Compaction caches pfn's for its migrate and free scanners to avoid
scanning the whole zone each time. In compact_zone(), the cached values
are read to set up initial values for the scanners. There are several
situations when these cached pfn's are reset to the first and last pfn
of the zone, respectively. One of these situations is when a compaction
has been deferred for a zone and is now being restarted during a direct
compaction, which is also done in compact_zone().
However, compact_zone() currently reads the cached pfn's *before*
resetting them. This means the reset doesn't affect the compaction that
performs it, and with good chance also subsequent compactions, as
update_pageblock_skip() is likely to be called and update the cached
pfn's to those being processed. Another chance for a successful reset
is when a direct compaction detects that migration and free scanners
meet (which has its own problems addressed by another patch) and sets
update_pageblock_skip flag which kswapd uses to do the reset because it
goes to sleep.
This is clearly a bug that results in non-deterministic behavior, so
this patch moves the cached pfn reset to be performed *before* the
values are read.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there are several functions to manipulate the deferred
compaction state variables. The remaining case where the variables are
touched directly is when a successful allocation occurs in direct
compaction, or is expected to be successful in the future by kswapd.
Here, the lowest order that is expected to fail is updated, and in the
case of successful allocation, the deferred status and counter is reset
completely.
Create a new function compaction_defer_reset() to encapsulate this
functionality and make it easier to understand the code. No functional
change.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The broad goal of the series is to improve allocation success rates for
huge pages through memory compaction, while trying not to increase the
compaction overhead. The original objective was to reintroduce
capturing of high-order pages freed by the compaction, before they are
split by concurrent activity. However, several bugs and opportunities
for simple improvements were found in the current implementation, mostly
through extra tracepoints (which are however too ugly for now to be
considered for sending).
The patches mostly deal with two mechanisms that reduce compaction
overhead, which is caching the progress of migrate and free scanners,
and marking pageblocks where isolation failed to be skipped during
further scans.
Patch 1 (from mgorman) adds tracepoints that allow calculate time spent in
compaction and potentially debug scanner pfn values.
Patch 2 encapsulates the some functionality for handling deferred compactions
for better maintainability, without a functional change
type is not determined without being actually needed.
Patch 3 fixes a bug where cached scanner pfn's are sometimes reset only after
they have been read to initialize a compaction run.
Patch 4 fixes a bug where scanners meeting is sometimes not properly detected
and can lead to multiple compaction attempts quitting early without
doing any work.
Patch 5 improves the chances of sync compaction to process pageblocks that
async compaction has skipped due to being !MIGRATE_MOVABLE.
Patch 6 improves the chances of sync direct compaction to actually do anything
when called after async compaction fails during allocation slowpath.
The impact of patches were validated using mmtests's stress-highalloc
benchmark with mmtests's stress-highalloc benchmark on a x86_64 machine
with 4GB memory.
Due to instability of the results (mostly related to the bugs fixed by
patches 2 and 3), 10 iterations were performed, taking min,mean,max
values for success rates and mean values for time and vmstat-based
metrics.
First, the default GFP_HIGHUSER_MOVABLE allocations were tested with the
patches stacked on top of v3.13-rc2. Patch 2 is OK to serve as baseline
due to no functional changes in 1 and 2. Comments below.
