Currently, pages which are marked as unevictable are protected from
compaction, but not from other types of migration. The POSIX real time
extension explicitly states that mlock() will prevent a major page
fault, but the spirit of this is that mlock() should give a process the
ability to control sources of latency, including minor page faults.
However, the mlock manpage only explicitly says that a locked page will
not be written to swap and this can cause some confusion. The
compaction code today does not give a developer who wants to avoid swap
but wants to have large contiguous areas available any method to achieve
this state. This patch introduces a sysctl for controlling compaction
behavior with respect to the unevictable lru. Users who demand no page
faults after a page is present can set compact_unevictable_allowed to 0
and users who need the large contiguous areas can enable compaction on
locked memory by leaving the default value of 1.
To illustrate this problem I wrote a quick test program that mmaps a
large number of 1MB files filled with random data. These maps are
created locked and read only. Then every other mmap is unmapped and I
attempt to allocate huge pages to the static huge page pool. When the
compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages
after fragmenting memory. When the value is set to 1, allocations
succeed.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmstat interfaces are good at hiding negative counts (at least when
CONFIG_SMP); but if you peer behind the curtain, you find that
nr_isolated_anon and nr_isolated_file soon go negative, and grow ever
more negative: so they can absorb larger and larger numbers of isolated
pages, yet still appear to be zero.
I'm happy to avoid a congestion_wait() when too_many_isolated() myself;
but I guess it's there for a good reason, in which case we ought to get
too_many_isolated() working again.
The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case:
putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot
to call acct_isolated() to increment them.
It is possible that the bug whcih this patch fixes could cause OOM kills
when the system still has a lot of reclaimable page cache.
Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, freepage isolation in one pageblock doesn't consider how many
freepages we isolate. When I traced flow of compaction, compaction
sometimes isolates more than 256 freepages to migrate just 32 pages.
In this patch, freepage isolation is stopped at the point that we
have more isolated freepage than isolated page for migration. This
results in slowing down free page scanner and make compaction success
rate higher.
stress-highalloc test in mmtests with non movable order 7 allocation shows
increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
27.13 : 31.82
pfn where both scanners meets on compaction complete
(separate test due to enormous tracepoint buffer)
(zone_start=4096, zone_end=1048576)
586034 : 654378
In fact, I didn't fully understand why this patch results in such good
result. There was a guess that not used freepages are released to pcp list
and on next compaction trial we won't isolate them again so compaction
success rate would decrease. To prevent this effect, I tested with adding
pcp drain code on release_freepages(), but, it has no good effect.
Anyway, this patch reduces waste time to isolate unneeded freepages so
seems reasonable.
Vlastimil said:
: I briefly tried it on top of the pivot-changing series and with order-9
: allocations it reduced free page scanned counter by almost 10%. No effect
: on success rates (maybe because pivot changing already took care of the
: scanners meeting problem) but the scanning reduction is good on its own.
:
: It also explains why e14c720efd ("mm, compaction: remember position
: within pageblock in free pages scanner") had less than expected
: improvements. It would only actually stop within pageblock in case of
: async compaction detecting contention. I guess that's also why the
: infinite loop problem fixed by 1d5bfe1ffb affected so relatively few
: people.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What we want to check here is whether there is highorder freepage in buddy
list of other migratetype in order to steal it without fragmentation.
But, current code just checks cc->order which means allocation request
order. So, this is wrong.
Without this fix, non-movable synchronous compaction below pageblock order
would not stopped until compaction is complete, because migratetype of
most pageblocks are movable and high order freepage made by compaction is
usually on movable type buddy list.
There is some report related to this bug. See below link.
http://www.spinics.net/lists/linux-mm/msg81666.html
Although the issued system still has load spike comes from compaction,
this makes that system completely stable and responsive according to his
report.
stress-highalloc test in mmtests with non movable order 7 allocation
doesn't show any notable difference in allocation success rate, but, it
shows more compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
18.47 : 28.94
Fixes: 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page immediately when it is made available")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction deferring logic is heavy hammer that block the way to the
compaction. It doesn't consider overall system state, so it could prevent
user from doing compaction falsely. In other words, even if system has
enough range of memory to compact, compaction would be skipped due to
compaction deferring logic. This patch add new tracepoint to understand
work of deferring logic. This will also help to check compaction success
and fail.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not well analyzed that when/why compaction start/finish or not.
