Instead of directly reading it from CCCFG register take the information out
once when we set up the configuration from the HW.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
No need to run through the bits in QEMR and CCERR events since they will
not trigger any action, so just clearing the errors there is fine.
In case of the missed event the loop can be optimized so we spend less time
to handle the event.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
In the ccerr interrupt handler the code checks for pending errors in the
error status registers in two different places.
Move the check out to a helper function.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
With the merger of the arch/arm/common/edma.c code into the dmaengine
driver, there is no longer need to have per channel callback/data storage
for interrupt events.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Remove or rewrite the comments for the internal functions.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Warning message in case of linking between paRAM slots in different eDMA
controllers.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
edma_write_slot() is for writing an entire paRAM slot.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
We have access to dev, so it is better to use the dev_dbg for debug prints.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Be consistent and do not mix the use of dev, &pdev->dev, etc in the
functions.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
When allocating a memory for number of items it is better (looks better)
to use devm_kcalloc.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Instead of using defines to specify the size of different arrays and
bitmaps, allocate the memory for them based on the information we get from
the HW itself.
Since these defines are set based on the worst case, there are devices
where they are not valid.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Move the code out from arch/arm/common and merge it inside of the dmaengine
driver.
This change is done with as minimal (if eny) functional change to the code
as possible to avoid introducing regression.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Since the driver stack no longer depends on lookup with id number in a
global array of pointers, the limitation for the number of eDMAs are no
longer needed. We can handle as many eDMAs in legacy and DT boot as we have
memory for them to allocate the needed structures.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Instead of relying on indexes pointing to edma private date in the global
pointer array, pass the private data pointer via the public API.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
If the of_dma_controller is registered in the non dmaengine driver we could
have race condition:
the of_dma_controller has been registered, but the dmaengine driver is not
yet probed. Drivers requesting DMA channels during this window will fail
since we do not yet have dmaengine drivers registered.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The code path in edma_execute() and edma_callback() can be simplified
and make it more optimal.
There is not need to call in to edma_execute() when the transfer
has been finished for example.
Also the handling of missed/first or next batch of paRAMs can
be done in a more optimal way.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
This time we have aded a new capability for scatter-gathered memset using
dmaengine APIs. This is supported in xdmac & hdmac drivers
We have added support for reusing descriptors for examples like video
buffers etc. Driver will follow
The behaviour of descriptor ack has been clarified and documented
New devices added are:
- dma controller in sun[457]i SoCs
- lpc18xx dmamux
- ZTE ZX296702 dma controller
- Analog Devices AXI-DMAC DMA controller
- eDMA support for dma-crossbar
- imx6sx support in imx-sdma driver
- imx-sdma device to device support
Others
- jz4780 fixes
- ioatdma large refactor and cleanup for removal of ioat v1 and v2 which is
deprecated and fixes