stress-highalloc
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-nothp 3-nothp 4-nothp 5-nothp 6-nothp
Success 1 Min 9.00 ( 0.00%) 10.00 (-11.11%) 43.00 (-377.78%) 43.00 (-377.78%) 33.00 (-266.67%)
Success 1 Mean 27.50 ( 0.00%) 25.30 ( 8.00%) 45.50 (-65.45%) 45.90 (-66.91%) 46.30 (-68.36%)
Success 1 Max 36.00 ( 0.00%) 36.00 ( 0.00%) 47.00 (-30.56%) 48.00 (-33.33%) 52.00 (-44.44%)
Success 2 Min 10.00 ( 0.00%) 8.00 ( 20.00%) 46.00 (-360.00%) 45.00 (-350.00%) 35.00 (-250.00%)
Success 2 Mean 26.40 ( 0.00%) 23.50 ( 10.98%) 47.30 (-79.17%) 47.60 (-80.30%) 48.10 (-82.20%)
Success 2 Max 34.00 ( 0.00%) 33.00 ( 2.94%) 48.00 (-41.18%) 50.00 (-47.06%) 54.00 (-58.82%)
Success 3 Min 65.00 ( 0.00%) 63.00 ( 3.08%) 85.00 (-30.77%) 84.00 (-29.23%) 85.00 (-30.77%)
Success 3 Mean 76.70 ( 0.00%) 70.50 ( 8.08%) 86.20 (-12.39%) 85.50 (-11.47%) 86.00 (-12.13%)
Success 3 Max 87.00 ( 0.00%) 86.00 ( 1.15%) 88.00 ( -1.15%) 87.00 ( 0.00%) 87.00 ( 0.00%)
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-nothp 3-nothp 4-nothp 5-nothp 6-nothp
User 6437.72 6459.76 5960.32 5974.55 6019.67
System 1049.65 1049.09 1029.32 1031.47 1032.31
Elapsed 1856.77 1874.48 1949.97 1994.22 1983.15
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-nothp 3-nothp 4-nothp 5-nothp 6-nothp
Minor Faults 253952267 254581900 250030122 250507333 250157829
Major Faults 420 407 506 530 530
Swap Ins 4 9 9 6 6
Swap Outs 398 375 345 346 333
Direct pages scanned 197538 189017 298574 287019 299063
Kswapd pages scanned 1809843 1801308 1846674 1873184 1861089
Kswapd pages reclaimed 1806972 1798684 1844219 1870509 1858622
Direct pages reclaimed 197227 188829 298380 286822 298835
Kswapd efficiency 99% 99% 99% 99% 99%
Kswapd velocity 953.382 970.449 952.243 934.569 922.286
Direct efficiency 99% 99% 99% 99% 99%
Direct velocity 104.058 101.832 153.961 143.200 148.205
Percentage direct scans 9% 9% 13% 13% 13%
Zone normal velocity 347.289 359.676 348.063 339.933 332.983
Zone dma32 velocity 710.151 712.605 758.140 737.835 737.507
Zone dma velocity 0.000 0.000 0.000 0.000 0.000
Page writes by reclaim 557.600 429.000 353.600 426.400 381.800
Page writes file 159 53 7 79 48
Page writes anon 398 375 345 346 333
Page reclaim immediate 825 644 411 575 420
Sector Reads 2781750 2769780 2878547 2939128 2910483
Sector Writes 12080843 12083351 12012892 12002132 12010745
Page rescued immediate 0 0 0 0 0
Slabs scanned 1575654 1545344 1778406 1786700 1794073
Direct inode steals 9657 10037 15795 14104 14645
Kswapd inode steals 46857 46335 50543 50716 51796
Kswapd skipped wait 0 0 0 0 0
THP fault alloc 97 91 81 71 77
THP collapse alloc 456 506 546 544 565
THP splits 6 5 5 4 4
THP fault fallback 0 1 0 0 0
THP collapse fail 14 14 12 13 12
Compaction stalls 1006 980 1537 1536 1548
Compaction success 303 284 562 559 578
Compaction failures 702 696 974 976 969
Page migrate success 1177325 1070077 3927538 3781870 3877057
Page migrate failure 0 0 0 0 0
Compaction pages isolated 2547248 2306457 8301218 8008500 8200674
Compaction migrate scanned 42290478 38832618 153961130 154143900 159141197
Compaction free scanned 89199429 79189151 356529027 351943166 356326727
Compaction cost 1566 1426 5312 5156 5294
NUMA PTE updates 0 0 0 0 0
NUMA hint faults 0 0 0 0 0
NUMA hint local faults 0 0 0 0 0
NUMA hint local percent 100 100 100 100 100
NUMA pages migrated 0 0 0 0 0
AutoNUMA cost 0 0 0 0 0
Observations:
- The "Success 3" line is allocation success rate with system idle
(phases 1 and 2 are with background interference). I used to get stable
values around 85% with vanilla 3.11. The lower min and mean values came
with 3.12. This was bisected to commit 81c0a2bb ("mm: page_alloc: fair
zone allocator policy") As explained in comment for patch 3, I don't
think the commit is wrong, but that it makes the effect of compaction
bugs worse. From patch 3 onwards, the results are OK and match the 3.11
results.