With these new tracepoints, we can know much more about start/finish
reason of compaction. I can find following bug with these tracepoint.
http://www.spinics.net/lists/linux-mm/msg81582.html
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It'd be useful to know current range where compaction work for detailed
analysis. With it, we can know pageblock where we actually scan and
isolate, and, how much pages we try in that pageblock and can guess why it
doesn't become freepage with pageblock order roughly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We now have tracepoint for begin event of compaction and it prints start
position of both scanners, but, tracepoint for end event of compaction
doesn't print finish position of both scanners. It'd be also useful to
know finish position of both scanners so this patch add it. It will help
to find odd behavior or problem on compaction internal logic.
And mode is added to both begin/end tracepoint output, since according to
mode, compaction behavior is quite different.
And lastly, status format is changed to string rather than status number
for readability.
[akpm@linux-foundation.org: fix sparse warning]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Expand the usage of the struct alloc_context introduced in the previous
patch also for calling try_to_compact_pages(), to reduce the number of its
parameters. Since the function is in different compilation unit, we need
to move alloc_context definition in the shared mm/internal.h header.
With this change we get simpler code and small savings of code size and stack
usage:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
function old new delta
__alloc_pages_direct_compact 283 256 -27
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
function old new delta
try_to_compact_pages 582 569 -13
Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
scripts/checkstack.pl).
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of memory compaction is to create high-order freepages through
page migration. Page migration however puts pages on the per-cpu lru_add
cache, which is later flushed to per-cpu pcplists, and only after pcplists
are drained the pages can actually merge. This can happen due to the
per-cpu caches becoming full through further freeing, or explicitly.
During direct compaction, it is useful to do the draining explicitly so
that pages merge as soon as possible and compaction can detect success
immediately and keep the latency impact at minimum. However the current
implementation is far from ideal. Draining is done only in
__alloc_pages_direct_compact(), after all zones were already compacted,
and the decisions to continue or stop compaction in individual zones was
done without the last batch of migrations being merged. It is also
missing the draining of lru_add cache before the pcplists.
This patch moves the draining for direct compaction into compact_zone().
It adds the missing lru_cache draining and uses the newly introduced
single zone pcplists draining to reduce overhead and avoid impact on
unrelated zones. Draining is only performed when it can actually lead to
merging of a page of desired order (passed by cc->order). This means it
is only done when migration occurred in the previously scanned cc->order
aligned block(s) and the migration scanner is now pointing to the next
cc->order aligned block.
The patch has been tested with stress-highalloc benchmark from mmtests.
Although overal allocation success rates of the benchmark were not
affected, the number of detected compaction successes has doubled. This
suggests that allocations were previously successful due to implicit
merging caused by background activity, making a later allocation attempt
succeed immediately, but not attributing the success to compaction. Since
stress-highalloc always tries to allocate almost the whole memory, it
cannot show the improvement in its reported success rate metric. However
after this patch, compaction should detect success and terminate earlier,
reducing the direct compaction latencies in a real scenario.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction caches the migration and free scanner positions between
compaction invocations, so that the whole zone gets eventually scanned and
there is no bias towards the initial scanner positions at the
beginning/end of the zone.
The cached positions are continuously updated as scanners progress and the
updating stops as soon as a page is successfully isolated. The reasoning
behind this is that a pageblock where isolation succeeded is likely to
succeed again in near future and it should be worth revisiting it.
However, the downside is that potentially many pages are rescanned without
successful isolation. At worst, there might be a page where isolation
from LRU succeeds but migration fails (potentially always). So upon
encountering this page, cached position would always stop being updated
for no good reason. It might have been useful to let such page be
rescanned with sync compaction after async one failed, but this is now
handled by caching scanner position for async and sync mode separately
since commit 35979ef339 ("mm, compaction: add per-zone migration pfn
cache for async compaction").
After this patch, cached positions are updated unconditionally. In
stress-highalloc benchmark, this has decreased the numbers of scanned
pages by few percent, without affecting allocation success rates.
