printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure root user does not try something stupid.
Also make sure mask field in struct rps_sock_flow_table
does not share a cache line with the potentially often dirtied
flow table.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Fixes: 567e4b7973 ("net: rfs: add hash collision detection")
Signed-off-by: David S. Miller <davem@davemloft.net>
Receive Flow Steering is a nice solution but suffers from
hash collisions when a mix of connected and unconnected traffic
is received on the host, when flow hash table is populated.
Also, clearing flow in inet_release() makes RFS not very good
for short lived flows, as many packets can follow close().
(FIN , ACK packets, ...)
This patch extends the information stored into global hash table
to not only include cpu number, but upper part of the hash value.
I use a 32bit value, and dynamically split it in two parts.
For host with less than 64 possible cpus, this gives 6 bits for the
cpu number, and 26 (32-6) bits for the upper part of the hash.
Since hash bucket selection use low order bits of the hash, we have
a full hash match, if /proc/sys/net/core/rps_sock_flow_entries is big
enough.
If the hash found in flow table does not match, we fallback to RPS (if
it is enabled for the rxqueue).
This means that a packet for an non connected flow can avoid the
IPI through a unrelated/victim CPU.
This also means we no longer have to clear the table at socket
close time, and this helps short lived flows performance.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Tx timestamps are looped onto the error queue on top of an skb. This
mechanism leaks packet headers to processes unless the no-payload
options SOF_TIMESTAMPING_OPT_TSONLY is set.
Add a sysctl that optionally drops looped timestamp with data. This
only affects processes without CAP_NET_RAW.
The policy is checked when timestamps are generated in the stack.
It is possible for timestamps with data to be reported after the
sysctl is set, if these were queued internally earlier.
No vulnerability is immediately known that exploits knowledge
gleaned from packet headers, but it may still be preferable to allow
administrators to lock down this path at the cost of possible
breakage of legacy applications.
Signed-off-by: Willem de Bruijn <willemb@google.com>
----
Changes
(v1 -> v2)
- test socket CAP_NET_RAW instead of capable(CAP_NET_RAW)
(rfc -> v1)
- document the sysctl in Documentation/sysctl/net.txt
- fix access control race: read .._OPT_TSONLY only once,
use same value for permission check and skb generation.
Signed-off-by: David S. Miller <davem@davemloft.net>
RSS (Receive Side Scaling) typically uses Toeplitz hash and a 40 or 52 bytes
RSS key.
Some drivers use a constant (and well known key), some drivers use a random
key per port, making bonding setups hard to tune. Well known keys increase
attack surface, considering that number of queues is usually a power of two.
This patch provides infrastructure to help drivers doing the right thing.
netdev_rss_key_fill() should be used by drivers to initialize their RSS key,
even if they provide ethtool -X support to let user redefine the key later.
A new /proc/sys/net/core/netdev_rss_key file can be used to get the host
RSS key even for drivers not providing ethtool -x support, in case some
applications want to precisely setup flows to match some RX queues.
Tested:
myhost:~# cat /proc/sys/net/core/netdev_rss_key
11:63:99:bb:79:fb:a5:a7:07:45:b2:20:bf:02:42:2d:08:1a:dd:19:2b:6b:23:ac:56:28:9d:70:c3:ac:e8:16:4b:b7:c1:10:53:a4:78:41:36:40:74:b6:15:ca:27:44:aa:b3:4d:72
myhost:~# ethtool -x eth0
RX flow hash indirection table for eth0 with 8 RX ring(s):
0: 0 1 2 3 4 5 6 7
RSS hash key:
11:63:99:bb:79:fb:a5:a7:07:45:b2:20:bf:02:42:2d:08:1a:dd:19:2b:6b:23:ac:56:28:9d:70:c3:ac:e8:16:4b:b7:c1:10:53:a4:78:41
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the more common dynamic_debug capable net_dbg_ratelimited
and remove the LIMIT_NETDEBUG macro.
All messages are still ratelimited.
Some KERN_<LEVEL> uses are changed to KERN_DEBUG.
This may have some negative impact on messages that were
emitted at KERN_INFO that are not not enabled at all unless
DEBUG is defined or dynamic_debug is enabled. Even so,
these messages are now _not_ emitted by default.