- Patch 4 also clearly helps phases 1 and 2, and exceeds any results
I've seen with 3.11 (I didn't measure it that thoroughly then, but it
was never above 40%).
- Compaction cost and number of scanned pages is higher, especially due
to patch 4. However, keep in mind that patches 3 and 4 fix existing
bugs in the current design of compaction overhead mitigation, they do
not change it. If overhead is found unacceptable, then it should be
decreased differently (and consistently, not due to random conditions)
than the current implementation does. In contrast, patches 5 and 6
(which are not strictly bug fixes) do not increase the overhead (but
also not success rates). This might be a limitation of the
stress-highalloc benchmark as it's quite uniform.
Another set of results is when configuring stress-highalloc t allocate
with similar flags as THP uses:
(GFP_HIGHUSER_MOVABLE|__GFP_NOMEMALLOC|__GFP_NORETRY|__GFP_NO_KSWAPD)
stress-highalloc
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-thp 3-thp 4-thp 5-thp 6-thp
Success 1 Min 2.00 ( 0.00%) 7.00 (-250.00%) 18.00 (-800.00%) 19.00 (-850.00%) 26.00 (-1200.00%)
Success 1 Mean 19.20 ( 0.00%) 17.80 ( 7.29%) 29.20 (-52.08%) 29.90 (-55.73%) 32.80 (-70.83%)
Success 1 Max 27.00 ( 0.00%) 29.00 ( -7.41%) 35.00 (-29.63%) 36.00 (-33.33%) 37.00 (-37.04%)
Success 2 Min 3.00 ( 0.00%) 8.00 (-166.67%) 21.00 (-600.00%) 21.00 (-600.00%) 32.00 (-966.67%)
Success 2 Mean 19.30 ( 0.00%) 17.90 ( 7.25%) 32.20 (-66.84%) 32.60 (-68.91%) 35.70 (-84.97%)
Success 2 Max 27.00 ( 0.00%) 30.00 (-11.11%) 36.00 (-33.33%) 37.00 (-37.04%) 39.00 (-44.44%)
Success 3 Min 62.00 ( 0.00%) 62.00 ( 0.00%) 85.00 (-37.10%) 75.00 (-20.97%) 64.00 ( -3.23%)
Success 3 Mean 66.30 ( 0.00%) 65.50 ( 1.21%) 85.60 (-29.11%) 83.40 (-25.79%) 83.50 (-25.94%)
Success 3 Max 70.00 ( 0.00%) 69.00 ( 1.43%) 87.00 (-24.29%) 86.00 (-22.86%) 87.00 (-24.29%)
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-thp 3-thp 4-thp 5-thp 6-thp
User 6547.93 6475.85 6265.54 6289.46 6189.96
System 1053.42 1047.28 1043.23 1042.73 1038.73
Elapsed 1835.43 1821.96 1908.67 1912.74 1956.38
3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2 3.13-rc2
2-thp 3-thp 4-thp 5-thp 6-thp
Minor Faults 256805673 253106328 253222299 249830289 251184418
Major Faults 395 375 423 434 448
Swap Ins 12 10 10 12 9
Swap Outs 530 537 487 455 415
Direct pages scanned 71859 86046 153244 152764 190713
Kswapd pages scanned 1900994 1870240 1898012 1892864 1880520
Kswapd pages reclaimed 1897814 1867428 1894939 1890125 1877924
Direct pages reclaimed 71766 85908 153167 152643 190600
Kswapd efficiency 99% 99% 99% 99% 99%
Kswapd velocity 1029.000 1067.782 1000.091 991.049 951.218
Direct efficiency 99% 99% 99% 99% 99%
Direct velocity 38.897 49.127 80.747 79.983 96.468
Percentage direct scans 3% 4% 7% 7% 9%
Zone normal velocity 351.377 372.494 348.910 341.689 335.310
Zone dma32 velocity 716.520 744.414 731.928 729.343 712.377
Zone dma velocity 0.000 0.000 0.000 0.000 0.000
Page writes by reclaim 669.300 604.000 545.700 538.900 429.900
Page writes file 138 66 58 83 14
Page writes anon 530 537 487 455 415
Page reclaim immediate 806 655 772 548 517
Sector Reads 2711956 2703239 2811602 2818248 2839459
Sector Writes 12163238 12018662 12038248 11954736 11994892
Page rescued immediate 0 0 0 0 0
Slabs scanned 1385088 1388364 1507968 1513292 1558656
Direct inode steals 1739 2564 4622 5496 6007
Kswapd inode steals 47461 46406 47804 48013 48466
Kswapd skipped wait 0 0 0 0 0
THP fault alloc 110 82 84 69 70
THP collapse alloc 445 482 467 462 539
THP splits 6 5 4 5 3
THP fault fallback 3 0 0 0 0
THP collapse fail 15 14 14 14 13
Compaction stalls 659 685 1033 1073 1111
Compaction success 222 225 410 427 456
Compaction failures 436 460 622 646 655
Page migrate success 446594 439978 1085640 1095062 1131716
