Fix the incorrect classification of DSP clock into a
seperate DSP domain on DM646x.
Per the reference guide (http://www.ti.com/lit/ug/spruep9e/spruep9e.pdf)
there is only one "AlwaysON" power domain on DM6467.
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Davinci platforms may define a default queue for each channel
controller. If one is not defined, the default queue is set to EVENTQ_1.
However, there's no way to distinguish between an unset default queue to
one that is set to EVENTQ_0, as EVENTQ_0 = 0.
Explicitly specify the default queue for all channel controllers on all
Davinci platforms to EVENTQ_1, and don't overwrite it in the EDMA probe
function.
One exception is the DA850 board, for which EVENTQ_1 is not a valid
option for its second channel controller. Use EVENTQ_0 instead for that
channel controller.
Signed-off-by: Ido Yariv <ido@wizery.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
The <mach/gpio.h> file is included from upper directories
and deal with generic GPIO and gpiolib stuff. Break out the
platform and driver specific defines and functions into its own
header file.
Cc: Sekhar Nori <nsekhar@ti.com>
Cc: Kevin Hilman <khilman@ti.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'next/cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc: (133 commits)
ARM: EXYNOS4: Change devname for FIMD clkdev
ARM: S3C64XX: Cleanup mach/regs-fb.h from mach-s3c64xx
ARM: S5PV210: Cleanup mach/regs-fb.h from mach-s5pv210
ARM: S5PC100: Cleanup mach/regs-fb.h from mach-s5pc100
ARM: S3C24XX: Use generic s3c_set_platdata for devices
ARM: S3C64XX: Use generic s3c_set_platdata for OneNAND
ARM: SAMSUNG: Use generic s3c_set_platdata for NAND
ARM: SAMSUNG: Use generic s3c_set_platdata for USB OHCI
ARM: SAMSUNG: Use generic s3c_set_platdata for HWMON
ARM: SAMSUNG: Use generic s3c_set_platdata for FB
ARM: SAMSUNG: Use generic s3c_set_platdata for TS
ARM: S3C64XX: Add PWM backlight support on SMDK6410
ARM: S5P64X0: Add PWM backlight support on SMDK6450
ARM: S5P64X0: Add PWM backlight support on SMDK6440
ARM: S5PC100: Add PWM backlight support on SMDKC100
ARM: S5PV210: Add PWM backlight support on SMDKV210
ARM: EXYNOS4: Add PWM backlight support on SMDKC210
ARM: EXYNOS4: Add PWM backlight support on SMDKV310
ARM: SAMSUNG: Create a common infrastructure for PWM backlight support
clocksource: convert 32-bit down counting clocksource on S5PV210/S5P64X0
...
Fix up trivial conflict in arch/arm/mach-imx/mach-scb9328.c
The DM6467 and DM6467T EVMs use different reference clock
frequencies. This difference is currently supported by having
the SoC code call a public board routine which sets up the reference
clock frequency. This does not scale as more boards are added.
Instead, use the clk_set_rate() API to setup the reference clock
frequency to a different value from the board file.
Suggested-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Acked-by: Kevin Hilman <khilman@ti.com>
Remove linux/mm.h inclusion from netdevice.h -- it's unused (I've checked manually).
To prevent mm.h inclusion via other channels also extract "enum dma_data_direction"
definition into separate header. This tiny piece is what gluing netdevice.h with mm.h
via "netdevice.h => dmaengine.h => dma-mapping.h => scatterlist.h => mm.h".
Removal of mm.h from scatterlist.h was tried and was found not feasible
on most archs, so the link was cutoff earlier.
Hope people are OK with tiny include file.
Note, that mm_types.h is still dragged in, but it is a separate story.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On Davinci SRAM is mapped as MT_DEVICE becasue of the section
mapping pre-requisite instead of intended MT_MEMORY_NONCACHED
Since the section mapping limitation gets fixed with first
patch in this series, the MT_MEMORY_NONCACHED can be used now.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch removes davinci architecture code that has now been rendered
useless by the previous patches in the MDIO separation series.
