mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
301 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Vlastimil Babka
|
2516035499 |
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be accounted for on both zones and nodes because of the reclaim retry logic, compaction retry logic and highmem calculations all depending on per-zone stats. Many lowmem allocations are immune from OOM kill due to a check in __alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit 03668b3ceb0c ("oom: avoid oom killer for lowmem allocations"). The exception is costly high-order allocations or allocations that cannot fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem allocations then it would fall through to __alloc_pages_direct_compact. This patch will blindly retry reclaim for zone-constrained allocations in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal but without per-zone stats there are not many alternatives. The impact it that zone-constrained allocations may delay before considering the OOM killer. As there is no guarantee enough memory can ever be freed to satisfy compaction, this patch avoids retrying compaction for zone-contrained allocations. In combination, that means that the per-node stats can be used when deciding whether to continue reclaim using a rough approximation. While it is possible this will make the wrong decision on occasion, it will not infinite loop as the number of reclaim attempts is capped by MAX_RECLAIM_RETRIES. The final step is calculating the number of dirtyable highmem pages. As those calculations only care about the global count of file pages in highmem. This patch uses a global counter used instead of per-zone stats as it is sufficient. In combination, this allows the per-zone LRU and dirty state counters to be removed. [mgorman@techsingularity.net: fix acct_highmem_file_pages()] Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested by: Michal Hocko <mhocko@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4b9d0fab71 |
mm: rename NR_ANON_PAGES to NR_ANON_MAPPED
NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_PAGES is the number of mapped anon pages. This is unhelpful naming as it's easy to confuse NR_FILE_MAPPED and NR_ANON_PAGES for mapped pages. This patch renames NR_ANON_PAGES so we have NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_MAPPED is the number of mapped anon pages. Link: http://lkml.kernel.org/r/1467970510-21195-19-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1010245964 |
mm: introduce do_set_pmd()
With postponed page table allocation we have chance to setup huge pages. do_set_pte() calls do_set_pmd() if following criteria met: - page is compound; - pmd entry in pmd_none(); - vma has suitable size and alignment; Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
dd78fedde4 |
rmap: support file thp
Naive approach: on mapping/unmapping the page as compound we update ->_mapcount on each 4k page. That's not efficient, but it's not obvious how we can optimize this. We can look into optimization later. PG_double_map optimization doesn't work for file pages since lifecycle of file pages is different comparing to anon pages: file page can be mapped again at any time. Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
b1123ea6d3 |
mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon doesn't need custom migration hooks in migrate.c and compaction.c. Instead, this patch implements the page->mapping->a_ops-> {isolate|migrate|putback} functions. With that, we could remove hooks for ballooning in general migration functions and make balloon compaction simple. [akpm@linux-foundation.org: compaction.h requires that the includer first include node.h] Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rafael Aquini <aquini@redhat.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
c6c919eb90 |
mm: use put_page() to free page instead of putback_lru_page()
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Richard Weinberger
|
1118dce773 |
mm: Export migrate_page_move_mapping and migrate_page_copy
Export these symbols such that UBIFS can implement ->migratepage. Cc: stable@vger.kernel.org Signed-off-by: Richard Weinberger <richard@nod.at> Acked-by: Christoph Hellwig <hch@lst.de> |
||
David Rientjes
|
dfef2ef402 |
mm, migrate: increment fail count on ENOMEM
If page migration fails due to -ENOMEM, nr_failed should still be incremented for proper statistics. This was encountered recently when all page migration vmstats showed 0, and inferred that migrate_pages() was never called, although in reality the first page migration failed because compaction_alloc() failed to find a migration target. This patch increments nr_failed so the vmstat is properly accounted on ENOMEM. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605191510230.32658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
fa9949da59 |
mm: use __SetPageSwapBacked and dont ClearPageSwapBacked