Page migrate failure 0 0 0 0 0
Compaction pages isolated 1029475 1013490 2453074 2482698 2565400
Compaction migrate scanned 9955461 11344259 24375202 27978356 30494204
Compaction free scanned 27715272 28544654 80150615 82898631 85756132
Compaction cost 552 555 1344 1379 1436
NUMA PTE updates 0 0 0 0 0
NUMA hint faults 0 0 0 0 0
NUMA hint local faults 0 0 0 0 0
NUMA hint local percent 100 100 100 100 100
NUMA pages migrated 0 0 0 0 0
AutoNUMA cost 0 0 0 0 0
There are some differences from the previous results for THP-like allocations:
- Here, the bad result for unpatched kernel in phase 3 is much more
consistent to be between 65-70% and not related to the "regression" in
3.12. Still there is the improvement from patch 4 onwards, which brings
it on par with simple GFP_HIGHUSER_MOVABLE allocations.
- Compaction costs have increased, but nowhere near as much as the
non-THP case. Again, the patches should be worth the gained
determininsm.
- Patches 5 and 6 somewhat increase the number of migrate-scanned pages.
This is most likely due to __GFP_NO_KSWAPD flag, which means the cached
pfn's and pageblock skip bits are not reset by kswapd that often (at
least in phase 3 where no concurrent activity would wake up kswapd) and
the patches thus help the sync-after-async compaction. It doesn't
however show that the sync compaction would help so much with success
rates, which can be again seen as a limitation of the benchmark
scenario.
This patch (of 6):
Add two tracepoints for compaction begin and end of a zone. Using this it
is possible to calculate how much time a workload is spending within
compaction and potentially debug problems related to cached pfns for
scanning. In combination with the direct reclaim and slab trace points it
should be possible to estimate most allocation-related overhead for a
workload.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_print_oom_info uses a static buffer (memcg_name) to store the
name of the cgroup. This is not safe as pointed out by David Rientjes
because memcg oom is locked only for its hierarchy and nothing prevents
another parallel hierarchy to trigger oom as well and overwrite the
already in-use buffer.
This patch introduces oom_info_lock hidden inside
mem_cgroup_print_oom_info which is held throughout the function. It
makes access to memcg_name safe and as a bonus it also prevents parallel
memcg ooms to interleave their statistics which would make the printed
data hard to analyze otherwise.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM pages can be shared between tasks that are not necessarily related
to each other from a NUMA perspective. This patch causes those pages to
be ignored by automatic NUMA balancing so they do not migrate and do not
cause unrelated tasks to be grouped together.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A low local/remote numa hinting fault ratio is potentially explained by
failed migrations. This patch adds a tracepoint that fires when
migration fails due to migration rate limitation.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA migrate rate limiting protects a migration counter and window using
a lock but in some cases this can be a contended lock. It is not
critical that the number of pages be perfect, lost updates are
acceptable. Reduce the importance of this lock.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
numamigrate_update_ratelimit and numamigrate_isolate_page only have
callers in mm/migrate.c. This patch makes them static.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add '#' to hwpoison_inject just as done in madvise_hwpoison.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check nid parameter and produce warning if it has deprecated
MAX_NUMNODES value. Also re-assign NUMA_NO_NODE value to the nid
parameter in this case.
These will help to identify the wrong API usage (the caller) and make
code simpler.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Correct ensure_zone_is_initialized() function description according to
the introduced memblock APIs for early memory allocations.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce memblock memory allocation APIs which allow to support PAE or
LPAE extension on 32 bits archs where the physical memory start address
can be beyond 4GB. In such cases, existing bootmem APIs which operate
on 32 bit addresses won't work and needs memblock layer which operates
on 64 bit addresses.
So we add equivalent APIs so that we can replace usage of bootmem with
memblock interfaces. Architectures already converted to NO_BOOTMEM use
these new memblock interfaces. The architectures which are still not
converted to NO_BOOTMEM continue to function as is because we still
maintain the fal lback option of bootmem back-end supporting these new
interfaces. So no functional change as such.
In long run, once all the architectures moves to NO_BOOTMEM, we can get
rid of bootmem layer completely. This is one step to remove the core
code dependency with bootmem and also gives path for architectures to
move away from bootmem.
The proposed interface will became active if both CONFIG_HAVE_MEMBLOCK
and CONFIG_NO_BOOTMEM are specified by arch. In case
!CONFIG_NO_BOOTMEM, the memblock() wrappers will fallback to the
existing bootmem apis so that arch's not converted to NO_BOOTMEM
continue to work as is.
The meaning of MEMBLOCK_ALLOC_ACCESSIBLE and MEMBLOCK_ALLOC_ANYWHERE
is kept same.
[akpm@linux-foundation.org: s/depricated/deprecated/]
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's recommended to use NUMA_NO_NODE everywhere to select "process any
node" behavior or to indicate that "no node id specified".
Hence, update __next_free_mem_range*() API's to accept both NUMA_NO_NODE
and MAX_NUMNODES, but emit warning once on MAX_NUMNODES, and correct
corresponding API's documentation to describe new behavior. Also,
update other memblock/nobootmem APIs where MAX_NUMNODES is used
dirrectly.
The change was suggested by Tejun Heo.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reorder parameters of memblock_find_in_range_node to be consistent with
other memblock APIs.
The change was suggested by Tejun Heo <tj@kernel.org>.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't produce warning and interpret 0 as "default align" equal to
SMP_CACHE_BYTES in case if caller of memblock_alloc_base_nid() doesn't
specify alignment for the block (align == 0).
This is done in preparation of introducing common memblock alloc interface
to make code behavior consistent. More details are in below thread :
https://lkml.org/lkml/2013/10/13/117.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now the Nobootmem allocator will always try to free memory allocated for
reserved memory regions (free_low_memory_core_early()) without taking
into to account current memblock debugging configuration
(CONFIG_ARCH_DISCARD_MEMBLOCK and CONFIG_DEBUG_FS state).
As result if:
- CONFIG_DEBUG_FS defined
- CONFIG_ARCH_DISCARD_MEMBLOCK not defined;
- reserved memory regions array have been resized during boot
then:
- memory allocated for reserved memory regions array will be freed to
buddy allocator;
- debug_fs entry "sys/kernel/debug/memblock/reserved" will show garbage
instead of state of memory reservations. like:
0: 0x98393bc0..0x9a393bbf
1: 0xff120000..0xff11ffff
2: 0x00000000..0xffffffff
Hence, do not free memory allocated for reserved memory regions if
defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK).
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_lock_task_mm() expects it is called under rcu or tasklist lock, but
it seems that at least oom_unkillable_task()->task_in_mem_cgroup() and
mem_cgroup_out_of_memory()->oom_badness() can call it lockless.
Perhaps we could fix the callers, but this patch simply adds rcu lock
into find_lock_task_mm(). This also allows to simplify a bit one of its
callers, oom_kill_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Cc: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At least out_of_memory() calls has_intersects_mems_allowed() without
even rcu_read_lock(), this is obviously buggy.
Add the necessary rcu_read_lock(). This means that we can not simply
return from the loop, we need "bool ret" and "break".