This also eliminates the use of the net_msg_warn sysctl
"/proc/sys/net/core/warnings". For backward compatibility,
the sysctl is not removed, but it has no function. The extern
declaration of net_msg_warn is removed from sock.h and made
static in net/core/sysctl_net_core.c
Miscellanea:
o Update the sysctl documentation
o Remove the embedded uses of pr_fmt
o Coalesce format fragments
o Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Given we allocate memory for each cpu, we can do this
using NUMA affinities, instead of using NUMA policies
of the process changing flow_limit_cpu_bitmap value.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
By default, the pfifo_fast queue discipline has been used by default
for all devices. But we have better choices now.
This patch allow setting the default queueing discipline with sysctl.
This allows easy use of better queueing disciplines on all devices
without having to use tc qdisc scripts. It is intended to allow
an easy path for distributions to make fq_codel or sfq the default
qdisc.
This patch also makes pfifo_fast more of a first class qdisc, since
it is now possible to manually override the default and explicitly
use pfifo_fast. The behavior for systems who do not use the sysctl
is unchanged, they still get pfifo_fast
Also removes leftover random # in sysctl net core.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It's possible to assign an invalid value to the net.core.somaxconn
sysctl variable, because there is no checks at all.
The sk_max_ack_backlog field of the sock structure is defined as
unsigned short. Therefore, the backlog argument in inet_listen()
shouldn't exceed USHRT_MAX. The backlog argument in the listen() syscall
is truncated to the somaxconn value. So, the somaxconn value shouldn't
exceed 65535 (USHRT_MAX).
Also, negative values of somaxconn are meaningless.
before:
$ sysctl -w net.core.somaxconn=256
net.core.somaxconn = 256
$ sysctl -w net.core.somaxconn=65536
net.core.somaxconn = 65536
$ sysctl -w net.core.somaxconn=-100
net.core.somaxconn = -100
after:
$ sysctl -w net.core.somaxconn=256
net.core.somaxconn = 256
$ sysctl -w net.core.somaxconn=65536
error: "Invalid argument" setting key "net.core.somaxconn"
$ sysctl -w net.core.somaxconn=-100
error: "Invalid argument" setting key "net.core.somaxconn"
Based on a prior patch from Changli Gao.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reported-by: Changli Gao <xiaosuo@gmail.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Eliezer renames several *ll_poll to *busy_poll, but forgets
CONFIG_NET_LL_RX_POLL, so in case of confusion, rename it too.
Cc: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename LL_SO to BUSY_POLL_SO
Rename sysctl_net_ll_{read,poll} to sysctl_busy_{read,poll}
Fix up users of these variables.
Fix documentation for sysctl.
a patch for the socket.7 man page will follow separately,
because of limitations of my mail setup.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename the file and correct all the places where it is included.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
select/poll busy-poll support.
Split sysctl value into two separate ones, one for read and one for poll.
updated Documentation/sysctl/net.txt
Add a new poll flag POLL_LL. When this flag is set, sock_poll will call
sk_poll_ll if possible. sock_poll sets this flag in its return value
to indicate to select/poll when a socket that can busy poll is found.
When poll/select have nothing to report, call the low-level
sock_poll again until we are out of time or we find something.
Once the system call finds something, it stops setting POLL_LL, so it can
return the result to the user ASAP.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is no reason for sysctl_net_ll_poll to be an unsigned long.
Change it into an unsigned int.
Fix the proc handler.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Caught by sparse:
- __rcu: missing annotation to sd->flow_limit
- __user: direct access in cpumask_scnprintf
Also
- add endline character when printing bitmap if room in buffer
- avoid bucket overflow by reducing FLOW_LIMIT_HISTORY
The last item warrants some explanation. The hashtable buckets are
subject to overflow if FLOW_LIMIT_HISTORY is larger than or equal
to bucket size, since all packets may end up in a single bucket. The
current (rather arbitrary) history value of 256 happens to match the
buffer size (u8).
As a result, with a single flow, the first 128 packets are accepted
(correct), the second 128 packets dropped (correct) and then the
history[] array has filled, so that each subsequent new packet
causes an increment in the bucket for new_flow plus a decrement
for old_flow: a steady state.
This is fine if packets are dropped, as the steady state goes away
as soon as a mix of traffic reappears. But, because the 256th packet
overflowed the bucket to 0: no packets are dropped.
Instead of explicitly adding an overflow check, this patch changes
FLOW_LIMIT_HISTORY to never be able to overflow a single bucket.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
(first item)
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Reduce the uses of this unnecessary typedef.