To prevent free scanner from leaving free pages behind after they are
returned due to page migration failure, the cached scanner pfn is changed
to point to the pageblock of the returned free page with the highest pfn,
before leaving compact_zone().
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deferred compaction is employed to avoid compacting zone where sync direct
compaction has recently failed. As such, it makes sense to only defer
when a full zone was scanned, which is when compact_zone returns with
COMPACT_COMPLETE. It's less useful to defer when compact_zone returns
with apparent success (COMPACT_PARTIAL), followed by a watermark check
failure, which can happen due to parallel allocation activity. It also
does not make much sense to defer compaction which was completely skipped
(COMPACT_SKIP) for being unsuitable in the first place.
This patch therefore makes deferred compaction trigger only when
COMPACT_COMPLETE is returned from compact_zone(). Results of
stress-highalloc becnmark show the difference is within measurement error,
so the issue is rather cosmetic.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 53853e2d2b ("mm, compaction: defer each zone individually
instead of preferred zone"), compaction is deferred for each zone where
sync direct compaction fails, and reset where it succeeds. However, it
was observed that for DMA zone compaction often appeared to succeed
while subsequent allocation attempt would not, due to different outcome
of watermark check.
In order to properly defer compaction in this zone, the candidate zone
has to be passed back to __alloc_pages_direct_compact() and compaction
deferred in the zone after the allocation attempt fails.
The large source of mismatch between watermark check in compaction and
allocation was the lack of alloc_flags and classzone_idx values in
compaction, which has been fixed in the previous patch. So with this
problem fixed, we can simplify the code by removing the candidate_zone
parameter and deferring in __alloc_pages_direct_compact().
After this patch, the compaction activity during stress-highalloc
benchmark is still somewhat increased, but it's negligible compared to the
increase that occurred without the better watermark checking. This
suggests that it is still possible to apparently succeed in compaction but
fail to allocate, possibly due to parallel allocation activity.
[akpm@linux-foundation.org: fix build]
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction relies on zone watermark checks for decisions such as if it's
worth to start compacting in compaction_suitable() or whether compaction
should stop in compact_finished(). The watermark checks take
classzone_idx and alloc_flags parameters, which are related to the memory
allocation request. But from the context of compaction they are currently
passed as 0, including the direct compaction which is invoked to satisfy
the allocation request, and could therefore know the proper values.
The lack of proper values can lead to mismatch between decisions taken
during compaction and decisions related to the allocation request. Lack
of proper classzone_idx value means that lowmem_reserve is not taken into
account. This has manifested (during recent changes to deferred
compaction) when DMA zone was used as fallback for preferred Normal zone.
compaction_suitable() without proper classzone_idx would think that the
watermarks are already satisfied, but watermark check in
get_page_from_freelist() would fail. Because of this problem, deferring
compaction has extra complexity that can be removed in the following
patch.
The issue (not confirmed in practice) with missing alloc_flags is opposite
in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
CMA-enabled systems) the watermark checking in compaction with 0 passed
will be stricter than in get_page_from_freelist(). In these cases
compaction might be running for a longer time than is really needed.
Another issue compaction_suitable() is that the check for "does the zone
need compaction at all?" comes only after the check "does the zone have
enough free free pages to succeed compaction". The latter considers extra
pages for migration and can therefore in some situations fail and return
COMPACT_SKIPPED, although the high-order allocation would succeed and we
should return COMPACT_PARTIAL.
This patch fixes these problems by adding alloc_flags and classzone_idx to
struct compact_control and related functions involved in direct compaction
and watermark checking. Where possible, all other callers of
compaction_suitable() pass proper values where those are known. This is
currently limited to classzone_idx, which is sometimes known in kswapd
context. However, the direct reclaim callers should_continue_reclaim()
and compaction_ready() do not currently know the proper values, so the
coordination between reclaim and compaction may still not be as accurate
as it could. This can be fixed later, if it's shown to be an issue.
Additionaly the checks in compact_suitable() are reordered to address the
second issue described above.
The effect of this patch should be slightly better high-order allocation
success rates and/or less compaction overhead, depending on the type of
allocations and presence of CMA. It allows simplifying deferred
compaction code in a followup patch.