v3.16 commit 07a427884348 ("mm: shmem: avoid atomic operation during shmem_getpage_gfp") rightly replaced one instance of SetPageSwapBacked by __SetPageSwapBacked, pointing out that the newly allocated page is not yet visible to other users (except speculative get_page_unless_zero- ers, who may not update page flags before their further checks). That was part of a series in which Mel was focused on tmpfs profiles: but almost all SetPageSwapBacked uses can be so optimized, with the same justification. Remove ClearPageSwapBacked from __read_swap_cache_async() error path: it's not an error to free a page with PG_swapbacked set. Follow a convention of __SetPageLocked, __SetPageSwapBacked instead of doing it differently in different places; but that's for tidiness - if the ordering actually mattered, we should not be using the __variants. There's probably scope for further __SetPageFlags in other places, but SwapBacked is the one I'm interested in at the moment. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Reviewed-by: Mel Gorman <mgorman@techsingularity.net> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
d7e69488bd |
mm/hwpoison: fix wrong num_poisoned_pages accounting
Currently, migration code increses num_poisoned_pages on *failed* migration page as well as successfully migrated one at the trial of memory-failure. It will make the stat wrong. As well, it marks the page as PG_HWPoison even if the migration trial failed. It would mean we cannot recover the corrupted page using memory-failure facility. This patches fixes it. Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e388466de4 |
mm: make remove_migration_ptes() beyond mm/migration.c
Make remove_migration_ptes() available to be used in split_huge_page(). New parameter 'locked' added: as with try_to_umap() we need a way to indicate that caller holds rmap lock. We also shouldn't try to mlock() pte-mapped huge pages: pte-mapeed THP pages are never mlocked. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
fe896d1878 |
mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
458aa76d13 |
mm/thp/migration: switch from flush_tlb_range to flush_pmd_tlb_range
We remove one instace of flush_tlb_range here. That was added by commit f714f4f20e59 ("mm: numa: call MMU notifiers on THP migration"). But the pmdp_huge_clear_flush_notify should have done the require flush for us. Hence remove the extra flush. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
74485cf2bc |
mm: migrate: consolidate mem_cgroup_migrate() calls
Rather than scattering mem_cgroup_migrate() calls all over the place, have a single call from a safe place where every migration operation eventually ends up in - migrate_page_copy(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Hugh Dickins <hughd@google.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
6a93ca8fde |
mm: migrate: do not touch page->mem_cgroup of live pages
Changing a page's memcg association complicates dealing with the page, so we want to limit this as much as possible. Page migration e.g. does not have to do that. Just like page cache replacement, it can forcibly charge a replacement page, and then uncharge the old page when it gets freed. Temporarily overcharging the cgroup by a single page is not an issue in practice, and charging is so cheap nowadays that this is much preferrable to the headache of messing with live pages. The only place that still changes the page->mem_cgroup binding of live pages is when pages move along with a task to another cgroup. But that path isolates the page from the LRU, takes the page lock, and the move lock (lock_page_memcg()). That means page->mem_cgroup is always stable in callers that have the page isolated from the LRU or locked. Lighter unlocked paths, like writeback accounting, can use lock_page_memcg(). [akpm@linux-foundation.org: fix build] [vdavydov@virtuozzo.com: fix lockdep splat] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7cd12b4abf |
mm, page_owner: track and print last migrate reason
During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d435edca92 |
mm, page_owner: copy page owner info during migration
The page_owner mechanism stores gfp_flags of an allocation and stack trace that lead to it. During page migration, the original information is practically replaced by the allocation of free page as the migration target. Arguably this is less useful and might lead to all the page_owner info for migratable pages gradually converge towards compaction or numa balancing migrations. It has also lead to inaccuracies such as one fixed by commit e2cfc91120fa ("mm/page_owner: set correct gfp_mask on page_owner"). This patch thus introduces copying the page_owner info during migration. However, since the fact that the page has been migrated from its original place might be useful for debugging, the next patch will introduce a way to track that information as well. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8479eba778 |
mm: numa: quickly fail allocations for NUMA balancing on full nodes