Done via perl script:
$ git grep --name-only -w ctl_table net | \
xargs perl -p -i -e '\
sub trim { my ($local) = @_; $local =~ s/(^\s+|\s+$)//g; return $local; } \
s/\b(?<!struct\s)ctl_table\b(\s*\*\s*|\s+\w+)/"struct ctl_table " . trim($1)/ge'
Reflow the modified lines that now exceed 80 columns.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adds an ndo_ll_poll method and the code that supports it.
This method can be used by low latency applications to busy-poll
Ethernet device queues directly from the socket code.
sysctl_net_ll_poll controls how many microseconds to poll.
Default is zero (disabled).
Individual protocol support will be added by subsequent patches.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Tested-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A cpu executing the network receive path sheds packets when its input
queue grows to netdev_max_backlog. A single high rate flow (such as a
spoofed source DoS) can exceed a single cpu processing rate and will
degrade throughput of other flows hashed onto the same cpu.
This patch adds a more fine grained hashtable. If the netdev backlog
is above a threshold, IRQ cpus track the ratio of total traffic of
each flow (using 4096 buckets, configurable). The ratio is measured
by counting the number of packets per flow over the last 256 packets
from the source cpu. Any flow that occupies a large fraction of this
(set at 50%) will see packet drop while above the threshold.
Tested:
Setup is a muli-threaded UDP echo server with network rx IRQ on cpu0,
kernel receive (RPS) on cpu0 and application threads on cpus 2--7
each handling 20k req/s. Throughput halves when hit with a 400 kpps
antagonist storm. With this patch applied, antagonist overload is
dropped and the server processes its complete load.
The patch is effective when kernel receive processing is the
bottleneck. The above RPS scenario is a extreme, but the same is
reached with RFS and sufficient kernel processing (iptables, packet
socket tap, ..).
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
I found if we write a larger than 4GB value to some sysctl
variables, the sending syscall will hang up forever, because these
variables are 32 bits, such large values make them overflow to 0 or
negative.
This patch try to fix overflow or prevent from zero value setup
of below sysctl variables:
net.core.wmem_default
net.core.rmem_default
net.core.rmem_max
net.core.wmem_max
net.ipv4.udp_rmem_min
net.ipv4.udp_wmem_min
net.ipv4.tcp_wmem
net.ipv4.tcp_rmem
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Li Yu <raise.sail@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation for supporting the creation of network namespaces
by unprivileged users, modify all of the per net sysctl exports
and refuse to allow them to unprivileged users.
This makes it safe for unprivileged users in general to access
per net sysctls, and allows sysctls to be exported to unprivileged
users on an individual basis as they are deemed safe.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We don't use struct ctl_path anymore so delete the exported constants.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This results in code with less boiler plate that is a bit easier
to read.
Additionally stops us from using compatibility code in the sysctl
core, hastening the day when the compatibility code can be removed.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On the next line we register the net_core_table in net/core which
creates the directory and ensures it exists.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This makes it clearer which sysctls are relative to your current network
namespace.
This makes it a little less error prone by not exposing sysctls for the
initial network namespace in other namespaces.
This is the same way we handle all of our other network interfaces to
userspace and I can't honestly remember why we didn't do this for
sysctls right from the start.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
register_sysctl_rotable never caught on as an interesting way to
register sysctls. My take on the situation is that what we want are
sysctls that we can only see in the initial network namespace. What we
have implemented with register_sysctl_rotable are sysctls that we can
see in all of the network namespaces and can only change in the initial
network namespace.
That is a very silly way to go. Just register the network sysctls
in the initial network namespace and we don't have any weird special
cases to deal with.
The sysctls affected are:
/proc/sys/net/ipv4/ipfrag_secret_interval
/proc/sys/net/ipv4/ipfrag_max_dist
/proc/sys/net/ipv6/ip6frag_secret_interval
/proc/sys/net/ipv6/mld_max_msf
I really don't expect anyone will miss them if they can't read them in a
child user namespace.
CC: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
net/core/sysctl_net_core.c: In function ‘sysctl_core_init’:
net/core/sysctl_net_core.c:259: error: implicit declaration of function ‘kmemleak_not_leak’
with same error in net/ipv4/route.c
Signed-off-by: Shan Wei <davidshan@tencent.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
So here's a boot tested patch on top of Jason's series that does
all the cleanups I talked about and turns jump labels into a
more intuitive to use facility. It should also address the
various misconceptions and confusions that surround jump labels.
