On some platforms DPI requires a regulator to be enabled to power up the
output pins. This regulator is, for some reason, currently attached to
the virtual omapdss device, instead of the DPI device. This does not
work for DT, as the regulator mappings need to be described in the DT
data, and the virtual omapdss device is not present there.
Fix the issue by acquiring the regulator in the DPI device. To retain
compatibility with the current board files, the old method of getting
the regulator is kept. The old method can be removed when the board
files have been changed to pass the regulator to DPI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have two steps in panel initialization and startup: probing
and enabling. After the panel has been probed, it's ready and can be
configured and later enabled.
This model is not enough with more complex display pipelines, where we
may have, for example, two panels, of which only one can be used at a
time, connected to the same video output.
To support that kind of scenarios, we need to add new step to the
initialization: connect.
This patch adds support for connecting and disconnecting panels. After
probe, but before connect, no panel ops should be called. When the
connect is called, a proper video pipeline is established, and the panel
is ready for use. If some part in the video pipeline is already
connected (by some other panel), the connect call fails.
One key difference with the old style setup is that connect() handles
also connecting to the overlay manager. This means that the omapfb (or
omapdrm) no longer needs to figure out which overlay manager to use, but
it can just call connect() on the panel, and the proper overlay manager
is connected by omapdss.
This also allows us to add back the support for dynamic switching
between two exclusive panels. However, the current panel device model is
not changed to support this, as the new device model is implemented in
the following patches and the old model will be removed. The new device
model supports dynamic switching.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently omapdrm creates crtcs, which map directly to DSS overlay
managers, only on demand at init time. This would make it difficult to
manage connecting the display entities in the future, as the code cannot
just search for a suitable overlay manager.
We cannot fix this the sane way, which would be to create crtcs for each
overlay manager, because we need an overlay for each crtc. With limited
number of overlays, that's not possible.
So the solution for now is to detach the overlay manager from the crtc.
crtcs are still created on demand at init time, but all overlay managers
are always initialized by the omapdss.
This way we can create and connect whole display pipelines from the
overlay manager to the display, regardless of which crtcs omapdrm would
create.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split the function that creates overlay manager structs into two: one
that creates just the structs, and one that creates the sysfs files for
the manager.
This will help us use the overlay manager structs with omapdrm in the
following patches, while still leaving the sysfs files out.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add two helper functions that can be used to find either the DSS output
or the overlay manager that is connected to the given display.
This hides how the output and the manager are actually connected, making
it easier to change the connections in the future.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using DT, dss device does not have platform data. However,
dss_get_ctx_loss_count() uses dss device's platform data to find the
get_ctx_loss_count function pointer.
To fix this, dss_get_ctx_loss_count() needs to be changed to get the
platform data from the omapdss device, which is a "virtual" device and
always has platform data.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add a support function to find a DSS output by given DT node. This is
used in later patches to link the panels to DSS outputs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add a support function to find a DSS output by given name. This is used
in later patches to link the panels to DSS outputs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss output drivers always read the platform data. This crashes when
there's no platform data when using DT.
Add a check to read the platform data only if it exists.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We can currently set the default display (i.e. the initial display) in
the omapdss platform data by using a pointer to the default
omap_dss_device. Internally omapdss uses the device's name to resolve
the default display.
As it's difficult to get the omap_dss_device pointer in the future,
after we've changed the omapdss device model, this patch adds a new way
to define the default display, by using the name of the display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
When booting with DT, there's a crash when omapfb is probed. This is
caused by the fact that omapdss+DT is not yet supported, and thus
omapdss is not probed at all. On the other hand, omapfb is always
probed. When omapfb tries to use omapdss, there's a NULL pointer
dereference crash. The same error should most likely happen with omapdrm
and omap_vout also.
To fix this, add an "initialized" state to omapdss. When omapdss has
been probed, it's marked as initialized. omapfb, omapdrm and omap_vout
check this state when they are probed to see that omapdss is actually
there.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
devm_ioremap_resource does sanity checks on the given resource. No need to
duplicate this in the driver.
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
devm_ioremap_resource does sanity checks on the given resource. No need to
duplicate this in the driver.
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Pull drm updates from Dave Airlie:
"This is the main drm pull request for 3.10.
Wierd bits:
- OMAP drm changes required OMAP dss changes, in drivers/video, so I
took them in here.
- one more fbcon fix for font handover
- VT switch avoidance in pm code
- scatterlist helpers for gpu drivers - have acks from akpm
Highlights:
- qxl kms driver - driver for the spice qxl virtual GPU
Nouveau:
- fermi/kepler VRAM compression
- GK110/nvf0 modesetting support.
Tegra:
- host1x core merged with 2D engine support
i915:
- vt switchless resume
- more valleyview support
- vblank fixes
- modesetting pipe config rework
radeon:
- UVD engine support
- SI chip tiling support
- GPU registers initialisation from golden values.
exynos:
- device tree changes
- fimc block support
Otherwise:
- bunches of fixes all over the place."
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (513 commits)
qxl: update to new idr interfaces.
drm/nouveau: fix build with nv50->nvc0
drm/radeon: fix handling of v6 power tables
drm/radeon: clarify family checks in pm table parsing
drm/radeon: consolidate UVD clock programming
drm/radeon: fix UPLL_REF_DIV_MASK definition
radeon: add bo tracking debugfs
drm/radeon: add new richland pci ids
drm/radeon: add some new SI PCI ids
drm/radeon: fix scratch reg handling for UVD fence
drm/radeon: allocate SA bo in the requested domain
drm/radeon: fix possible segfault when parsing pm tables
drm/radeon: fix endian bugs in atom_allocate_fb_scratch()
OMAPDSS: TFP410: return EPROBE_DEFER if the i2c adapter not found
OMAPDSS: VENC: Add error handling for venc_probe_pdata
OMAPDSS: HDMI: Add error handling for hdmi_probe_pdata
OMAPDSS: RFBI: Add error handling for rfbi_probe_pdata
OMAPDSS: DSI: Add error handling for dsi_probe_pdata
OMAPDSS: SDI: Add error handling for sdi_probe_pdata
OMAPDSS: DPI: Add error handling for dpi_probe_pdata
...
If the I2C adapter needed by the TFP410 device is not available yet,
return EPROBE_DEFER so that the device will get probed again.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for venc_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the VENC driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for hdmi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the HDMI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for rfbi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the RFBI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for dsi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the DSI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for sdi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the SDI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add proper error handling for dpi_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the DPI driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapfb requires the panel drivers to have been probed when omapfb is
initialized. omapfb does not support insertion of new panels after its
probe. This causes a problem in case omapdss or the panel probes have
been deferred due to EPROBE_DEFER error, as omapfb won't find any
displays.
As a quick fix, this patch changes the omapfb probe so that if omapfb
does not find any displays, it'll return EPROBE_DEFER. This is not
perfect, as with a board with no displays, omapfb will get deferred
forever. Also, if the board has multiple displays, but only some of them
have been probed, omapfb will start and leave the unprobed displays out.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of using platform_driver_probe(), use module_platform_driver()
so that we can support deferred probing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapfb requires the panels to have been probed before omapfb's probe. We
currently manage that by having omapfb in late initcall level. However,
a much simpler way is to just change the makefile so that omapfb is
after the panel drivers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Commit 100c826235793345efe06b3558cc9d36166b1e26 (OMAPDSS: DPI: use new
clock calculation code) breaks dpi.c compilation if DSI is not enabled
in the kernel configuration.
Fix compilation by adding dummy inline functions for the ones that dpi.c
references. The functions will never be called, as dpi.c knows that
there is no DSI device available.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use vm_iomap_memory() instead of [io_]remap_pfn_range().
vm_iomap_memory() gives us much simpler API to map memory to userspace,
and reduces possibilities for bugs.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When not using DSI PLL to generate the pixel clock, but DSS FCK, the
possible pixel clock rates are rather limited. DSS FCK is currently used
on OMAP2 and OMAP3.
When using Beagleboard with a monitor that supports high resolutions,
the clock rates do not match (at least for me) for the monitor's pixel
clocks within the current threshold in the code, which is +/- 1MHz.
This patch widens the search up to +/- 15MHz. The search is done in
steps, i.e. it first tries to find a rather exact clock, than a bit less
exact, etc. so this should not change the cases where a clock was
already found.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS func clock is calculated with prate / div * m. However, the current
omapdss code calculates it with prate * m / div, which yields a slightly
different result when there's a remainder. For example, 432000000 / 14 *
2 = 61714284, but 432000000 * 2 / 14 = 61714285.
In addition to that, the clock framework wants the clock rate given with
clk_set_rate to be higher than the actual (truncated) end result. So, if
prate is 432000000, and div is 14, the real result is 30857142.8571...
We need to call clk_set_rate with 30857143, which gives us a clock of
30857142. That's why we need to use DIV_ROUND_UP() when calling
clk_set_rate.
This patch fixes the clock calculation.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch converts the drivers to use the
module_platform_driver_probe() macro which makes the code smaller and
a bit simpler.
Signed-off-by: Fabio Porcedda <fabio.porcedda@gmail.com>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Acked-by: Nicolas Ferre <nicolas.ferre@atmel.com> # atmel_lcdfb.c
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> # amifb.c
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use devm_clk_get() instead of clk_get() for dss, and for outputs hdmi
and venc. This reduces code and simplifies error handling.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use dev_pm_ops instead of the deprecated legacy suspend/resume callbacks.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DISPC on OMAP5 has a more optimised mechanism of asserting Mstandby to achieve
more power savings when DISPC is configured in Smart Standby mode. This
mechanism leads to underflows when multiple DISPC pipes are enabled.
There is a register field which can let us revert to the older mechanism of
asserting Mstandby. Configure this field to prevent underflows.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using a DISPC video pipeline to a fetch a NV12 buffer in a 2D container, we
need to set set a doublestride bit in the video pipe's ATTRIBUTES register. This
is needed because the stride for the UV plane(using a 16 bit Tiler container) is
double the stride for the Y plane(using a 8 bit Tiler container) for the 0 or
180 degree views. The ROW_INC register is meant for the Y plane, and the HW will
calculate the row increment needed for the UV plane by using double the stride
value based on whether this bit is set or not.
Set the bit when we are using a 2D Tiler buffer and when rotation is 0 or 180
degrees. The stride value is the same for 90 and 270 degree Tiler views, hence
the bit shouldn't be set.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Increase the DSS_FCLK and DSI_FCLK max supported frequencies, these come because
some frequencies were increased from OMAP5 ES1 to OMAP5 ES2. We support only
OMAP5 ES2 in the kernel, so replace the ES1 values with ES2 values. Increase the
DSI PLL Fint range, this was previously just copied from the OMAP4 param range
struct.
Fix the maximum DSS_FCLK on OMAP2, it's 133 Mhz according to the TRM.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Each version of OMAP has a limitation on the maximum pixel clock frequency
supported by an overlay manager. This limit isn't checked by omapdss. Add
dispc feats for lcd and tv managers and check whether the target timings can
be supported or not.
The pixel clock limitations are actually more complex. They depend on which OPP
OMAP is in, and they also depend on which encoder is the manager connected to.
The OPP dependence is ignored as DSS forces the PM framework to be on OPP100
when DSS is enabled, and the encoder dependencies are ignored by DISPC for now.
These limits should come from the encoder driver.
The OMAP2 TRM doesn't mention the maximum pixel clock limit. This value is left
as half of DSS_FCLK, as OMAP2 requires the PCD to be atleast 2.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>