Commit 4167e9b2cf10 ("mm: remove GFP_THISNODE") removed the GFP_THISNODE flag combination due to confusing semantics. It noted that alloc_misplaced_dst_page() was one such user after changes made by commit e97ca8e5b864 ("mm: fix GFP_THISNODE callers and clarify"). Unfortunately when GFP_THISNODE was removed, users of alloc_misplaced_dst_page() started waking kswapd and entering direct reclaim because the wrong GFP flags are cleared. The consequence is that workloads that used to fit into memory now get reclaimed which is addressed by this patch. The problem can be demonstrated with "mutilate" that exercises memcached which is software dedicated to memory object caching. The configuration uses 80% of memory and is run 3 times for varying numbers of clients. The results on a 4-socket NUMA box are mutilate 4.4.0 4.4.0 vanilla numaswap-v1 Hmean 1 8394.71 ( 0.00%) 8395.32 ( 0.01%) Hmean 4 30024.62 ( 0.00%) 34513.54 ( 14.95%) Hmean 7 32821.08 ( 0.00%) 70542.96 (114.93%) Hmean 12 55229.67 ( 0.00%) 93866.34 ( 69.96%) Hmean 21 39438.96 ( 0.00%) 85749.21 (117.42%) Hmean 30 37796.10 ( 0.00%) 50231.49 ( 32.90%) Hmean 47 18070.91 ( 0.00%) 38530.13 (113.22%) The metric is queries/second with the more the better. The results are way outside of the noise and the reason for the improvement is obvious from some of the vmstats 4.4.0 4.4.0 vanillanumaswap-v1r1 Minor Faults 1929399272 2146148218 Major Faults 19746529 3567 Swap Ins 57307366 9913 Swap Outs 50623229 17094 Allocation stalls 35909 443 DMA allocs 0 0 DMA32 allocs 72976349 170567396 Normal allocs 5306640898 5310651252 Movable allocs 0 0 Direct pages scanned 404130893 799577 Kswapd pages scanned 160230174 0 Kswapd pages reclaimed 55928786 0 Direct pages reclaimed 1843936 41921 Page writes file 2391 0 Page writes anon 50623229 17094 The vanilla kernel is swapping like crazy with large amounts of direct reclaim and kswapd activity. The figures are aggregate but it's known that the bad activity is throughout the entire test. Note that simple streaming anon/file memory consumers also see this problem but it's not as obvious. In those cases, kswapd is awake when it should not be. As there are at least two reclaim-related bugs out there, it's worth spelling out the user-visible impact. This patch only addresses bugs related to excessive reclaim on NUMA hardware when the working set is larger than a NUMA node. There is a bug related to high kswapd CPU usage but the reports are against laptops and other UMA hardware and is not addressed by this patch. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
9a982250f7 |
thp: introduce deferred_split_huge_page()
Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
4d2fa96548 |
thp, mm: split_huge_page(): caller need to lock page
We're going to use migration entries instead of compound_lock() to stabilize page refcounts. Setup and remove migration entries require page to be locked. Some of split_huge_page() callers already have the page locked. Let's require everybody to lock the page before calling split_huge_page(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
53f9263bab |
mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound. It means we need to track mapcount on per small page basis. Straight-forward approach is to use ->_mapcount in all subpages to track how many time this subpage is mapped with PMDs or PTEs combined. But this is rather expensive: mapping or unmapping of a THP page with PMD would require HPAGE_PMD_NR atomic operations instead of single we have now. The idea is to store separately how many times the page was mapped as whole -- compound_mapcount. This frees up ->_mapcount in subpages to track PTE mapcount. We use the same approach as with compound page destructor and compound order to store compound_mapcount: use space in first tail page, ->mapping this time. Any time we map/unmap whole compound page (THP or hugetlb) -- we increment/decrement compound_mapcount. When we map part of compound page with PTE we operate on ->_mapcount of the subpage. page_mapcount() counts both: PTE and PMD mappings of the page. Basically, we have mapcount for a subpage spread over two counters. It makes tricky to detect when last mapcount for a page goes away. We introduced PageDoubleMap() for this. When we split THP PMD for the first time and there's other PMD mapping left we offset up ->_mapcount in all subpages by one and set PG_double_map on the compound page. These additional references go away with last compound_mapcount. This approach provides a way to detect when last mapcount goes away on per small page basis without introducing new overhead for most common cases. [akpm@linux-foundation.org: fix typo in comment] [mhocko@suse.com: ignore partial THP when moving task] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d281ee6145 |
rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound page. It means we cannot rely on PageTransHuge() check to decide if map/unmap small page or THP. The patch adds new argument to rmap functions to indicate whether we want to operate on whole compound page or only the small page. [n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
48c935ad88 |