- ACPI support in X-Gene DMA engine driver
- ipu irq fixes
- mvxor fixes
- minor fixes spread thru drivers
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV5+nSAAoJEHwUBw8lI4NHiXQQAI/++7PmUGZ6BDZGu0B9Bj7U
JalNijm43p858nka1zVhDea8pi7Cq3zJdE8EAB7FPQGESvCODWr62oZBr+mSaQ1C
oU1RTIRTSiU2HPE4EFeGUvVGrnmTbHR2b1apI1SU41gKn+oQ5RJRRoQwEVwO6uuZ
1VYcUqhurIAZs1FrMIAUa2vg7KTcK9UotfwR2gGBmSvXMf1aJ/dNZC7i/pBJjoyt
v6KrLuYjEBAJvY7l368+NhLY/MS+2xdCMQo84B+HNEG7eA7y2MFOcRPXQA3a7dzr
NwNuAZcTYDU11r2jiAPcnBM5sPo4bokX6Td0oDbYH6Rn2uIWlof7jGIceUaWLQQq
QGZc4QPI4KdjTGNedRN8g9zqv0irFVfDr5v1A+B7N7ehvlubnB4jV8LmLpqN6UQH
B38VnDJ3hqdZ6j9RHQTyUoQskSYMPbOAUYbL0qQLkyx8AnLc8TRv7DgtSvZjnz5W
oF6So2A5SWZ7UmXKupd6TKtdyG3xtFAh+/MGVQ1RS9bCmnyhaIxJRiJwfftCBTBx
IZePOsqlwl2dojM62BDlGS4CLRZve2VgiUEJaPINsdm/On3tQs9+iDbNY3cpvLQS
P9u4po1TQPZnKG732vPAxEqdlq709kta7Fj5KIEvNjuWBBGKfypNP8BHKRvTLFlR
kcbO03NzwSO6PZpmiUsx
=gQZ6
-----END PGP SIGNATURE-----
Merge tag 'dmaengine-4.3-rc1' of git://git.infradead.org/users/vkoul/slave-dma
Pull dmaengine updates from Vinod Koul:
"This time we have aded a new capability for scatter-gathered memset
using dmaengine APIs. This is supported in xdmac & hdmac drivers
We have added support for reusing descriptors for examples like video
buffers etc. Driver will follow
The behaviour of descriptor ack has been clarified and documented
New devices added are:
- dma controller in sun[457]i SoCs
- lpc18xx dmamux
- ZTE ZX296702 dma controller
- Analog Devices AXI-DMAC DMA controller
- eDMA support for dma-crossbar
- imx6sx support in imx-sdma driver
- imx-sdma device to device support
Other:
- jz4780 fixes
- ioatdma large refactor and cleanup for removal of ioat v1 and v2
which is deprecated and fixes
- ACPI support in X-Gene DMA engine driver
- ipu irq fixes
- mvxor fixes
- minor fixes spread thru drivers"
[ The Kconfig and Makefile entries got re-sorted alphabetically, and I
handled the conflict with the new Intel integrated IDMA driver by
slightly mis-sorting it on purpose: "IDMA64" got sorted after "IMX" in
order to keep the Intel entries together. I think it might be a good
idea to just rename the IDMA64 config entry to INTEL_IDMA64 to make
the sorting be a true sort, not this mismash.
Also, this merge disables the COMPILE_TEST for the sun4i DMA
controller, because it does not compile cleanly at all. - Linus ]
* tag 'dmaengine-4.3-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (89 commits)
dmaengine: ioatdma: add Broadwell EP ioatdma PCI dev IDs
dmaengine :ipu: change ipu_irq_handler() to remove compile warning
dmaengine: ioatdma: Fix variable array length
dmaengine: ioatdma: fix sparse "error" with prep lock
dmaengine: hdmac: Add memset capabilities
dmaengine: sort the sh Makefile
dmaengine: sort the sh Kconfig
dmaengine: sort the dw Kconfig
dmaengine: sort the Kconfig
dmaengine: sort the makefile
drivers/dma: make mv_xor.c driver explicitly non-modular
dmaengine: Add support for the Analog Devices AXI-DMAC DMA controller
devicetree: Add bindings documentation for Analog Devices AXI-DMAC
dmaengine: xgene-dma: Fix the lock to allow client for further submission of requests
dmaengine: ioatdma: fix coccinelle warning
dmaengine: ioatdma: fix zero day warning on incompatible pointer type
dmaengine: tegra-apb: Simplify locking for device using global pause
dmaengine: tegra-apb: Remove unnecessary return statements and variables
dmaengine: tegra-apb: Avoid unnecessary channel base address calculation
dmaengine: tegra-apb: Remove unused variables
...
- ACPICA update to upstream revision 20150818 including method
tracing extensions to allow more in-depth AML debugging in the
kernel and a number of assorted fixes and cleanups (Bob Moore,
Lv Zheng, Markus Elfring).
- ACPI sysfs code updates and a documentation update related to
AML method tracing (Lv Zheng).
- ACPI EC driver fix related to serialized evaluations of _Qxx
methods and ACPI tools updates allowing the EC userspace tool
to be built from the kernel source (Lv Zheng).
- ACPI processor driver updates preparing it for future
introduction of CPPC support and ACPI PCC mailbox driver
updates (Ashwin Chaugule).
- ACPI interrupts enumeration fix for a regression related
to the handling of IRQ attribute conflicts between MADT
and the ACPI namespace (Jiang Liu).
- Fixes related to ACPI device PM (Mika Westerberg, Srinidhi Kasagar).
- ACPI device registration code reorganization to separate the
sysfs-related code and bus type operations from the rest (Rafael
J Wysocki).
- Assorted cleanups in the ACPI core (Jarkko Nikula, Mathias Krause,
Andy Shevchenko, Rafael J Wysocki, Nicolas Iooss).
- ACPI cpufreq driver and ia64 cpufreq driver fixes and cleanups
(Pan Xinhui, Rafael J Wysocki).
- cpufreq core cleanups on top of the previous changes allowing it
to preseve its sysfs directories over system suspend/resume (Viresh
Kumar, Rafael J Wysocki, Sebastian Andrzej Siewior).
- cpufreq fixes and cleanups related to governors (Viresh Kumar).
- cpufreq updates (core and the cpufreq-dt driver) related to the
turbo/boost mode support (Viresh Kumar, Bartlomiej Zolnierkiewicz).
- New DT bindings for Operating Performance Points (OPP), support
for them in the OPP framework and in the cpufreq-dt driver plus
related OPP framework fixes and cleanups (Viresh Kumar).
- cpufreq powernv driver updates (Shilpasri G Bhat).
- New cpufreq driver for Mediatek MT8173 (Pi-Cheng Chen).
- Assorted cpufreq driver (speedstep-lib, sfi, integrator) cleanups
and fixes (Abhilash Jindal, Andrzej Hajda, Cristian Ardelean).
- intel_pstate driver updates including Skylake-S support, support
for enabling HW P-states per CPU and an additional vendor bypass
list entry (Kristen Carlson Accardi, Chen Yu, Ethan Zhao).
- cpuidle core fixes related to the handling of coupled idle states
(Xunlei Pang).
- intel_idle driver updates including Skylake Client support and
support for freeze-mode-specific idle states (Len Brown).
- Driver core updates related to power management (Andy Shevchenko,
Rafael J Wysocki).
- Generic power domains framework fixes and cleanups (Jon Hunter,
Geert Uytterhoeven, Rajendra Nayak, Ulf Hansson).
- Device PM QoS framework update to allow the latency tolerance
setting to be exposed to user space via sysfs (Mika Westerberg).
- devfreq support for PPMUv2 in Exynos5433 and a fix for an incorrect
exynos-ppmu DT binding (Chanwoo Choi, Javier Martinez Canillas).
- System sleep support updates (Alan Stern, Len Brown, SungEun Kim).
- rockchip-io AVS support updates (Heiko Stuebner).
- PM core clocks support fixup (Colin Ian King).
- Power capping RAPL driver update including support for Skylake H/S
and Broadwell-H (Radivoje Jovanovic, Seiichi Ikarashi).
- Generic device properties framework fixes related to the handling
of static (driver-provided) property sets (Andy Shevchenko).
- turbostat and cpupower updates (Len Brown, Shilpasri G Bhat,
Shreyas B Prabhu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJV5hhGAAoJEILEb/54YlRxs+EQAK51iFk48+IbpHYaZZ50Yo4m
ZZc2zBcbwRcBlU9vKERrhG+jieSl8J/JJNxT8vBjKqyvNw038mCjewQh02ol0HuC
R7nlDiVJkmZ50sLO4xwE/1UBZr/XqbddwCUnYzvFMkMTA0ePzFtf8BrJ1FXpT8S/
fkwSXQty6hvJDwxkfrbMSaA730wMju9lahx8D6MlmUAedWYZOJDMQKB4WKa/St5X
9uckBPHUBB2KiKlXxdbFPwKLNxHvLROq5SpDLc6cM/7XZB+QfNFy85CUjCUtYo1O
1W8k0qnztvZ6UEv27qz5dejGyAGOarMWGGNsmL9evoeGeHRpQL+dom7HcTnbAfUZ
walyhYSm/zKkdy7Vl3xWUUQkMG48+PviMI6K0YhHXb3Rm5wlR/yBNZTwNIty9SX/
fKCHEa8QynWwLxgm53c3xRkiitJxMsHNK03moLD9zQMjshTyTNvpNbZoahyKQzk6
H+9M1DBRHhkkREDWSwGutukxfEMtWe2vcZcyERrFiY7l5k1j58DwDBMPqjPhRv6q
P/1NlCzr0XYf83Y86J18LbDuPGDhTjjIEn6CqbtI2mmWqTg3+rF7zvS2ux+FzMnA
gisv8l6GT9JiWhxKFqqL/rrVpwtyHebWLYE/RpNUW6fEzLziRNj1qyYO9dqI/GGi
I3rfxlXoc/5xJWCgNB8f
=fTgI
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"From the number of commits perspective, the biggest items are ACPICA
and cpufreq changes with the latter taking the lead (over 50 commits).
On the cpufreq front, there are many cleanups and minor fixes in the
core and governors, driver updates etc. We also have a new cpufreq
driver for Mediatek MT8173 chips.
ACPICA mostly updates its debug infrastructure and adds a number of
fixes and cleanups for a good measure.
The Operating Performance Points (OPP) framework is updated with new
DT bindings and support for them among other things.
We have a few updates of the generic power domains framework and a
reorganization of the ACPI device enumeration code and bus type
operations.
And a lot of fixes and cleanups all over.
Included is one branch from the MFD tree as it contains some
PM-related driver core and ACPI PM changes a few other commits are
based on.
Specifics:
- ACPICA update to upstream revision 20150818 including method
tracing extensions to allow more in-depth AML debugging in the
kernel and a number of assorted fixes and cleanups (Bob Moore, Lv
Zheng, Markus Elfring).
- ACPI sysfs code updates and a documentation update related to AML
method tracing (Lv Zheng).
- ACPI EC driver fix related to serialized evaluations of _Qxx
methods and ACPI tools updates allowing the EC userspace tool to be
built from the kernel source (Lv Zheng).
- ACPI processor driver updates preparing it for future introduction
of CPPC support and ACPI PCC mailbox driver updates (Ashwin
Chaugule).
- ACPI interrupts enumeration fix for a regression related to the
handling of IRQ attribute conflicts between MADT and the ACPI
namespace (Jiang Liu).
- Fixes related to ACPI device PM (Mika Westerberg, Srinidhi
Kasagar).
- ACPI device registration code reorganization to separate the
sysfs-related code and bus type operations from the rest (Rafael J
Wysocki).
- Assorted cleanups in the ACPI core (Jarkko Nikula, Mathias Krause,
Andy Shevchenko, Rafael J Wysocki, Nicolas Iooss).
- ACPI cpufreq driver and ia64 cpufreq driver fixes and cleanups (Pan
Xinhui, Rafael J Wysocki).
- cpufreq core cleanups on top of the previous changes allowing it to
preseve its sysfs directories over system suspend/resume (Viresh
Kumar, Rafael J Wysocki, Sebastian Andrzej Siewior).
- cpufreq fixes and cleanups related to governors (Viresh Kumar).
- cpufreq updates (core and the cpufreq-dt driver) related to the
turbo/boost mode support (Viresh Kumar, Bartlomiej Zolnierkiewicz).
- New DT bindings for Operating Performance Points (OPP), support for
them in the OPP framework and in the cpufreq-dt driver plus related
OPP framework fixes and cleanups (Viresh Kumar).
- cpufreq powernv driver updates (Shilpasri G Bhat).
- New cpufreq driver for Mediatek MT8173 (Pi-Cheng Chen).
- Assorted cpufreq driver (speedstep-lib, sfi, integrator) cleanups
and fixes (Abhilash Jindal, Andrzej Hajda, Cristian Ardelean).
- intel_pstate driver updates including Skylake-S support, support
for enabling HW P-states per CPU and an additional vendor bypass
list entry (Kristen Carlson Accardi, Chen Yu, Ethan Zhao).
- cpuidle core fixes related to the handling of coupled idle states
(Xunlei Pang).
- intel_idle driver updates including Skylake Client support and
support for freeze-mode-specific idle states (Len Brown).
- Driver core updates related to power management (Andy Shevchenko,
Rafael J Wysocki).
- Generic power domains framework fixes and cleanups (Jon Hunter,
Geert Uytterhoeven, Rajendra Nayak, Ulf Hansson).
- Device PM QoS framework update to allow the latency tolerance
setting to be exposed to user space via sysfs (Mika Westerberg).
- devfreq support for PPMUv2 in Exynos5433 and a fix for an incorrect
exynos-ppmu DT binding (Chanwoo Choi, Javier Martinez Canillas).
- System sleep support updates (Alan Stern, Len Brown, SungEun Kim).
- rockchip-io AVS support updates (Heiko Stuebner).
- PM core clocks support fixup (Colin Ian King).
- Power capping RAPL driver update including support for Skylake H/S
and Broadwell-H (Radivoje Jovanovic, Seiichi Ikarashi).
- Generic device properties framework fixes related to the handling
of static (driver-provided) property sets (Andy Shevchenko).
- turbostat and cpupower updates (Len Brown, Shilpasri G Bhat,
Shreyas B Prabhu)"
* tag 'pm+acpi-4.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (180 commits)
cpufreq: speedstep-lib: Use monotonic clock
cpufreq: powernv: Increase the verbosity of OCC console messages
cpufreq: sfi: use kmemdup rather than duplicating its implementation
cpufreq: drop !cpufreq_driver check from cpufreq_parse_governor()
cpufreq: rename cpufreq_real_policy as cpufreq_user_policy
cpufreq: remove redundant 'policy' field from user_policy
cpufreq: remove redundant 'governor' field from user_policy
cpufreq: update user_policy.* on success
cpufreq: use memcpy() to copy policy
cpufreq: remove redundant CPUFREQ_INCOMPATIBLE notifier event
cpufreq: mediatek: Add MT8173 cpufreq driver
dt-bindings: mediatek: Add MT8173 CPU DVFS clock bindings
PM / Domains: Fix typo in description of genpd_dev_pm_detach()
PM / Domains: Remove unusable governor dummies
PM / Domains: Make pm_genpd_init() available to modules
PM / domains: Align column headers and data in pm_genpd_summary output
powercap / RAPL: disable the 2nd power limit properly
tools: cpupower: Fix error when running cpupower monitor
PM / OPP: Drop unlikely before IS_ERR(_OR_NULL)
PM / OPP: Fix static checker warning (broken 64bit big endian systems)
...
* acpi-pm:
ACPI / bus: Move duplicate code to a separate new function
mfd: Add support for Intel Sunrisepoint LPSS devices
dmaengine: add a driver for Intel integrated DMA 64-bit
mfd: make mfd_remove_devices() iterate in reverse order
driver core: implement device_for_each_child_reverse()
klist: implement klist_prev()
Driver core: wakeup the parent device before trying probe
ACPI / PM: Attach ACPI power domain only once
PM / QoS: Make it possible to expose device latency tolerance to userspace
ACPI / PM: Update the copyright notice and description of power.c
Adding the Broadwell Xeon ioatdma PCI device IDs and
related bits. This is still IOATDMA 3.2 based hw.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Change ipu_irq_handler() to avoid gcc warning:
drivers/dma/ipu/ipu_irq.c:305:4: warning: 'irq' may be used
uninitialized in this function [-Wmaybe-uninitialized]
generic_handle_irq(irq);
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Sparse reported:
drivers/dma/ioat/prep.c:637:27: sparse: Variable length array is used.
Assigning a static value for the array.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The prep lock gets acquired in ioat_check_space_lock and released in
ioat_tx_submit_unlock. Setting the annotations so sparse does not freak out.
drivers/dma/ioat/dma.c:273:30: sparse: context imbalance in 'ioat_tx_submit_unlock' - unexpected unlock
drivers/dma/ioat/dma.c:476:5: sparse: context imbalance in 'ioat_check_space_lock' - wrong count at exit
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Just like for the XDMAC, the SoCs that embed the HDMAC don't have any kind
of GPU, and need to accelerate a few framebuffer-related operations through
their DMA controller.
However, unlike the XDMAC, the HDMAC doesn't have the memset capability
built-in. That can be easily emulated though, by doing a transfer with a
fixed address on the variable that holds the value we want to set.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
dmaengine Kconfig grew over the years, unfortunately without any
order to it. So order by core, driver and client sections, and
sort these sections alphabetically
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
dmaengine makefile grew over the years, unfortunately without any
order to it. So order by core, dmatest and driver sections and
sort these sections alphabetically
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The Kconfig for this driver is currently:
config MV_XOR
bool "Marvell XOR engine support"
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
We leave some tags like MODULE_AUTHOR for documentation purposes.
Also note that MODULE_DEVICE_TABLE is a no-op for non-modular code.
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: dmaengine@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Add support for the Analog Devices AXI-DMAC DMA controller. This controller
is a soft peripheral that can be instantiated in a FPGA and is often used
in Analog Devices' reference designs for FPGA platforms.
The peripheral has various configuration options that can be selected at
synthesis time and influence the supported features of the instantiated
peripheral, those options are represented as device-tree properties to
allow the driver to behave accordingly.
The peripheral has a zero latency architecture, which means it is possible
to switch from one to the next descriptor without any delay. This is
archived by having a internal queue which can hold multiple descriptors.
The driver supports this, which means it will submit new descriptors
directly to the hardware until the queue is full and not wait for a
descriptor to complete before the next one is submitted. Interrupts are
used for the descriptor queue flow control.
Currently the driver supports SG, cyclic and interleaved slave DMA.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
This patch provides the fix in the cleanup routing such that client can perform
further submission by releasing the lock before calling client's callback function.
Signed-off-by: Rameshwar Prasad Sahu <rsahu@apm.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Simplifying the end return. This existed in the original code but was
flagged when refactoring of the code made it appear it's new.
coccinelle warnings: (new ones prefixed by >>)
>> drivers/dma/ioat/init.c:1018:1-3: WARNING: end returns can be simpified
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The 32bit build is creating this warning. Since we don't expect anyone
actually use this on 32bit, restrict ioatdma to be built only on x86_64.
This issue has long existed and only reason it's surfacing due to code
refactoring.
drivers/dma/ioat/dma.c: In function 'ioat_timer_event':
>> drivers/dma/ioat/dma.c:870:39: warning: passing argument 2 of 'ioat_cleanup_preamble' from incompatible pointer type
if (ioat_cleanup_preamble(ioat_chan, &phys_complete))
^
drivers/dma/ioat/dma.c:577:13: note: expected 'u64 *' but argument is of type 'dma_addr_t *'
static bool ioat_cleanup_preamble(struct ioatdma_chan *ioat_chan,
^
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Sparse reports the following with regard to locking in the
tegra_dma_global_pause() and tegra_dma_global_resume() functions:
drivers/dma/tegra20-apb-dma.c:362:9: warning: context imbalance in
'tegra_dma_global_pause' - wrong count at exit
drivers/dma/tegra20-apb-dma.c:366:13: warning: context imbalance in
'tegra_dma_global_resume' - unexpected unlock
The warning is caused because tegra_dma_global_pause() acquires a lock
but does not release it. However, the lock is released by
tegra_dma_global_resume(). These pause/resume functions are called in
pairs and so it does appear to work.
This global pause is used on early tegra devices that do not have an
individual pause for each channel. The lock appears to be used to ensure
that multiple channels do not attempt to assert/de-assert the global pause
at the same time which could cause the DMA controller to be in the wrong
paused state. Rather than locking around the entire code between the pause
and resume, employ a simple counter to keep track of the global pause
requests. By using a counter, it is only necessary to hold the lock when
pausing and unpausing the DMA controller and hence, fixes the sparse
warning.
Please note that for devices that support individual channel pausing, the
DMA controller lock is not held between pausing and unpausing the channel.
Hence, this change will make the devices that use the global pause behave
in the same way, with regard to locking, as those that don't.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Some void functions have unnecessary return statements at the end
(reported by sparse) and so remove these. Also remove the return variables
from functions tegra_dma_prep_slave_sg() and tegra_dma_prep_slave_cyclic()
because the value is not used.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Everytime a DMA channel register is accessed, the channel base address
is calculated by adding the DMA base address and the channel register
offset. Avoid this calculation and simply calculate the channel base
address once at probe time for each DMA channel.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The callback and callback_param members of the tegra_dma_sg_req structure
are never used. The dma-engine structure, dma_async_tx_descriptor, defines
the same members and these are the ones used by the driver. Therefore,
remove the unused versions from the tegra_dma_sg_req structure.
The half_done member of tegra_dma_channel structure is configured but
never used and so remove it.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
clk_enable() may fail, so we should better check the return value and
propagate it in the case of error.
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
This patch adds support for the DMA engine present on Allwinner A10,
A13, A10S and A20 SoCs. This engine has two kinds of channels: normal
and dedicated. The main difference is in the mode of operation;
while a single normal channel may be operating at any given time,
dedicated channels may operate simultaneously provided there is no
overlap of source or destination.
Hardware documentation can be found on A10 User Manual (section 12), A13
User Manual (section 14) and A20 User Manual (section 1.12)
Signed-off-by: Emilio López <emilio@elopez.com.ar>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Due to how async_tx behaves internally, having more XOR channels than
CPUs is actually hurting performance more than it improves it, because
memcpy requests get scheduled on a different channel than the XOR
requests, but async_tx will still wait for the completion of the
memcpy requests before scheduling the XOR requests.
It is in fact more efficient to have at most one channel per CPU,
which this patch implements by limiting the number of channels per
engine, and the number of engines registered depending on the number
of availables CPUs.
Marvell platforms are currently available in one CPU, two CPUs and
four CPUs configurations:
- in the configurations with one CPU, only one channel from one
engine is used.
- in the configurations with two CPUs, only one channel from each
engine is used (they are two XOR engines)
- in the configurations with four CPUs, both channels of both engines
are used.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The only reason why we had dmacap,* properties is because back when
DMA_MEMSET was supported, only one out of the two channels per engine
could do a memset operation. But this is something that the driver
already knows anyway, and since then, the DMA_MEMSET support has been
removed.
The driver is already well aware of what each channel supports and the
one to one mapping between Linux specific implementation details (such
as dmacap,interrupt enabling DMA_INTERRUPT) and DT properties is a
good indication that these DT properties are wrong.
Therefore, this commit simply gets rid of these dmacap,* properties,
they are now ignored, and the driver is responsible for knowing the
capabilities of the hardware with regard to the dmaengine subsystem
expectations.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Reviewed-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
When there is only one burst required do not emit loop instructions to
loop exactly once. Emit just the body of the loop.
Signed-off-by: Michal Suchanek <hramrach@gmail.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
set_irq_flags is ARM specific with custom flags which have genirq
equivalents. Convert drivers to use the genirq interfaces directly, so we
can kill off set_irq_flags. The translation of flags is as follows:
IRQF_VALID -> !IRQ_NOREQUEST
IRQF_PROBE -> !IRQ_NOPROBE
IRQF_NOAUTOEN -> IRQ_NOAUTOEN
For IRQs managed by an irqdomain, the irqdomain core code handles clearing
and setting IRQ_NOREQUEST already, so there is no need to do this in
.map() functions and we can simply remove the set_irq_flags calls. Some
users also modify IRQ_NOPROBE and this has been maintained although it
is not clear that is really needed. There appears to be a great deal of
blind copy and paste of this code.
Signed-off-by: Rob Herring <robh@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: dmaengine@vger.kernel.org
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The new Solo X has more requirements for SDMA events. So it creates
a event mux to remap most of event numbers in GPR (General Purpose
Register). If we want to use SDMA support for those module who do
not get the even number as default, we need to configure GPR first.
Thus this patch adds this support of GPR event remapping configuration
to the SDMA driver.
Signed-off-by: Zidan Wang <zidan.wang@freescale.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>