In addition, the earlier phy_mask definitions have been replaced with
corresponding phy_id definitions.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Michael Williamson <michael.williamson@criticallink.com>
Tested-by: Caglar Akyuz <caglarakyuz@gmail.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch adds mdio platform devices on SoCs that have the necessary
hardware. Clock lookup entries (aliases) have also been added, so that the
MDIO and EMAC drivers can independently enable/disable a shared underlying
clock. Further, the EMAC MMR region has been split down into separate MDIO
and EMAC regions.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Michael Williamson <michael.williamson@criticallink.com>
Tested-by: Caglar Akyuz <caglarakyuz@gmail.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Not all the channels and slots available on the DM646x EVM
are used by the devices on the EVM. These resources can be
used by the DSP to speed up codec operations.
This patch reserves these channels for the DSP.
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the EDMA driver to expect the channel
controller (CC) infomation passed on by the platform as a fixed
size (EDMA_MAX_CC) array of pointers to structures.
Doing so helps catch errors of the sort where the resource
structure has information for more channel controllers than
the number channel controller info structures defined.
Such insufficient platform data would lead to illegal memory
accesses.
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the pinmux implementation so as to ioremap() the pinmux
register area on first use.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch implements the following:
- interrupt initialization uses ioremap() instead of passing a virtual address
via davinci_soc_info.
- machine definitions directly point to cp_intc_init() or davinci_irq_init()
- davinci_intc_type and davinci_intc_base now get initialized in controller
specific init functions instead of davinci_common_init()
- minor fix in davinci_irq_init() to use intc_irq_num instead of
DAVINCI_N_AINTC_IRQ
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the psc and clock control code to use ioremap()ed
registers.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch replaces the jtag id base info in davinci_soc_info with a physical
address which is then ioremap()ed within common code.
This patch (in combination with a similar change for PSC) will allow us to
eliminate the SYSCFG nastiness in DA8xx code.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the gpio_base definition in davinci_soc_info to be a
physical address, which is then ioremap()ed by the gpio initialization
function.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The earlier watchdog reset mechanism had a couple of limitations. First, it
embedded a reference to "davinci_wdt_device" inside common code. This
forced all derived platforms (da8xx and tnetv107x) to define such a device.
This also would have caused problems in including multiple socs in a single
build due to symbol redefinition.
With this patch, davinci_watchdog_reset() now takes the platform device as an
argument. The davinci_soc_info struct has been extended to include a reset
function and a watchdog platform_device. arch_reset() then uses these
elements to reset the system in a SoC specific fashion.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Sandeep Paulraj <s-paulraj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Pinmux registers are sequential, and do not need to be enumerated out as they
currently are. This reduces code volume and keeps things simple.
If some future SoC comes up with a discontiguous register map, PINMUX() can
then be expanded with local token pasting.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch allows for gpio controllers that deviate from those found on
traditional davinci socs. davinci_soc_info has an added field to indicate the
soc-specific gpio controller type. The gpio initialization code then bails
out if necessary.
More elements (tnetv107x) to be added later into enum davinci_gpio_type.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Sandeep Paulraj <s-paulraj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The IDE platform device is registered in three different places (2 board files
for DM644x and in dm646x.c for DM646x) while both the IDE base address and the
IDE IRQ are the same for both SoCs -- therefore, the proper place for the IDE
platform seems to be in devices.c. Merge the IDE platform data and registration
code and create davinci_init_ide() in place of dm646x_init_ide()...
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Remove unneeded 'struct davinci_clk' wrapper around 'struct clk_lookup'
and use clkdev_add_table() to add the list of clocks in one go.
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Currently, the edma_noevent list is passed from platform data.
But on some architectures, there will be many EDMA channels
which will not be used at all. This patch scans all the
platform devices and then builds a list of events which are
not being used. The unused event list will be used to allocate
EDMA channels in case of EDMA_CHANNEL_ANY usage instead of the
edma_noevent being used earlier for this purpose.
This patch is based on David Brownells's suggestion at
http://article.gmane.org/gmane.linux.davinci/15176.
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
DM6467T (T for Turbo) is a newer and faster DM6467
part from TI. The new part supports 1080p video and
has the ARM running at 495MHz. More SoC information:
http://focus.ti.com/docs/prod/folders/print/tms320dm6467t.html
Spectrum Digital, Inc has a new EVM for this part.
It is _mostly_ same as the older DM6467 EVM except
for a 33MHz crystal input and THS8200 video encoder
for 1080p support.
The meat of this patch is dedicated to initializing
the crystal frequency from EVM board file.
Additional notes:
I did consider some alternative ways to make the crystal
input board specific including - (1) having board code
initialize the crystal frequency using the first member
of soc_info->cpu_clks array (2) introducing a new ref_clk_rate
member in soc_info structure.