page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page. It doesn't make much sense to lock part of compound page. Change code to use head page's PG_locked, if tail page is passed. This patch also gets rid of custom helper functions -- __set_page_locked() and __clear_page_locked(). They are replaced with helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these helper would trigger VM_BUG_ON(). SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never appear there. VM_BUG_ON() is added to make sure that this assumption is correct. [akpm@linux-foundation.org: fix fs/cifs/file.c] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
71baba4b92 |
mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
__GFP_WAIT was used to signal that the caller was in atomic context and could not sleep. Now it is possible to distinguish between true atomic context and callers that are not willing to sleep. The latter should clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing __GFP_WAIT behaves differently, there is a risk that people will clear the wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly indicate what it does -- setting it allows all reclaim activity, clearing them prevents it. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d0164adc89 |
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
42cb14b110 |
mm: migrate dirty page without clear_page_dirty_for_io etc
clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
cf4b769abb |
mm: page migration avoid touching newpage until no going back
We have had trouble in the past from the way in which page migration's newpage is initialized in dribs and drabs - see commit 8bdd63809160 ("mm: fix direct reclaim writeback regression") which proposed a cleanup. We have no actual problem now, but I think the procedure would be clearer (and alternative get_new_page pools safer to implement) if we assert that newpage is not touched until we are sure that it's going to be used - except for taking the trylock on it in __unmap_and_move(). So shift the early initializations from move_to_new_page() into migrate_page_move_mapping(), mapping and NULL-mapping paths. Similarly migrate_huge_page_move_mapping(), but its NULL-mapping path can just be deleted: you cannot reach hugetlbfs_migrate_page() with a NULL mapping. Adjust stages 3 to 8 in the Documentation file accordingly. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
03f15c86c8 |
mm: simplify page migration's anon_vma comment and flow
__unmap_and_move() contains a long stale comment on page_get_anon_vma() and PageSwapCache(), with an odd control flow that's hard to follow. Mostly this reflects our confusion about the lifetime of an anon_vma, in the early days of page migration, before we could take a reference to one. Nowadays this seems quite straightforward: cut it all down to essentials. I cannot see the relevance of swapcache here at all, so don't treat it any differently: I believe the old comment reflects in part our anon_vma confusions, and in part the original v2.6.16 page migration technique, which used actual swap to migrate anon instead of swap-like migration entries. Why should a swapcache page not be migrated with the aid of migration entry ptes like everything else? So lose that comment now, and enable migration entries for swapcache in the next patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
5c3f9a6737 |
mm: page migration remove_migration_ptes at lock+unlock level
Clean up page migration a little more by calling remove_migration_ptes() from the same level, on success or on failure, from __unmap_and_move() or from unmap_and_move_huge_page(). Don't reset page->mapping of a PageAnon old page in move_to_new_page(), leave that to when the page is freed. Except for here in page migration, it has been an invariant that a PageAnon (bit set in page->mapping) page stays PageAnon until it is freed, and I think we're safer to keep to that. And with the above rearrangement, it's necessary because zap_pte_range() wants to identify whether a migration entry represents a file or an anon page, to update the appropriate rss stats without waiting on it. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
7db7671f83 |
mm: page migration trylock newpage at same level as oldpage
Clean up page migration a little by moving the trylock of newpage from move_to_new_page() into __unmap_and_move(), where the old page has been locked. Adjust unmap_and_move_huge_page() and balloon_page_migrate() accordingly. But make one kind-of-functional change on the way: whereas trylock of newpage used to BUG() if it failed, now simply return -EAGAIN if so. Cutting out BUG()s is good, right? But, to be honest, this is really to extend the usefulness of the custom put_new_page feature, allowing a pool of new pages to be shared perhaps with racing uses. Use an "else" instead of that "skip_unmap" label. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
2def7424c9 |
mm: page migration use the put_new_page whenever necessary
I don't know of any problem from the way it's used in our current tree, but there is one defect in page migration's custom put_new_page feature. An unused newpage is expected to be released with the put_new_page(), but there was one MIGRATEPAGE_SUCCESS (0) path which released it with putback_lru_page(): which can be very wrong for a custom pool. Fixed more easily by resetting put_new_page once it won't be needed, than by adding a further flag to modify the rc test. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
