X86 CPUs need to have some magic happening to enable the virtualization
extensions on them. This magic can result in unpleasant results for
users, like blocking other VMMs from working (vmx) or using invalid TLB
entries (svm).
Currently KVM activates virtualization when the respective kernel module
is loaded. This blocks us from autoloading KVM modules without breaking
other VMMs.
To circumvent this problem at least a bit, this patch introduces on
demand activation of virtualization. This means, that instead
virtualization is enabled on creation of the first virtual machine
and disabled on destruction of the last one.
So using this, KVM can be easily autoloaded, while keeping other
hypervisors usable.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The only thing it protects now is interrupt injection into lapic and
this can work lockless. Even now with kvm->irq_lock in place access
to lapic is not entirely serialized since vcpu access doesn't take
kvm->irq_lock.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Conflicts:
arch/x86/kernel/kprobes.c
kernel/trace/Makefile
Merge reason: hw-breakpoints perf integration is looking
good in testing and in reviews, plus conflicts
are mounting up - so merge & resolve.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Wrap in the cpu dr7 check that tells if we have active
breakpoints that need to be restored in the cpu.
This wrapper makes the check more self-explainable and also
reusable for any further other uses.
Reported-by: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: "K. Prasad" <prasad@linux.vnet.ibm.com>
This patch rebase the implementation of the breakpoints API on top of
perf events instances.
Each breakpoints are now perf events that handle the
register scheduling, thread/cpu attachment, etc..
The new layering is now made as follows:
ptrace kgdb ftrace perf syscall
\ | / /
\ | / /
/
Core breakpoint API /
/
| /
| /
Breakpoints perf events
|
|
Breakpoints PMU ---- Debug Register constraints handling
(Part of core breakpoint API)
|
|
Hardware debug registers
Reasons of this rewrite:
- Use the centralized/optimized pmu registers scheduling,
implying an easier arch integration
- More powerful register handling: perf attributes (pinned/flexible
events, exclusive/non-exclusive, tunable period, etc...)
Impact:
- New perf ABI: the hardware breakpoints counters
- Ptrace breakpoints setting remains tricky and still needs some per
thread breakpoints references.
Todo (in the order):
- Support breakpoints perf counter events for perf tools (ie: implement
perf_bpcounter_event())
- Support from perf tools
Changes in v2:
- Follow the perf "event " rename
- The ptrace regression have been fixed (ptrace breakpoint perf events
weren't released when a task ended)
- Drop the struct hw_breakpoint and store generic fields in
perf_event_attr.
- Separate core and arch specific headers, drop
asm-generic/hw_breakpoint.h and create linux/hw_breakpoint.h
- Use new generic len/type for breakpoint
- Handle off case: when breakpoints api is not supported by an arch
Changes in v3:
- Fix broken CONFIG_KVM, we need to propagate the breakpoint api
changes to kvm when we exit the guest and restore the bp registers
to the host.
Changes in v4:
- Drop the hw_breakpoint_restore() stub as it is only used by KVM
- EXPORT_SYMBOL_GPL hw_breakpoint_restore() as KVM can be built as a
module
- Restore the breakpoints unconditionally on kvm guest exit:
TIF_DEBUG_THREAD doesn't anymore cover every cases of running
breakpoints and vcpu->arch.switch_db_regs might not always be
set when the guest used debug registers.
(Waiting for a reliable optimization)
Changes in v5:
- Split-up the asm-generic/hw-breakpoint.h moving to
linux/hw_breakpoint.h into a separate patch
- Optimize the breakpoints restoring while switching from kvm guest
to host. We only want to restore the state if we have active
breakpoints to the host, otherwise we don't care about messed-up
address registers.