Typical usage scenarios:
#include <linux/static_key.h>
struct static_key key = STATIC_KEY_INIT_TRUE;
if (static_key_false(&key))
do unlikely code
else
do likely code
Or:
if (static_key_true(&key))
do likely code
else
do unlikely code
The static key is modified via:
static_key_slow_inc(&key);
...
static_key_slow_dec(&key);
The 'slow' prefix makes it abundantly clear that this is an
expensive operation.
I've updated all in-kernel code to use this everywhere. Note
that I (intentionally) have not pushed through the rename
blindly through to the lowest levels: the actual jump-label
patching arch facility should be named like that, so we want to
decouple jump labels from the static-key facility a bit.
On non-jump-label enabled architectures static keys default to
likely()/unlikely() branches.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: a.p.zijlstra@chello.nl
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Most machines dont use RPS/RFS, and pay a fair amount of instructions in
netif_receive_skb() / netif_rx() / get_rps_cpu() just to discover
RPS/RFS is not setup.
Add a jump_label named rps_needed.
If no device rps_map or global rps_sock_flow_table is setup,
netif_receive_skb() / netif_rx() do a single instruction instead of many
ones, including conditional jumps.
jmp +0 (if CONFIG_JUMP_LABEL=y)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ingo Molnar noticed that we have this unnecessary ratelimit.h
dependency in linux/net.h, which hid compilation problems from
people doing builds only with CONFIG_NET enabled.
Move this stuff out to a seperate net/net_ratelimit.h file and
include that in the only two places where this thing is needed.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Add __rcu annotations to :
(struct netdev_rx_queue)->rps_map
(struct netdev_rx_queue)->rps_flow_table
struct rps_sock_flow_table *rps_sock_flow_table;
And use appropriate rcu primitives.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With RPS inclusion, skb timestamping is not consistent in RX path.
If netif_receive_skb() is used, its deferred after RPS dispatch.
If netif_rx() is used, its done before RPS dispatch.
This can give strange tcpdump timestamps results.
I think timestamping should be done as soon as possible in the receive
path, to get meaningful values (ie timestamps taken at the time packet
was delivered by NIC driver to our stack), even if NAPI already can
defer timestamping a bit (RPS can help to reduce the gap)
Tom Herbert prefer to sample timestamps after RPS dispatch. In case
sampling is expensive (HPET/acpi_pm on x86), this makes sense.
Let admins switch from one mode to another, using a new
sysctl, /proc/sys/net/core/netdev_tstamp_prequeue
Its default value (1), means timestamps are taken as soon as possible,
before backlog queueing, giving accurate timestamps.
Setting a 0 value permits to sample timestamps when processing backlog,
after RPS dispatch, to lower the load of the pre-RPS cpu.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1815 commits)
mac80211: fix reorder buffer release
iwmc3200wifi: Enable wimax core through module parameter
iwmc3200wifi: Add wifi-wimax coexistence mode as a module parameter
iwmc3200wifi: Coex table command does not expect a response
iwmc3200wifi: Update wiwi priority table
iwlwifi: driver version track kernel version
iwlwifi: indicate uCode type when fail dump error/event log
iwl3945: remove duplicated event logging code
b43: fix two warnings
ipw2100: fix rebooting hang with driver loaded
cfg80211: indent regulatory messages with spaces
iwmc3200wifi: fix NULL pointer dereference in pmkid update
mac80211: Fix TX status reporting for injected data frames
ath9k: enable 2GHz band only if the device supports it
airo: Fix integer overflow warning
rt2x00: Fix padding bug on L2PAD devices.
WE: Fix set events not propagated
b43legacy: avoid PPC fault during resume
b43: avoid PPC fault during resume
tcp: fix a timewait refcnt race
...
Fix up conflicts due to sysctl cleanups (dead sysctl_check code and
CTL_UNNUMBERED removed) in
kernel/sysctl_check.c
net/ipv4/sysctl_net_ipv4.c
net/ipv6/addrconf.c
net/sctp/sysctl.c
* git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/sysctl-2.6: (43 commits)
security/tomoyo: Remove now unnecessary handling of security_sysctl.
security/tomoyo: Add a special case to handle accesses through the internal proc mount.
sysctl: Drop & in front of every proc_handler.
sysctl: Remove CTL_NONE and CTL_UNNUMBERED
sysctl: kill dead ctl_handler definitions.
sysctl: Remove the last of the generic binary sysctl support
sysctl net: Remove unused binary sysctl code
sysctl security/tomoyo: Don't look at ctl_name
sysctl arm: Remove binary sysctl support
sysctl x86: Remove dead binary sysctl support
sysctl sh: Remove dead binary sysctl support
sysctl powerpc: Remove dead binary sysctl support
sysctl ia64: Remove dead binary sysctl support
sysctl s390: Remove dead sysctl binary support
sysctl frv: Remove dead binary sysctl support
sysctl mips/lasat: Remove dead binary sysctl support
sysctl drivers: Remove dead binary sysctl support
sysctl crypto: Remove dead binary sysctl support
sysctl security/keys: Remove dead binary sysctl support
sysctl kernel: Remove binary sysctl logic
...
Generated with the following semantic patch
@@
struct net *n1;
struct net *n2;
@@
- n1 == n2
+ net_eq(n1, n2)
@@
struct net *n1;
struct net *n2;
@@
- n1 != n2
+ !net_eq(n1, n2)
applied over {include,net,drivers/net}.
Signed-off-by: Octavian Purdila <opurdila@ixiacom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that sys_sysctl is a compatiblity wrapper around /proc/sys
all sysctl strategy routines, and all ctl_name and strategy
entries in the sysctl tables are unused, and can be
revmoed.
In addition neigh_sysctl_register has been modified to no longer
take a strategy argument and it's callers have been modified not
to pass one.
Cc: "David Miller" <davem@davemloft.net>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: netdev@vger.kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Decouple kernel.h from ratelimit.h: the global declaration of
printk's ratelimit_state is not needed, and it leads to messy
circular dependencies due to ratelimit.h's (new) adding of a
spinlock_types.h include.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David S. Miller <davem@davemloft.net>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: Include header file.
Fix this sparse warning:
net/core/sysctl_net_core.c:123:32: warning: symbol 'net_core_path' was not declared. Should it be static?
Signed-off-by: Hannes Eder <hannes@hanneseder.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make
net.core.xfrm_aevent_etime
net.core.xfrm_acq_expires
net.core.xfrm_aevent_rseqth
net.core.xfrm_larval_drop
sysctls per-netns.
For that make net_core_path[] global, register it to prevent two
/proc/net/core antries and change initcall position -- xfrm_init() is called
from fs_initcall, so this one should be fs_initcall at least.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
I want to compile out proc_* and sysctl_* handlers totally and
stub them to NULL depending on config options, however usage of &
will prevent this, since taking adress of NULL pointer will break
compilation.
So, drop & in front of every ->proc_handler and every ->strategy
handler, it was never needed in fact.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All ratelimit user use same jiffies and burst params, so some messages
(callbacks) will be lost.
For example:
a call printk_ratelimit(5 * HZ, 1)
b call printk_ratelimit(5 * HZ, 1) before the 5*HZ timeout of a, then b will
will be supressed.
- rewrite __ratelimit, and use a ratelimit_state as parameter. Thanks for
hints from andrew.
- Add WARN_ON_RATELIMIT, update rcupreempt.h
- remove __printk_ratelimit
- use __ratelimit in net_ratelimit
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the net/core/xxx sysctls are read-only now, but this
goal is achieved with excessive memory consumption in each
namespace - the whole table is cloned and most of the entries
in it are ~= 0222.
Split it into two parts and register (the largest) one at the
read-only root.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's already some stuff on the struct net, that should better
be folded into netns_core structure. I'm making the per-proto inuse
counter be per-net also, which is also a candidate for this, so
introduce this structure and populate it a bit.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Just move the variable on the struct net and adjust
its usage.
Others sysctls from sys.net.core table are more
difficult to virtualize (i.e. make them per-namespace),
but I'll look at them as well a bit later.
Signed-off-by: Pavel Emelyanov <xemul@oenvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some of ctl variables are going to be on the struct
net. Here's the way to adjust the ->data pointer on the
ctl_table-s to point on the right variable.
Since some pointers still point on the global variables,
I keep turning the write bits off on such tables.
This looks to become a common procedure for net sysctls,
so later parts of this code may migrate to some more
generic place.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Making them per-namespace is required for the following
two reasons:
First, some ctl values have a per-namespace meaning.
Second, making them writable from the sub-namespace
is an isolation hole.
So I introduce the pernet operations to create these
tables. For init_net I use the existing statically
declared tables, for sub-namespace they are duplicated
and the write bits are removed from the mode.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>