14e0f9bcc9 |
mm: correct a couple of page migration comments
It's migrate.c not migration,c, and nowadays putback_movable_pages() not putback_lru_pages(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
45637bab30 |
mm: rename mem_cgroup_migrate to mem_cgroup_replace_page
After v4.3's commit 0610c25daa3e ("memcg: fix dirty page migration") mem_cgroup_migrate() doesn't have much to offer in page migration: convert migrate_misplaced_transhuge_page() to set_page_memcg() instead. Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its remaining callers are replace_page_cache_page() and shmem_replace_page(): both of whom passed lrucare true, so just eliminate that argument. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
51afb12ba8 |
mm: page migration fix PageMlocked on migrated pages
Commit e6c509f85455 ("mm: use clear_page_mlock() in page_remove_rmap()") in v3.7 inadvertently made mlock_migrate_page() impotent: page migration unmaps the page from userspace before migrating, and that commit clears PageMlocked on the final unmap, leaving mlock_migrate_page() with nothing to do. Not a serious bug, the next attempt at reclaiming the page would fix it up; but a betrayal of page migration's intent - the new page ought to emerge as PageMlocked. I don't see how to fix it for mlock_migrate_page() itself; but easily fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma is VM_LOCKED - under pte lock as in try_to_unmap_one(). Delete mlock_migrate_page()? Not quite, it does still serve a purpose for migrate_misplaced_transhuge_page(): where we could replace it by a test, clear_page_mlock(), mlock_vma_page() sequence; but would that be an improvement? mlock_migrate_page() is fairly lean, and let's make it leaner by skipping the irq save/restore now clearly not needed. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
f2f81fb2b7 |
mm, migrate: count pages failing all retries in vmstat and tracepoint
Migration tries up to 10 times to migrate pages that return -EAGAIN until it gives up. If some pages fail all retries, they are counted towards the number of failed pages that migrate_pages() returns. They should also be counted in the /proc/vmstat pgmigrate_fail and in the mm_migrate_pages tracepoint. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
0610c25daa |
memcg: fix dirty page migration
The problem starts with a file backed dirty page which is charged to a memcg. Then page migration is used to move oldpage to newpage. Migration: - copies the oldpage's data to newpage - clears oldpage.PG_dirty - sets newpage.PG_dirty - uncharges oldpage from memcg - charges newpage to memcg Clearing oldpage.PG_dirty decrements the charged memcg's dirty page count. However, because newpage is not yet charged, setting newpage.PG_dirty does not increment the memcg's dirty page count. After migration completes newpage.PG_dirty is eventually cleared, often in account_page_cleaned(). At this time newpage is charged to a memcg so the memcg's dirty page count is decremented which causes underflow because the count was not previously incremented by migration. This underflow causes balance_dirty_pages() to see a very large unsigned number of dirty memcg pages which leads to aggressive throttling of buffered writes by processes in non root memcg. This issue: - can harm performance of non root memcg buffered writes. - can report too small (even negative) values in memory.stat[(total_)dirty] counters of all memcg, including the root. To avoid polluting migrate.c with #ifdef CONFIG_MEMCG checks, introduce page_memcg() and set_page_memcg() helpers. Test: 0) setup and enter limited memcg mkdir /sys/fs/cgroup/test echo 1G > /sys/fs/cgroup/test/memory.limit_in_bytes echo $$ > /sys/fs/cgroup/test/cgroup.procs 1) buffered writes baseline dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k sync grep ^dirty /sys/fs/cgroup/test/memory.stat 2) buffered writes with compaction antagonist to induce migration yes 1 > /proc/sys/vm/compact_memory & rm -rf /data/tmp/foo dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k kill % sync grep ^dirty /sys/fs/cgroup/test/memory.stat 3) buffered writes without antagonist, should match baseline rm -rf /data/tmp/foo dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k sync grep ^dirty /sys/fs/cgroup/test/memory.stat (speed, dirty residue) unpatched patched 1) 841 MB/s 0 dirty pages 886 MB/s 0 dirty pages 2) 611 MB/s -33427456 dirty pages 793 MB/s 0 dirty pages 3) 114 MB/s -33427456 dirty pages 891 MB/s 0 dirty pages Notice that unpatched baseline performance (1) fell after migration (3): 841 -> 114 MB/s. In the patched kernel, post migration performance matches baseline. Fixes: c4843a7593a9 ("memcg: add per cgroup dirty page accounting") Signed-off-by: Greg Thelen <gthelen@google.com> Reported-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
3aaa76e125 |
mm: migrate: hugetlb: putback destination hugepage to active list