- Add asm/hw_breakpoint.h to Kbuild
- Fix bad breakpoint type in trace_selftest.c
Changes in v6:
- Fix wrong header inclusion in trace.h (triggered a build
error with CONFIG_FTRACE_SELFTEST
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
If TSS we are switching to resides in high memory task switch will fail
since address will be truncated. Windows2k3 does this sometimes when
running with more then 4G
Cc: stable@kernel.org
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We only allocate memory for 32 MCE banks (KVM_MAX_MCE_BANKS) but we
allow user space to fill up to 255 on setup (mcg_cap & 0xff), corrupting
kernel memory. Catch these overflows.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Conflicts:
kernel/Makefile
kernel/trace/Makefile
kernel/trace/trace.h
samples/Makefile
Merge reason: We need to be uptodate with the perf events development
branch because we plan to rewrite the breakpoints API on top of
perf events.
The number of entries is multiplied by the entry size, which can
overflow on 32-bit hosts. Bound the entry count instead.
Reported-by: David Wagner <daw@cs.berkeley.edu>
Cc: stable@kernel.org
Signed-off-by: Avi Kivity <avi@redhat.com>
* 'kvm-updates/2.6.32' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (202 commits)
MAINTAINERS: update KVM entry
KVM: correct error-handling code
KVM: fix compile warnings on s390
KVM: VMX: Check cpl before emulating debug register access
KVM: fix misreporting of coalesced interrupts by kvm tracer
KVM: x86: drop duplicate kvm_flush_remote_tlb calls
KVM: VMX: call vmx_load_host_state() only if msr is cached
KVM: VMX: Conditionally reload debug register 6
KVM: Use thread debug register storage instead of kvm specific data
KVM guest: do not batch pte updates from interrupt context
KVM: Fix coalesced interrupt reporting in IOAPIC
KVM guest: fix bogus wallclock physical address calculation
KVM: VMX: Fix cr8 exiting control clobbering by EPT
KVM: Optimize kvm_mmu_unprotect_page_virt() for tdp
KVM: Document KVM_CAP_IRQCHIP
KVM: Protect update_cr8_intercept() when running without an apic
KVM: VMX: Fix EPT with WP bit change during paging
KVM: Use kvm_{read,write}_guest_virt() to read and write segment descriptors
KVM: x86 emulator: Add adc and sbb missing decoder flags
KVM: Add missing #include
...
Debug registers may only be accessed from cpl 0. Unfortunately, vmx will
code to emulate the instruction even though it was issued from guest
userspace, possibly leading to an unexpected trap later.
Cc: stable@kernel.org
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Instead of saving the debug registers from the processor to a kvm data
structure, rely in the debug registers stored in the thread structure.
This allows us not to save dr6 and dr7.
Reduces lightweight vmexit cost by 350 cycles, or 11 percent.
Signed-off-by: Avi Kivity <avi@redhat.com>
Segment descriptors tables can be placed on two non-contiguous pages.
This patch makes reading segment descriptors by linear address.
Signed-off-by: Mikhail Ershov <Mike.Ershov@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
According to 16.2.5 in the SDM, eflags.vm in the tss is consulted before loading
and new segments. If eflags.vm == 1, then the segments are treated as 16-bit
segments. The LDTR and TR are not normally available in vm86 mode so if they
happen to somehow get loaded, they need to be treated as 32-bit segments.
This fixes an invalid vmentry failure in a custom OS that was happening after
a task switch into vm8086 mode. Since the segments were being mistakenly
treated as 32-bit, we loaded garbage state.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Since on vcpu entry we do it only if apic is enabled we should do
it when TPR is changed while apic is disabled. This happens when windows
resets HW without setting TPR to zero.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We ignore writes to the perfctr msrs. Ignore reads as well.
Kaspersky antivirus crashes Windows guests if it can't read
these MSRs.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
So far unprivileged guest callers running in ring 3 can issue, e.g., MMU
hypercalls. Normally, such callers cannot provide any hand-crafted MMU
command structure as it has to be passed by its physical address, but
they can still crash the guest kernel by passing random addresses.
To close the hole, this patch considers hypercalls valid only if issued
from guest ring 0. This may still be relaxed on a per-hypercall base in
the future once required.