But, the current way seems to be the simplest and least
intruding considering that both the clock array and SoC
info structure are actually private to the SoC file. Also
the fact that davinci_common_init() initializes both the
soc_info and clocks in one go.
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
There have accumulated quite a lot of them after the code reorganizations...
In several cases I had to replace #include <linux/dma-mapping.h> which wasn't
needed directly but happened to #include <linux/err.h> which was needed.
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
DM6467 silicon revisions 3.x have variant field in JTAGID register as '1'.
This path adds entry for the same in dm646x_ids to be able to boot on boards
with 3.x revision chips.
Also modifies name for 'variant=0' (revisions 1.0, 1.1).
Signed-off-by: Hemant Pedanekar <hemantp@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
VPIF display changes (Chaithrika)
Add platform device and resource structures. Also define a platform specific
clock setup function that can be accessed by the driver to configure the clock
and CPLD.
VPIF caputure changes (Murali)
1) Modify vpif_subdev_info to add board_info, routing information and
vpif interface configuration. Remove addr since it is part of
board_info
2) Add code to setup channel mode and input decoder path for vpif
capture driver
Also incorporated comments against version v0 of the patch series and
added a spinlock to protect writes to common registers
Tested on DM6467 on channel 0 using TVP514x. Following bootargs used
for drivers:
vpif_capture.ch0_bufsize=829440 vpif_display.ch2_bufsize=829440
Signed-off-by: Manjunath Hadli <mrh@ti.com>
Signed-off-by: Brijesh Jadav <brijesh.j@ti.com>
Signed-off-by: Chaithrika U S <chaithrika@ti.com>
Reviewed-by: Hans Verkuil <hverkuil@xs4all.nl>
Signed-off-by: Muralidharan Karicheri <m-karicheri2@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
There is no need to pass clock name strings in platform_data.
Instead, setup clkdev nodes to have correct ASoC device names.
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch adds platform data and init function for IDE which could be called
from board specific file to register IDE device.
Note that for 594MHz device the transfer mode is limited to UDMA4 since ideclk
rate is less than 100 MHz, which forces udma_mask in palm_bk3710.c to UDMA4,
while for 729MHz device, it is UDMA5.
Signed-off-by: Hemant Pedanekar <hemantp@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch adds clock data for IDE and also updates pin mux mask for ATA so as
to disable PCI when ATA is selected.
Signed-off-by: Hemant Pedanekar <hemantp@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
1) Registers the platform devices for ASP on dm355, dm644x and dm646x
so that the machine driver can probe to get ASP related platform
data.
2) Move towards definition of the asp clocks using physical name(for
dm355 and dm644x)
3) Add platform data to board specific files.
Signed-off-by: Naresh Medisetty <naresh@ti.com>
Signed-off-by: Chaithrika U S <chaithrika@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Adds McASP clock support for the two instances of mcasp (mcasp0,mcasp1). This
patch is part of the audio support for dm646x series.
Signed-off-by: Naresh Medisetty <naresh@ti.com>
Signed-off-by: Chaithrika U S <chaithrika@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
- restructure to support multiple channel controllers by using
additional struct resources for each CC
- interface changes visible to EDMA clients
Introduce macros to build IDs from controller and channel number,
and to extract them. Modify the edma_alloc_slot function to take an
extra argument for the controller.
Also update ASoC drivers to use API. ASoC changes
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
- Move queue related mappings to dm<soc>.c
EDMA in DM355 and DM644x has two transfer controllers while DM646x
has four transfer controllers. Moving the queue to tc mapping and
queue priority mapping to dm<soc>.c will be helpful to probe these
mappings from platform device so that the machine_is_* testing will
be avoided.
- add channel mapping logic
Channel mapping logic is introduced in dm646x EDMA. This implies
that there is no fixed association for a channel number to a
parameter entry number. In other words, using the DMA channel
mapping registers (DCHMAPn), a PaRAM entry can be mapped to any
channel. While in the case of dm644x and dm355 there is a fixed
mapping between the EDMA channel and Param entry number.
Signed-off-by: Naresh Medisetty <naresh@ti.com>
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Reviewed-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Package on-chip SRAM. It's always accessible from the ARM, so
set up a standardized virtual address mapping into a 128 KiB
area that's reserved for platform use.
In some cases (dm6467) the physical addresses used for EDMA are
not the same as the ones used by the ARM ... so record that info
separately in the SOC data, for chips (unlike the OMAP-L137)
where SRAM may be used with EDMA.