Since commit bcc54222309c ("mm: hugetlb: introduce page_huge_active") each hugetlb page maintains its active flag to avoid a race condition betwe= en multiple calls of isolate_huge_page(), but current kernel doesn't set the f= lag on a hugepage allocated by migration because the proper putback routine isn= 't called. This means that users could still encounter the race referred to by bcc54222309c in this special case, so this patch fixes it. Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andi Kleen <andi@firstfloor.org> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> [4.1.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
33c3fc71c8 |
mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
96db800f5d |
mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047ac301 ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb43f8e ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Robin Holt <robinmholt@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
da1b13ccfb |
mm/hwpoison: fix race between soft_offline_page and unpoison_memory
Wanpeng Li reported a race between soft_offline_page() and unpoison_memory(), which causes the following kernel panic: BUG: Bad page state in process bash pfn:97000 page:ffffea00025c0000 count:0 mapcount:1 mapping: (null) index:0x7f4fdbe00 flags: 0x1fffff80080048(uptodate|active|swapbacked) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: flags: 0x40(active) Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 nfsv4 dns_resolver bnep rfcomm nfsd bluetooth auth_rpcgss nfs_acl nfs rfkill lockd grace sunrpc i2c_algo_bit drm_kms_helper snd_hda_codec_realtek snd_hda_codec_generic drm snd_hda_intel fscache snd_hda_codec x86_pkg_temp_thermal coretemp kvm_intel snd_hda_core snd_hwdep kvm snd_pcm snd_seq_dummy snd_seq_oss crct10dif_pclmul snd_seq_midi crc32_pclmul snd_seq_midi_event ghash_clmulni_intel snd_rawmidi aesni_intel lrw gf128mul snd_seq glue_helper ablk_helper snd_seq_device cryptd fuse snd_timer dcdbas serio_raw mei_me parport_pc snd mei ppdev i2c_core video lp soundcore parport lpc_ich shpchp mfd_core ext4 mbcache jbd2 sd_mod e1000e ahci ptp libahci crc32c_intel libata pps_core CPU: 3 PID: 2211 Comm: bash Not tainted 4.2.0-rc5-mm1+ #45 Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015 Call Trace: dump_stack+0x48/0x5c bad_page+0xe6/0x140 free_pages_prepare+0x2f9/0x320 ? uncharge_list+0xdd/0x100 free_hot_cold_page+0x40/0x170 __put_single_page+0x20/0x30 put_page+0x25/0x40 unmap_and_move+0x1a6/0x1f0 migrate_pages+0x100/0x1d0 ? kill_procs+0x100/0x100 ? unlock_page+0x6f/0x90 __soft_offline_page+0x127/0x2a0 soft_offline_page+0xa6/0x200 This race is explained like below: CPU0 CPU1 soft_offline_page __soft_offline_page TestSetPageHWPoison unpoison_memory PageHWPoison check (true) TestClearPageHWPoison put_page -> release refcount held by get_hwpoison_page in unpoison_memory put_page -> release refcount held by isolate_lru_page in __soft_offline_page migrate_pages The second put_page() releases refcount held by isolate_lru_page() which will lead to unmap_and_move() releases the last refcount of page and w/ mapcount still 1 since try_to_unmap() is not called if there is only one user map the page. Anyway, the page refcount and mapcount will still mess if the page is mapped by multiple users. This race was introduced by commit 4491f71260 ("mm/memory-failure: set PageHWPoison before migrate_pages()"), which focuses on preventing the reuse of successfully migrated page. Before this commit we prevent the reuse by changing the migratetype to MIGRATE_ISOLATE during soft offlining, which has the following problems, so simply reverting the commit is not a best option: 1) it doesn't eliminate the reuse completely, because set_migratetype_isolate() can fail to set MIGRATE_ISOLATE to the target page if the pageblock of the page contains one or more unmovable pages (i.e. has_unmovable_pages() returns true). 2) the original code changes migratetype to MIGRATE_ISOLATE forcibly, and sets it to MIGRATE_MOVABLE forcibly after soft offline, regardless of the original migratetype state, which could impact other subsystems like memory hotplug or compaction. This patch moves PageSetHWPoison just after put_page() in unmap_and_move(), which closes up the reported race window and minimizes another race window b/w SetPageHWPoison and reallocation (which causes the reuse of soft-offlined page.) The latter race window still exists but it's acceptable, because it's rare and effectively the same as ordinary "containment failure" case even if it happens, so keep the window open is acceptable. Fixes: 4491f71260 ("mm/memory-failure: set PageHWPoison before migrate_pages()") Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Wanpeng Li <wanpeng.li@hotmail.com> Tested-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d899844e9c |
mm: fix status code which move_pages() returns for zero page
The manpage for move_pages(2) specifies that status code for zero page is supposed to be -EFAULT. Currently kernel return -ENOENT in this case. follow_page() can do it for us, if we would ask for FOLL_DUMP. The use of FOLL_DUMP also means that the upper layer page tables pages are no longer allocated. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