Cc: stable@kernel.org
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If userspace knows that the kernel part supports 1GB pages it can enable
the corresponding cpuid bit so that guests actually use GB pages.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Commit f0a3602c20 ("KVM: Move interrupt injection logic to x86.c") does not
update the cr8 intercept if the lapic is disabled, so when userspace updates
cr8, the cr8 threshold control is not updated and we are left with illegal
control fields.
Fix by explicitly resetting the cr8 threshold.
Signed-off-by: Avi Kivity <avi@redhat.com>
Now KVM allow guest to modify guest's physical address of EPT's identity mapping page.
(change from v1, discard unnecessary check, change ioctl to accept parameter
address rather than value)
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Use kvm_get_gdt() and kvm_read_ldt() to reduce inline assembly code.
Cc: Avi Kivity <avi@redhat.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Use get_desc_base() and get_desc_limit() to get the base address and
limit in desc_struct.
Cc: Avi Kivity <avi@redhat.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Remove kvm_cpu_has_interrupt() and kvm_arch_interrupt_allowed() from
interface between general code and arch code. kvm_arch_vcpu_runnable()
checks for interrupts instead.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
ioeventfd is a mechanism to register PIO/MMIO regions to trigger an eventfd
signal when written to by a guest. Host userspace can register any
arbitrary IO address with a corresponding eventfd and then pass the eventfd
to a specific end-point of interest for handling.
Normal IO requires a blocking round-trip since the operation may cause
side-effects in the emulated model or may return data to the caller.
Therefore, an IO in KVM traps from the guest to the host, causes a VMX/SVM
"heavy-weight" exit back to userspace, and is ultimately serviced by qemu's
device model synchronously before returning control back to the vcpu.
However, there is a subclass of IO which acts purely as a trigger for
other IO (such as to kick off an out-of-band DMA request, etc). For these
patterns, the synchronous call is particularly expensive since we really
only want to simply get our notification transmitted asychronously and
return as quickly as possible. All the sychronous infrastructure to ensure
proper data-dependencies are met in the normal IO case are just unecessary
overhead for signalling. This adds additional computational load on the
system, as well as latency to the signalling path.
Therefore, we provide a mechanism for registration of an in-kernel trigger
point that allows the VCPU to only require a very brief, lightweight
exit just long enough to signal an eventfd. This also means that any
clients compatible with the eventfd interface (which includes userspace
and kernelspace equally well) can now register to be notified. The end
result should be a more flexible and higher performance notification API
for the backend KVM hypervisor and perhipheral components.
To test this theory, we built a test-harness called "doorbell". This
module has a function called "doorbell_ring()" which simply increments a
counter for each time the doorbell is signaled. It supports signalling
from either an eventfd, or an ioctl().
We then wired up two paths to the doorbell: One via QEMU via a registered
io region and through the doorbell ioctl(). The other is direct via
ioeventfd.
You can download this test harness here:
ftp://ftp.novell.com/dev/ghaskins/doorbell.tar.bz2
The measured results are as follows:
qemu-mmio: 110000 iops, 9.09us rtt
ioeventfd-mmio: 200100 iops, 5.00us rtt
ioeventfd-pio: 367300 iops, 2.72us rtt
I didn't measure qemu-pio, because I have to figure out how to register a
PIO region with qemu's device model, and I got lazy. However, for now we
can extrapolate based on the data from the NULLIO runs of +2.56us for MMIO,
and -350ns for HC, we get:
qemu-pio: 153139 iops, 6.53us rtt
ioeventfd-hc: 412585 iops, 2.37us rtt
these are just for fun, for now, until I can gather more data.
Here is a graph for your convenience:
http://developer.novell.com/wiki/images/7/76/Iofd-chart.png
The conclusion to draw is that we save about 4us by skipping the userspace
hop.
--------------------
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When kvm is in hpet_legacy_mode, the hpet is providing the timer
interrupt and the pit should not be. So in legacy mode, the pit timer
is destroyed, but the *state* of the pit is maintained. So if kvm or
the guest tries to modify the state of the pit, this modification is
accepted, *except* that the timer isn't actually started. When we exit
hpet_legacy_mode, the current state of the pit (which is up to date
since we've been accepting modifications) is used to restart the pit
timer.
The saved_mode code in kvm_pit_load_count temporarily changes mode to
0xff in order to destroy the timer, but then restores the actual
value, again maintaining "current" state of the pit for possible later
reenablement.
[avi: add some reserved storage in the ioctl; make SET_PIT2 IOW]
[marcelo: fix memory corruption due to reserved storage]
Signed-off-by: Beth Kon <eak@us.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
We emulate x2apic in software, so host support is not required.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This will save a couple of IPIs.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Some Windows versions check whether the BIOS has setup MMI/O for
config space accesses on AMD Fam10h CPUs, we say "no" by returning 0 on
reads and only allow disabling of MMI/O CfgSpace setup by igoring "0" writes.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This reverts commit 6c20e1442bb1c62914bb85b7f4a38973d2a423ba.
To my understanding, it became obsolete with the advent of the more
robust check in mmu_alloc_roots (89da4ff17f). Moreover, it prevents
the conceptually safe pattern
1. set sregs
2. register mem-slots
3. run vcpu
by setting a sticky triple fault during step 1.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Windows 7 tries to update the CPU's microcode on some processors,
so we ignore the MSR write here. The patchlevel register is already handled
(returning 0), because the MSR number is the same as Intel's.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements MSR interface to local apic as defines by x2apic
Intel specification.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Directed EOI is specified by x2APIC, but is available even when lapic is
in xAPIC mode.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Linux guests will try to enable access to the extended PCI config space
via the I/O ports 0xCF8/0xCFC on AMD Fam10h CPU. Since we (currently?)
don't use ECS, simply ignore write and read attempts.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This changes bus accesses to use high-level kvm_io_bus_read/kvm_io_bus_write
functions. in_range now becomes unused so it is removed from device ops in
favor of read/write callbacks performing range checks internally.
This allows aliasing (mostly for in-kernel virtio), as well as better error
handling by making it possible to pass errors up to userspace.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
switch pit creation to slots_lock. slots_lock is already taken for read
everywhere, so we only need to take it for write when creating pit.
This is in preparation to removing in_range and kvm->lock around it.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
KVM will inject a #GP into the guest if that tries to access unhandled
MSRs. This will crash many guests. Although it would be the correct
way to actually handle these MSRs, we introduce a runtime switchable
module param called "ignore_msrs" (defaults to 0). If this is Y, unknown
MSR reads will return 0, while MSR writes are simply dropped. In both cases
we print a message to dmesg to inform the user about that.
You can change the behaviour at any time by saying:
# echo 1 > /sys/modules/kvm/parameters/ignore_msrs
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the Linux kernel detects an C1E capable AMD processor (K8 RevF and
higher), it will access a certain MSR on every attempt to go to halt.
Explicitly handle this read and return 0 to let KVM run a Linux guest
with the native AMD host CPU propagated to the guest.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Linux tries to disable the flush filter on all AMD K8 CPUs. Since KVM
does not handle the needed MSR, the injected #GP will panic the Linux
kernel. Ignore setting of the HWCR.FFDIS bit in this MSR to let Linux
boot with an AMD K8 family guest CPU.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Correct missing locking in a few places in x86's vm_ioctl handling path.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Add the opcodes for syscall, sysenter and sysexit to the list of instructions
handled by the undefined opcode handler.
Signed-off-by: Christoph Egger <christoph.egger@amd.com>
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This allows use of the powerful ftrace infrastructure.
See Documentation/trace/ for usage information.
[avi, stephen: various build fixes]
[sheng: fix control register breakage]
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>