When testing with stress-highalloc, there was some slight improvement
(which might be just due to variance) in success rates of non-THP-like
allocations.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several people have reported occasionally seeing processes stuck in
compact_zone(), even triggering soft lockups, in 3.18-rc2+.
Testing a revert of commit e14c720efd ("mm, compaction: remember
position within pageblock in free pages scanner") fixed the issue,
although the stuck processes do not appear to involve the free scanner.
Finally, by code inspection, the bug was found in isolate_migratepages()
which uses a slightly different condition to detect if the migration and
free scanners have met, than compact_finished(). That has not been a
problem until commit e14c720efd allowed the free scanner position
between individual invocations to be in the middle of a pageblock.
In a relatively rare case, the migration scanner position can end up at
the beginning of a pageblock, with the free scanner position in the
middle of the same pageblock. If it's the migration scanner's turn,
isolate_migratepages() exits immediately (without updating the
position), while compact_finished() decides to continue compaction,
resulting in a potentially infinite loop. The system can recover only
if another process creates enough high-order pages to make the watermark
checks in compact_finished() pass.
This patch fixes the immediate problem by bumping the migration
scanner's position to meet the free scanner in isolate_migratepages(),
when both are within the same pageblock. This causes compact_finished()
to terminate properly. A more robust check in compact_finished() is
planned as a cleanup for better future maintainability.
Fixes: e14c720efd ("mm, compaction: remember position within pageblock in free pages scanner)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: P. Christeas <xrg@linux.gr>
Tested-by: P. Christeas <xrg@linux.gr>
Link: http://marc.info/?l=linux-mm&m=141508604232522&w=2
Reported-by: Norbert Preining <preining@logic.at>
Tested-by: Norbert Preining <preining@logic.at>
Link: https://lkml.org/lkml/2014/11/4/904
Reported-by: Pavel Machek <pavel@ucw.cz>
Link: https://lkml.org/lkml/2014/11/7/164
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7d49d88683 ("mm, compaction: reduce zone checking frequency in
the migration scanner") has a side-effect that changes the iteration
range calculation. Before the change, block_end_pfn is calculated using
start_pfn, but now it blindly adds pageblock_nr_pages to the previous
value.
This causes the problem that isolation_start_pfn is larger than
block_end_pfn when we isolate the page with more than pageblock order.
In this case, isolation would fail due to an invalid range parameter.
To prevent this, this patch implements skipping the range until a proper
target pageblock is met. Without this patch, CMA with more than
pageblock order always fails but with this patch it will succeed.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit edc2ca6124 ("mm, compaction: move pageblock checks up from
isolate_migratepages_range()") commonizes isolate_migratepages variants
and make them use isolate_migratepages_block().
isolate_migratepages_block() could stop the execution when enough pages
are isolated, but, there is no code in isolate_migratepages_range() to
handle this case. In the result, even if isolate_migratepages_block()
returns prematurely without checking all pages in the range,
isolate_migratepages_block() is called repeately on the following
pageblock and some pages in the previous range are skipped to check.
Then, CMA is failed frequently due to this fact.
To fix this problem, this patch let isolate_migratepages_range() know
the situation that enough pages are isolated and stop the isolation in
that case.
Note that isolate_migratepages() has no such problem, because, it always
stops the isolation after just one call of isolate_migratepages_block().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin reported KASAN splash inside isolate_migratepages_range().
Problem is in the function __is_movable_balloon_page() which tests
AS_BALLOON_MAP in page->mapping->flags. This function has no protection
against anonymous pages. As result it tried to check address space flags
inside struct anon_vma.
Further investigation shows more problems in current implementation:
* Special branch in __unmap_and_move() never works:
balloon_page_movable() checks page flags and page_count. In
__unmap_and_move() page is locked, reference counter is elevated, thus
balloon_page_movable() always fails. As a result execution goes to the
normal migration path. virtballoon_migratepage() returns
MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS,
move_to_new_page() thinks this is an error code and assigns
newpage->mapping to NULL. Newly migrated page lose connectivity with
balloon an all ability for further migration.
* lru_lock erroneously required in isolate_migratepages_range() for
isolation ballooned page. This function releases lru_lock periodically,
this makes migration mostly impossible for some pages.
* balloon_page_dequeue have a tight race with balloon_page_isolate:
balloon_page_isolate could be executed in parallel with dequeue between
picking page from list and locking page_lock. Race is rare because they
use trylock_page() for locking.
This patch fixes all of them.
Instead of fake mapping with special flag this patch uses special state of
page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256. Buddy allocator uses
PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose. Storing mark
directly in struct page makes everything safer and easier.
PagePrivate is used to mark pages present in page list (i.e. not
isolated, like PageLRU for normal pages). It replaces special rules for
reference counter and makes balloon migration similar to migration of
normal pages. This flag is protected by page_lock together with link to
the balloon device.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
C mm/compaction.o
mm/compaction.c: In function isolate_freepages_block:
mm/compaction.c:364:37: warning: flags may be used uninitialized in this function [-Wmaybe-uninitialized]
&& compact_unlock_should_abort(&cc->zone->lock, flags,
^
Signed-off-by: Xiubo Li <Li.Xiubo@freescale.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct compact_control currently converts the gfp mask to a migratetype,
but we need the entire gfp mask in a follow-up patch.
Pass the entire gfp mask as part of struct compact_control.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator has gfp flags (like __GFP_WAIT) and alloc flags (like
ALLOC_CPUSET) that have separate semantics.
The function allocflags_to_migratetype() actually takes gfp flags, not
alloc flags, and returns a migratetype. Rename it to
gfpflags_to_migratetype().
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.
Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates. This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.
This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.
It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same. But in theory
the compiler can replace the local variable by multiple inlines of
page_order(). Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.
Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner. The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike the migration scanner, the free scanner remembers the beginning of
the last scanned pageblock in cc->free_pfn. It might be therefore
rescanning pages uselessly when called several times during single
compaction. This might have been useful when pages were returned to the
buddy allocator after a failed migration, but this is no longer the case.
This patch changes the meaning of cc->free_pfn so that if it points to a
middle of a pageblock, that pageblock is scanned only from cc->free_pfn to
the end. isolate_freepages_block() will record the pfn of the last page
it looked at, which is then used to update cc->free_pfn.
In the mmtests stress-highalloc benchmark, this has resulted in lowering
the ratio between pages scanned by both scanners, from 2.5 free pages per
migrate page, to 2.25 free pages per migrate page, without affecting
success rates.
With __GFP_NO_KSWAPD allocations, this appears to result in a worse ratio
(2.1 instead of 1.8), but page migration successes increased by 10%, so
this could mean that more useful work can be done until need_resched()
aborts this kind of compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners try to lock zone locks as late as possible by checking
many page or pageblock properties opportunistically without lock and
skipping them if not unsuitable. For pages that pass the initial checks,
some properties have to be checked again safely under lock. However, if
the lock was already held from a previous iteration in the initial checks,
the rechecks are unnecessary.
This patch therefore skips the rechecks when the lock was already held.
This is now possible to do, since we don't (potentially) drop and
reacquire the lock between the initial checks and the safe rechecks
anymore.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction scanners regularly check for lock contention and need_resched()
through the compact_checklock_irqsave() function. However, if there is no
contention, the lock can be held and IRQ disabled for potentially long
time.
This has been addressed by commit b2eef8c0d0 ("mm: compaction: minimise
the time IRQs are disabled while isolating pages for migration") for the
migration scanner. However, the refactoring done by commit 2a1402aa04
("mm: compaction: acquire the zone->lru_lock as late as possible") has
changed the conditions so that the lock is dropped only when there's
contention on the lock or need_resched() is true. Also, need_resched() is
checked only when the lock is already held. The comment "give a chance to
irqs before checking need_resched" is therefore misleading, as IRQs remain
disabled when the check is done.
This patch restores the behavior intended by commit b2eef8c0d0 and also
tries to better balance and make more deterministic the time spent by
checking for contention vs the time the scanners might run between the
checks. It also avoids situations where checking has not been done often
enough before. The result should be avoiding both too frequent and too
infrequent contention checking, and especially the potentially
long-running scans with IRQs disabled and no checking of need_resched() or
for fatal signal pending, which can happen when many consecutive pages or
pageblocks fail the preliminary tests and do not reach the later call site
to compact_checklock_irqsave(), as explained below.