Other blocks of SRAM, such as the ETB buffer or DSP L1/L2 RAM,
may be unused/available on some system. They are ignored here.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Different SoC have different numbers of pinmux registers and other
resources that overlap with each other. To clean up the code and
eliminate defines that overlap with each other, move the PINMUX
defines to the SoC specific files.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Since most of the emac platform_data is really SoC specific
and not board specific, move it to the SoC-specific files.
Put a pointer to the platform_data in the soc_info structure
so the board-specific code can set some of the platform_data
if it needs to.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Currently, there is one set of platform_device and platform_data
structures for all DaVinci SoCs. The differences in the data
between the various SoCs is handled by davinci_serial_init()
by checking the SoC type. However, as new SoCs appear, this
routine will become more & more cluttered.
To clean up the routine and make it easier to add support for new
SoCs, move the platform_device and platform_data structures into the
SoC-specific code and use the SoC infrastructure to provide access
to the data.
In the process, fix a bug where the wrong irq is used for uart2
of the dm646x.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The current gpio code needs to know the number of
gpio irqs there are and what the bank irq number is.
To determine those values, it checks the SoC type.
It also assumes that the base address and the number
of irqs the interrupt controller uses is fixed.
To clean up the SoC checks and make it support
different base addresses and interrupt controllers,
have the SoC-specific code set those values in
the soc_info structure and have the gpio code
reference them there.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The watchdog code currently hardcodes the base address
of the timer its using. To support new SoCs, make it
support timers at any address. Use the soc_info structure
to do this.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The davinci timer code currently hardcodes the timer register
base addresses, the timer irq numbers, and the timers to use
for clock events and clocksource. This won't work for some
a new SoC so put those values into the soc_info structure
and set them up in the SoC-specific files.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Use the SoC infrastructure to hold the interrupt controller
information (i.e., base address, default priorities,
interrupt controller type, and the number of IRQs).
The interrupt controller base, although initially put
in the soc_info structure's intc_base field, is eventually
put in the global 'davinci_intc_base' so the low-level
interrupt code can access it without a dereference.
These changes enable the SoC default irq priorities to be
put in the SoC-specific files, and the interrupt controller
to be at any base address.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The pinmux register base and setup can be different for different
SoCs so move the pinmux reg base, pinmux table (and its size) to
the SoC infrastructure.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The current code to support the DaVinci Power and Sleep Controller (PSC)
assumes that there is only one controller. This assumption is no longer
valid so expand the support to allow greater than one PSC.
To accomplish this, put the base addresses for the PSCs in the SoC
infrastructure so it can be referenced by the PSC code. This also
requires adding an extra parameter to davinci_psc_config() to specify
the PSC that is to be enabled/disabled.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
All of the davinci SoCs need to call davinci_clk_init() so
put the call in the common init routine.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The Davinci cpu_is_davinci_*() macros use the SoC part number
and variant retrieved from the JTAG ID register to determine the
type of cpu that the kernel is running on. Currently, the code to
read the JTAG ID register assumes that the register is always at
the same base address. This isn't true on some newer SoCs.
To solve this, have the SoC-specific code set the JTAG ID register
base address in soc_info structure and add a 'cpu_id' member to it.
'cpu_id' will be used by the cpu_is_davinci_*() macros to match
the cpu id. Also move the info used to identify the cpu type into
the SoC-specific code to keep all SoC-specific code together.
The common code will read the JTAG ID register, search through
an array of davinci_id structures to identify the cpu type.
Once identified, it will set the 'cpu_id' member of the soc_info
structure to the proper value and the cpu_is_davinci_*() macros
will now work.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Create a structure to encapsulate SoC-specific information.
This will assist in generalizing code so it can be used by
different SoCs that have similar hardware but with minor
differences such as having a different base address.
The idea is that the code for each SoC fills out a structure
with the correct information. The board-specific code then
calls the SoC init routine which in turn will call a common
init routine that makes a copy of the structure, maps in I/O
regions, etc.
After initialization, code can get a pointer to the structure
by calling davinci_get_soc_info(). Eventually, the common
init routine will make a copy of all of the data pointed to
by the structure so the original data can be made __init_data.
That way the data for SoC's that aren't being used won't consume
memory for the entire life of the kernel.
The structure will be extended in subsequent patches but
initially, it holds the map_desc structure for any I/O
regions the SoC/board wants statically mapped.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>