4491f71260 |
mm/memory-failure: set PageHWPoison before migrate_pages()
Now page freeing code doesn't consider PageHWPoison as a bad page, so by setting it before completing the page containment, we can prevent the error page from being reused just after successful page migration. I added TTU_IGNORE_HWPOISON for try_to_unmap() to make sure that the page table entry is transformed into migration entry, not to hwpoison entry. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dean Nelson <dnelson@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
f4c18e6f7b |
mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*
The race condition addressed in commit add05cecef80 ("mm: soft-offline: don't free target page in successful page migration") was not closed completely, because that can happen not only for soft-offline, but also for hard-offline. Consider that a slab page is about to be freed into buddy pool, and then an uncorrected memory error hits the page just after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not necessary because the data on the affected page is not consumed. To solve it, this patch drops __PG_HWPOISON from page flag checks at allocation/free time. I think it's justified because __PG_HWPOISON flags is defined to prevent the page from being reused, and setting it outside the page's alloc-free cycle is a designed behavior (not a bug.) For recent months, I was annoyed about BUG_ON when soft-offlined page remains on lru cache list for a while, which is avoided by calling put_page() instead of putback_lru_page() in page migration's success path. This means that this patch reverts a major change from commit add05cecef80 about the new refcounting rule of soft-offlined pages, so "reuse window" revives. This will be closed by a subsequent patch. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dean Nelson <dnelson@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
8809aa2d28 |
mm: clarify that the function operates on hugepage pte
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add _huge_ to pmdp_clear functions so that we are clear that they operate on hugepage pte. We don't bother about other functions like pmdp_set_wrprotect, pmdp_clear_flush_young, because they operate on PTE bits and hence indicate they are operating on hugepage ptes Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
add05cecef |
mm: soft-offline: don't free target page in successful page migration
Stress testing showed that soft offline events for a process iterating "mmap-pagefault-munmap" loop can trigger VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page(): Soft offlining page 0x70fe1 at 0x70100008d000 Soft offlining page 0x705fb at 0x70300008d000 page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2 flags: 0x1fffff80800000(hwpoison) page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1)) ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/page_alloc.c:585! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139 RIP: free_pcppages_bulk+0x52a/0x6f0 Call Trace: drain_pages_zone+0x3d/0x50 drain_local_pages+0x1d/0x30 on_each_cpu_mask+0x46/0x80 drain_all_pages+0x14b/0x1e0 soft_offline_page+0x432/0x6e0 SyS_madvise+0x73c/0x780 system_call_fastpath+0x12/0x17 Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0 RSP <ffff88007a117d28> ---[ end trace 53926436e76d1f35 ]--- When soft offline successfully migrates page, the source page is supposed to be freed. But there is a race condition where a source page looks isolated (i.e. the refcount is 0 and the PageHWPoison is set) but somewhat linked to pcplist. Then another soft offline event calls drain_all_pages() and tries to free such hwpoisoned page, which is forbidden. This odd page state seems to happen due to the race between put_page() in putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play with tweaking drain code as done in commit 9ab3b598d2df "mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()", or to change page freeing code for this soft offline's purpose. Instead, let's think about the difference between hard offline and soft offline. There is an interesting difference in how to isolate the in-use page between these, that is, hard offline marks PageHWPoison of the target page at first, and doesn't free it by keeping its refcount 1. OTOH, soft offline tries to free the target page then marks PageHWPoison. This difference might be the source of complexity and result in bugs like the above. So making soft offline isolate with keeping refcount can be a solution for this problem. We can pass to page migration code the "reason" which shows the caller, so let's use this more to avoid calling putback_lru_page() when called from soft offline, which effectively does the isolation for soft offline. With this change, target pages of soft offline never be reused without changing migratetype, so this patch also removes the related code. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |