replace_blocked().
Reported-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Cc: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <clm@fb.com>
We've defined a 'offset' out of bio_for_each_segment_all.
This is just a clean rename, no function changes.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_drop_snapshot() leaves subvolume qgroup items on disk after
completion. This can cause problems with snapshot creation. If a new
snapshot tries to claim the deleted subvolumes id, btrfs will get -EEXIST
from add_qgroup_item() and go read-only. The following commands will
reproduce this problem (assume btrfs is on /dev/sda and is mounted at
/btrfs)
mkfs.btrfs -f /dev/sda
mount -t btrfs /dev/sda /btrfs/
btrfs quota enable /btrfs/
btrfs su sna /btrfs/ /btrfs/snap
btrfs su de /btrfs/snap
sleep 45
umount /btrfs/
mount -t btrfs /dev/sda /btrfs/
We can fix this by catching -EEXIST in add_qgroup_item() and
initializing the existing items. We have the problem of orphaned
relation items being on disk from an old snapshot but that is outside
the scope of this patch.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
The map_start and map_len fields aren't used anywhere, so just remove
them. On a x86_64 system, this reduced sizeof(struct extent_buffer)
from 296 bytes to 280 bytes, and therefore 14 extent_buffer structs can
now fit into a page instead of 13.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Maximum xattr size can be up to nearly the leaf size. For an fs with a
leaf size larger than the page size, using kmalloc requires allocating
multiple pages that are contiguous, which might not be possible if
there's heavy memory fragmentation. Therefore fallback to vmalloc if
we fail to allocate with kmalloc. Also start with a smaller buffer size,
since xattr values typically are smaller than a page.
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Last user removed in commit "btrfs: disable strict file flushes for
renames and truncates" (8d875f95da43c6a8f18f77869f2ef26e9594fecc).
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While under random IO, a block group's free space cache eventually reaches
a state where it has a mix of extent entries and bitmap entries representing
free space regions.
As later free space regions are returned to the cache, some of them are merged
with existing extent entries if they are contiguous with them. But others are
not merged, because despite the existence of adjacent free space regions in
the cache, the merging doesn't happen because the existing free space regions
are represented in bitmap extents. Even when new free space regions are merged
with existing extent entries (enlarging the free space range they represent),
we create chances of having after an enlarged region that is contiguous with
some other region represented in a bitmap entry.
Both clustered and non-clustered space allocation work by iterating over our
extent and bitmap entries and skipping any that represents a region smaller
then the allocation request (and giving preference to extent entries before
bitmap entries). By having a contiguous free space region that is represented
by 2 (or more) entries (mix of extent and bitmap entries), we end up not
satisfying an allocation request with a size larger than the size of any of
the entries but no larger than the sum of their sizes. Making the caller assume
we're under a ENOSPC condition or force it to allocate multiple smaller space
regions (as we do for file data writes), which adds extra overhead and more
chances of causing fragmentation due to the smaller regions being all spread
apart from each other (more likely when under concurrency).
For example, if we have the following in the cache:
* extent entry representing free space range: [128Mb - 256Kb, 128Mb[
* bitmap entry covering the range [128Mb, 256Mb[, but only with the bits
representing the range [128Mb, 128Mb + 768Kb[ set - that is, only that
space in this 128Mb area is marked as free
An allocation request for 1Mb, starting at offset not greater than 128Mb - 256Kb,
would fail before, despite the existence of such contiguous free space area in the
cache. The caller could only allocate up to 768Kb of space at once and later another
256Kb (or vice-versa). In between each smaller allocation request, another task
working on a different file/inode might come in and take that space, preventing the
former task of getting a contiguous 1Mb region of free space.
Therefore this change implements the ability to move free space from bitmap
entries into existing and new free space regions represented with extent
entries. This is done when a space region is added to the cache.
A test was added to the sanity tests that explains in detail the issue too.
Some performance test results with compilebench on a 4 cores machine, with
32Gb of ram and using an HDD follow.
Test: compilebench -D /mnt -i 30 -r 1000 --makej
Before this change:
intial create total runs 30 avg 69.02 MB/s (user 0.28s sys 0.57s)
compile total runs 30 avg 314.96 MB/s (user 0.12s sys 0.25s)
read compiled tree total runs 3 avg 27.14 MB/s (user 1.52s sys 0.90s)
delete compiled tree total runs 30 avg 3.14 seconds (user 0.15s sys 0.66s)
After this change:
intial create total runs 30 avg 68.37 MB/s (user 0.29s sys 0.55s)
compile total runs 30 avg 382.83 MB/s (user 0.12s sys 0.24s)
read compiled tree total runs 3 avg 27.82 MB/s (user 1.45s sys 0.97s)
delete compiled tree total runs 30 avg 3.18 seconds (user 0.17s sys 0.65s)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
we are assigning number_devices to the total_bytes,
that's very confusing for a moment
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
there is no matching open parenthesis for the closing parenthesis
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
seed fs devices don't participate as rw_device, so don't increment
rw_devices when the device being handled belongs to a seed fs.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we replace all the seed device in the system there is
no point in just keeping the btrfs_fs_devices with out
any device
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We are not updating sprout fs seed pointer when all seed device
is replaced. This patch will check if all seed device has been
replaced and then update the sprout pointer accordingly.
Same reproducer as in the previous patch would apply here.
And notice that btrfs_close_device will check if seed fs is
present and spits out the error with out this patch.
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
::
seed_devices = fs_devices->seed;
::
while (seed_devices) {
fs_devices = seed_devices;
seed_devices = fs_devices->seed;
__btrfs_close_devices(fs_devices);
free_fs_devices(fs_devices);
}
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
reproducer:
reproducer:
mount /dev/sdb /btrfs
btrfs dev add /dev/sdc /btrfs
btrfs rep start -B /dev/sdb /dev/sdd /btrfs
umount /btrfs
WARNING: CPU: 0 PID: 3882 at fs/btrfs/volumes.c:892 __btrfs_close_devices+0x1c8/0x200 [btrfs]()
which is
WARN_ON(fs_devices->rw_devices);
The problem here is that we did not add one to the rw_devices when
we replace the seed device with a writable device.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
reproducer:
mount /dev/sdb /btrfs
btrfs dev add /dev/sdc /btrfs
btrfs rep start -B /dev/sdb /dev/sdd /btrfs
umount /btrfs
WARNING: CPU: 0 PID: 12661 at fs/btrfs/volumes.c:891 __btrfs_close_devices+0x1b0/0x200 [btrfs]()
::
__btrfs_close_devices()
::
WARN_ON(fs_devices->open_devices);
After the seed device has been replaced the new target device
is no more a seed device. So we need to update the device
numbers in the fs_devices as pointed by the fs_info.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is no logical change in this patch, just a preparatory patch,
so that changes can be easily reasoned.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The issue was introduced in a79b7d4b3e8118f265dcb4bdf9a572c392f02708,
adding allocation of extent_workers, so this stray check is surely not
meant to be a check of something else.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=82021
Reported-by: Maks Naumov <maksqwe1@ukr.net>
Signed-off-by: Andrey Utkin <andrey.krieger.utkin@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.
This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
BTRFS_ATTR_RW could set the mode and be inline with BTRFS_ATTR
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
All that uses BTRFS_ATTR want mode to be set at 0444 so just do
it at the define. And few spacing alignments.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we need to cow a node, increase the write lock level and retry the
tree search, there's no point of changing the node locks in our path
to blocking mode, as we only waste time and unnecessarily wake up other
tasks waiting on the spinning locks (just to block them again shortly
after) because we release our path before repeating the tree search.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ctree.c:setup_items_for_insert(), we can unlock all nodes in our
path before we process the leaf (shift items and data, adjust data
offsets, etc). This allows for better btree concurrency, as we're
often holding a write lock on at least the node at level 1.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_lookup_csums_range() uses ALIGN() to check if "start"
and "end + 1" are aligned to "root->sectorsize". It's better to
replace these with IS_ALIGNED() for simplicity.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We want this to debug qgroup changes on live systems.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The member variants - latest_devid and latest_trans - of fs_devices structure
are set, but no one use them to do anything. so remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The io error might happen during writing out the device stats, and the
device stats information and dirty flag would be update at that time,
but the current code didn't consider this case, just clear the dirty
flag, it would cause that we forgot to write out the new device stats
information. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The lock in btrfs_device structure was far away from its protected data, it would
make CPU load the cache line twice when we accessed them, move them together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The super block generation of the seed devices is not the same as the
filesystem which sprouted from them because we don't update the super
block on the seed devices when we change that new filesystem. So we
should not use the generation of that new filesystem to check the super
block generation on the seed devices, Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
All the metadata in the seed devices has the same fsid as the fsid
of the seed filesystem which is on the seed device, so we should check
them by the current filesystem. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The transaction thread may want to do more work, namely it pokes the
cleaner ktread that will start processing uncleaned subvols.
This can be triggered by user via the 'btrfs fi sync' command, otherwise
there was a delay up to 30 seconds before the cleaner started to clean
old snapshots.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
inline data is stored from offset of @disk_bytenr in
struct btrfs_file_extent_item. So substracting total
size of struct btrfs_file_extent_item is wrong, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs could still inline file data if its size is same as
page size, so don't skip max value here.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If flag NOCOMPRESS is set which means bad compression ratio,
we could avoid call cow_file_range_async() for this case earlier.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If a file's compression ratios is bad, we will set NOCOMPRESS
flag for it, and it will skip compression for that inode next time.
However, if we remount fs to COMPRESS_FORCE, it still should try
if we could compress pages for that inode, this patch fix wrong
check for this problem.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Fix the following sparse warning:
fs/btrfs/send.c:518:51: warning: incorrect type in argument 2 (different address spaces)
fs/btrfs/send.c:518:51: expected char const [noderef] <asn:1>*<noident>
fs/btrfs/send.c:518:51: got char *
We can safely use (const char __user *) with set_fs(KERNEL_DS)
__force added to avoid sparse-all warning:
fs/btrfs/send.c:518:40: warning: cast adds address space to expression (<asn:1>)
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Zach Brown <zab@zabbo.net>
Signed-off-by: Chris Mason <clm@fb.com>
Use BUG_ON(x) rather than if(x) BUG();
The semantic patch that fixes this problem is as follows:
// <smpl>
@@ identifier x; @@
-if (x) BUG();
+BUG_ON(x);
// </smpl>
Signed-off-by: Himangi Saraogi <himangi774@gmail.com>
Acked-by: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Chris Mason <clm@fb.com>
`struct workspace' used for zlib compression contains two zlib
z_stream-s: `def_strm' used in zlib_compress_pages(), and `inf_strm'
used in zlib_decompress/zlib_decompress_biovec(). None of these
functions use `inf_strm' and `def_strm' simultaniously, meaning that
for every compress/decompress operation we need only one z_stream
(out of two available).
`inf_strm' and `def_strm' are different in size of ->workspace. For
inflate stream we vmalloc() zlib_inflate_workspacesize() bytes, for
deflate stream - zlib_deflate_workspacesize() bytes. On my system zlib
returns the following workspace sizes, correspondingly: 42312 and 268104
(+ guard pages).
Keep only one `z_stream' in `struct workspace' and use it for both
compression and decompression. Hence, instead of vmalloc() of two
z_stream->worskpace-s, allocate only one of size:
max(zlib_deflate_workspacesize(), zlib_inflate_workspacesize())
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were returning with 0 (success) because we weren't extracting the
error code from em (PTR_ERR(em)). Fix it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The tree field of struct extent_state was only used to figure out if
an extent state was connected to an inode's io tree or not. For this
we can just use the rb_node field itself.
On a x86_64 system with this change the sizeof(struct extent_state) is
reduced from 96 bytes down to 88 bytes, meaning that with a page size
of 4096 bytes we can now store 46 extent states per page instead of 42.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
replace IS_ERR/PTR_ERR
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Chris Mason <clm@fb.com>
Marc argued that if there are several btrfs filesystems mounted,
while users even don't know which filesystem hit the corrupted
errors something like generation verification failure.
Since @extent_buffer structure has a member @fs_info, let's output
btrfs device info.
Reported-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we mounted a seed filesystem with degraded option, and then added a new
device into the seed filesystem, then we found adding device failed because
of the IO failure.
Steps to reproduce:
# mkfs.btrfs -d raid1 -m raid1 <dev0> <dev1>
# btrfstune -S 1 <dev0>
# mount <dev0> -o degraded <mnt>
# btrfs device add -f <dev2> <mnt>
It is because the original didn't set the chunk on the seed device to be
read-only if the degraded flag was set. It was introduced by patch f48b90756,
which fixed the problem the raid1 filesystem became read-only after one device
of it was missing. But this fix method was not right, we should set the read-only
flag according to the number of the missing devices, not the degraded mount
option, if the number of the missing devices is less than the max error number
that the profile of the chunk tolerates, we don't set it to be read-only.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs defragment will utilize COW feature, which means this
did not work for nodatacow option, this problem was detected
by xfstests generic/018 with nodatacow mount option.
Fix this problem by forcing cow for a extent with state
@EXTETN_DEFRAG setting.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
as in the disk add patch, disk detached from the volume must be
recorded in the syslog as well for the same reason.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
when we add a new disk to the mounted btrfs we don't record it
as of now, disk add is a critical change of btrfs configuration,
it must be recorded in the syslog to help offline investigations
of customer problems when reported.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sdb
# mount /dev/sdb /mnt -o compress-force=lzo
# mount /dev/sdb /mnt -o remount,compress=zlib
# cat /proc/mounts
Remounting from compress-force to compress could not clear compress-force
option. The problem is there is no way for users to clear compress-force
option separately.
Fix this problem by clearing @FORCE_COMPRESS flag when remounting to
compress=xxx.
Suggested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Tested-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The form
(value + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT
is equivalent to
(value + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE
The rest is a simple subsitution, no difference in the generated
assembly code.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>