While at it, swap the names of task_struct's (the argument and the
local). This cleans up the code a little bit and avoids the unnecessary
initialization.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change oom_kill.c to use for_each_thread() rather than the racy
while_each_thread() which can loop forever if we race with exit.
Note also that most users were buggy even if while_each_thread() was
fine, the task can exit even _before_ rcu_read_lock().
Fortunately the new for_each_thread() only requires the stable
task_struct, so this change fixes both problems.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.
So, just use it in page_mkclean().
In this patch, I change following things.
1. remove some variants of rmap traversing functions.
cf> page_mkclean_file
2. mechanical change to use rmap_walk() in page_mkclean().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.
So, just use it in page_referenced().
In this patch, I change following things.
1. remove some variants of rmap traversing functions.
cf> page_referenced_ksm, page_referenced_anon,
page_referenced_file
2. introduce new struct page_referenced_arg and pass it to
page_referenced_one(), main function of rmap_walk, in order to count
reference, to store vm_flags and to check finish condition.
3. mechanical change to use rmap_walk() in page_referenced().
[liwanp@linux.vnet.ibm.com: fix BUG at rmap_walk]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.
So, just use it in try_to_munlock().
In this patch, I change following things.
1. remove some variants of rmap traversing functions.
cf> try_to_unmap_ksm, try_to_unmap_anon, try_to_unmap_file
2. mechanical change to use rmap_walk() in try_to_munlock().
3. copy and paste comments.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.
So, just use it in try_to_unmap().
In this patch, I change following things.
1. enable rmap_walk() if !CONFIG_MIGRATION.
2. mechanical change to use rmap_walk() in try_to_unmap().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a lot of common parts in traversing functions, but there are
also a little of uncommon parts in it. By assigning proper function
pointer on each rmap_walker_control, we can handle these difference
correctly.
Following are differences we should handle.
1. difference of lock function in anon mapping case
2. nonlinear handling in file mapping case
3. prechecked condition:
checking memcg in page_referenced(),
checking VM_SHARE in page_mkclean()
checking temporary vma in try_to_unmap()
4. exit condition:
checking page_mapped() in try_to_unmap()
So, in this patch, I introduce 4 function pointers to handle above
differences.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In each rmap traverse case, there is some difference so that we need
function pointers and arguments to them in order to handle these
For this purpose, struct rmap_walk_control is introduced in this patch,
and will be extended in following patch. Introducing and extending are
separate, because it clarify changes.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we traverse anon_vma, we need to take a read-side anon_lock. But
there is subtle difference in the situation so that we can't use same
method to take a lock in each cases. Therefore, we need to make
rmap_walk_anon() taking difference lock function.
This patch is the first step, factoring lock function for anon_lock out
of rmap_walk_anon(). It will be used in case of removing migration
entry and in default of rmap_walk_anon().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To merge all kinds of rmap traverse functions, try_to_unmap(),
try_to_munlock(), page_referenced() and page_mkclean(), we need to
extract common parts and separate out non-common parts.
Nonlinear handling is handled just in try_to_unmap_file() and other rmap
traverse functions doesn't care of it. Therfore it is better to factor
nonlinear handling out of try_to_unmap_file() in order to merge all
kinds of rmap traverse functions easily.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rmap traversing is used in five different cases, try_to_unmap(),
try_to_munlock(), page_referenced(), page_mkclean() and
remove_migration_ptes(). Each one implements its own traversing
functions for the cases, anon, file, ksm, respectively. These cause
lots of duplications and cause maintenance overhead. They also make
codes being hard to understand and error-prone. One example is hugepage
handling. There is a code to compute hugepage offset correctly in
try_to_unmap_file(), but, there isn't a code to compute hugepage offset
in rmap_walk_file(). These are used pairwise in migration context, but
we missed to modify pairwise.
To overcome these drawbacks, we should unify these through one unified
function. I decide rmap_walk() as main function since it has no
unnecessity. And to control behavior of rmap_walk(), I introduce struct
rmap_walk_control having some function pointers. These makes
rmap_walk() working for their specific needs.
This patchset remove a lot of duplicated code as you can see in below
short-stat and kernel text size also decrease slightly.
text data bss dec hex filename
10640 1 16 10657 29a1 mm/rmap.o
10047 1 16 10064 2750 mm/rmap.o
13823 705 8288 22816 5920 mm/ksm.o
13199 705 8288 22192 56b0 mm/ksm.o
This patch (of 9):
We have to recompute pgoff if the given page is huge, since result based
on HPAGE_SIZE is not approapriate for scanning the vma interval tree, as
shown by commit 36e4f20af833 ("hugetlb: do not use
vma_hugecache_offset() for vma_prio_tree_foreach") and commit 369a713e
("rmap: recompute pgoff for unmapping huge page").
To handle both the cases, normal page for page cache and hugetlb page,
by same way, we can use compound_page(). It returns 0 on non-compound
page and it also returns proper value on compound page.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is not used outside of memcontrol.c so make it static.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should start kmem accounting for a memory cgroup only after both its
kmem limit is set (KMEM_ACCOUNTED_ACTIVE) and related call sites are
patched (KMEM_ACCOUNTED_ACTIVATED). Currently memcg_can_account_kmem()
allows kmem accounting even if only one of the conditions is true. Fix
it.
This means that a page might get charged by memcg_kmem_newpage_charge
which would see its static key patched already but
memcg_kmem_commit_charge would still see it unpatched and so the charge
won't be committed. The result would be charge inconsistency
(page_cgroup not marked as PageCgroupUsed) and the charge would leak
because __memcg_kmem_uncharge_pages would ignore it.
[mhocko@suse.cz: augment changelog]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If users specify the original movablecore=nn@ss boot option, the kernel
will arrange [ss, ss+nn) as ZONE_MOVABLE. The kernelcore=nn@ss boot
option is similar except it specifies ZONE_NORMAL ranges.
Now, if users specify "movable_node" in kernel commandline, the kernel
will arrange hotpluggable memory in SRAT as ZONE_MOVABLE. And if users
do this, all the other movablecore=nn@ss and kernelcore=nn@ss options
should be ignored.
For those who don't want this, just specify nothing. The kernel will
act as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux kernel cannot migrate pages used by the kernel. As a result,
hotpluggable memory used by the kernel won't be able to be hot-removed.
To solve this problem, the basic idea is to prevent memblock from
allocating hotpluggable memory for the kernel at early time, and arrange
all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as
ZONE_MOVABLE when initializing zones.
In the previous patches, we have marked hotpluggable memory regions with
MEMBLOCK_HOTPLUG flag in memblock.memory.
In this patch, we make memblock skip these hotpluggable memory regions
in the default top-down allocation function if movable_node boot option
is specified.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In find_hotpluggable_memory, once we find out a memory region which is
hotpluggable, we want to mark them in memblock.memory. So that we could
control memblock allocator not to allocte hotpluggable memory for the
kernel later.
To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the
hotpluggable memory regions in memblock and a function
memblock_mark_hotplug() to mark hotpluggable memory if we find one.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no flag in memblock to describe what type the memory is.
Sometimes, we may use memblock to reserve some memory for special usage.
And we want to know what kind of memory it is. So we need a way to
In hotplug environment, we want to reserve hotpluggable memory so the
kernel won't be able to use it. And when the system is up, we have to
free these hotpluggable memory to buddy. So we need to mark these
memory first.
In order to do so, we need to mark out these special memory in memblock.
In this patch, we introduce a new "flags" member into memblock_region:
struct memblock_region {
phys_addr_t base;
phys_addr_t size;
unsigned long flags; /* This is new. */
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
};
This patch does the following things:
1) Add "flags" member to memblock_region.
2) Modify the following APIs' prototype:
memblock_add_region()
memblock_insert_region()
3) Add memblock_reserve_region() to support reserve memory with flags, and keep
memblock_reserve()'s prototype unmodified.
4) Modify other APIs to support flags, but keep their prototype unmodified.
The idea is from Wen Congyang <wency@cn.fujitsu.com> and Liu Jiang <jiang.liu@huawei.com>.
Suggested-by: Wen Congyang <wency@cn.fujitsu.com>
Suggested-by: Liu Jiang <jiang.liu@huawei.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current memblock APIs don't work on 32 PAE or LPAE extension arches
where the physical memory start address beyond 4GB. The problem was
discussed here [3] where Tejun, Yinghai(thanks) proposed a way forward
with memblock interfaces. Based on the proposal, this series adds
necessary memblock interfaces and convert the core kernel code to use
them. Architectures already converted to NO_BOOTMEM use these new
interfaces and other which still uses bootmem, these new interfaces just
fallback to exiting bootmem APIs.
So no functional change in behavior. In long run, once all the
architectures moves to NO_BOOTMEM, we can get rid of bootmem layer
completely. This is one step to remove the core code dependency with
bootmem and also gives path for architectures to move away from bootmem.
Testing is done on ARM architecture with 32 bit ARM LAPE machines with
normal as well sparse(faked) memory model.
This patch (of 23):
When debugging is enabled (cmdline has "memblock=debug") the memblock
will display upper memory boundary per each allocated/freed memory range
wrongly. For example:
memblock_reserve: [0x0000009e7e8000-0x0000009e7ed000] _memblock_early_alloc_try_nid_nopanic+0xfc/0x12c
The 0x0000009e7ed000 is displayed instead of 0x0000009e7ecfff
Hence, correct this by changing formula used to calculate upper memory
boundary to (u64)base + size - 1 instead of (u64)base + size everywhere
in the debug messages.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All mlock related syscalls prepare lock limits, lengths and start
parameters with the mmap_sem held. Move this logic outside of the
critical region. For the case of mlock, continue incrementing the
amount already locked by mm->locked_vm with the rwsem taken.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both do_brk and do_mmap_pgoff verify that we are actually capable of
locking future pages if the corresponding VM_LOCKED flags are used.
Encapsulate this logic into a single mlock_future_check() helper
function.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some applications that run on HPC clusters are designed around the
availability of RAM and the overcommit ratio is fine tuned to get the
maximum usage of memory without swapping. With growing memory, the
1%-of-all-RAM grain provided by overcommit_ratio has become too coarse
for these workload (on a 2TB machine it represents no less than 20GB).
This patch adds the new overcommit_kbytes sysctl variable that allow a
much finer grain.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4b59e6c47309 ("mm, show_mem: suppress page counts in
non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to
suppress PFN walks on large memory machines. Commit c78e93630d15 ("mm:
do not walk all of system memory during show_mem") avoided a PFN walk in
the generic show_mem helper which removes the requirement for
SHOW_MEM_FILTER_PAGE_COUNT in that case.
This patch removes PFN walkers from the arch-specific implementations
that report on a per-node or per-zone granularity. ARM and unicore32
still do a PFN walk as they report memory usage on each bank which is a
much finer granularity where the debugging information may still be of
use. As the remaining arches doing PFN walks have relatively small
amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT.
[akpm@linux-foundation.org: fix parisc]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Bottomley <jejb@parisc-linux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are implementing vmalloc_to_pfn() as a wrapper around
vmalloc_to_page(), which is implemented as follow:
1. walks the page talbes to generates the corresponding pfn,
2. then converts the pfn to struct page,
3. returns it.
And vmalloc_to_pfn() re-wraps vmalloc_to_page() to get the pfn.
This seems too circuitous, so this patch reverses the way: implement
vmalloc_to_page() as a wrapper around vmalloc_to_pfn(). This makes
vmalloc_to_pfn() and vmalloc_to_page() slightly more efficient.
No functional change.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When copy_hugetlb_page_range() is called to copy a range of hugetlb
mappings, the secondary MMUs are not notified if there is a protection
downgrade, which breaks COW semantics in KVM.
This patch adds the necessary MMU notifier calls.
Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
Acked-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
To make sure that it really works this time, some numbers from my test
machine (just booted, no load):
Before:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
kmalloc-96 31987 32190 128 30 1 : tunables 120 60 8 : slabdata 1073 1073 92
After:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
page->ptl 27516 28143 72 53 1 : tunables 120 60 8 : slabdata 531 531 9
kmalloc-96 3853 5280 128 30 1 : tunables 120 60 8 : slabdata 176 176 0
Note that the patch is useful not only for debug case, but also for
PREEMPT_RT, where spinlock_t is always bloated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>