Before the patch:
In the migration scanner, compact_checklock_irqsave() was called each
loop, if reached. If not reached, some lower-frequency checking could
still be done if the lock was already held, but this would not result in
aborting contended async compaction until reaching
compact_checklock_irqsave() or end of pageblock. In the free scanner, it
was similar but completely without the periodical checking, so lock can be
potentially held until reaching the end of pageblock.
After the patch, in both scanners:
The periodical check is done as the first thing in the loop on each
SWAP_CLUSTER_MAX aligned pfn, using the new compact_unlock_should_abort()
function, which always unlocks the lock (if locked) and aborts async
compaction if scheduling is needed. It also aborts any type of compaction
when a fatal signal is pending.
The compact_checklock_irqsave() function is replaced with a slightly
different compact_trylock_irqsave(). The biggest difference is that the
function is not called at all if the lock is already held. The periodical
need_resched() checking is left solely to compact_unlock_should_abort().
The lock contention avoidance for async compaction is achieved by the
periodical unlock by compact_unlock_should_abort() and by using trylock in
compact_trylock_irqsave() and aborting when trylock fails. Sync
compaction does not use trylock.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unification of the migrate and free scanner families of function has
highlighted a difference in how the scanners ensure they only isolate
pages of the intended zone. This is important for taking zone lock or lru
lock of the correct zone. Due to nodes overlapping, it is however
possible to encounter a different zone within the range of the zone being
compacted.
The free scanner, since its inception by commit 748446bb6b ("mm:
compaction: memory compaction core"), has been checking the zone of the
first valid page in a pageblock, and skipping the whole pageblock if the
zone does not match.
This checking was completely missing from the migration scanner at first,
and later added by commit dc9086004b ("mm: compaction: check for
overlapping nodes during isolation for migration") in a reaction to a bug
report. But the zone comparison in migration scanner is done once per a
single scanned page, which is more defensive and thus more costly than a
check per pageblock.
This patch unifies the checking done in both scanners to once per
pageblock, through a new pageblock_pfn_to_page() function, which also
includes pfn_valid() checks. It is more defensive than the current free
scanner checks, as it checks both the first and last page of the
pageblock, but less defensive by the migration scanner per-page checks.
It assumes that node overlapping may result (on some architecture) in a
boundary between two nodes falling into the middle of a pageblock, but
that there cannot be a node0 node1 node0 interleaving within a single
pageblock.
The result is more code being shared and a bit less per-page CPU cost in
the migration scanner.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_freepages_block() rechecks if the pageblock is suitable to be a
target for migration after it has taken the zone->lock. However, the
check has been optimized to occur only once per pageblock, and
compact_checklock_irqsave() might be dropping and reacquiring lock, which
means somebody else might have changed the pageblock's migratetype
meanwhile.
Furthermore, nothing prevents the migratetype to change right after
isolate_freepages_block() has finished isolating. Given how imperfect
this is, it's simpler to just rely on the check done in
isolate_freepages() without lock, and not pretend that the recheck under
lock guarantees anything. It is just a heuristic after all.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock. When aborting,
cc->contended is set to signal the contended state to the caller. Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken. This call either does not abort async compaction,
or set cc->contended appropriately. This patch introduces a new
compact_should_abort() function to achieve both. In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks. In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock. This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced. This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches. This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention. However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction free scanner in isolate_freepages() currently remembers PFN
of the highest pageblock where it successfully isolates, to be used as the
starting pageblock for the next invocation. The rationale behind this is
that page migration might return free pages to the allocator when
migration fails and we don't want to skip them if the compaction
continues.
Since migration now returns free pages back to compaction code where they
can be reused, this is no longer a concern. This patch changes
isolate_freepages() so that the PFN for restarting is updated with each
pageblock where isolation is attempted. Using stress-highalloc from
mmtests, this resulted in 10% reduction of the pages scanned by the free
scanner.
Note that the somewhat similar functionality that records highest
successful pageblock in zone->compact_cached_free_pfn, remains unchanged.
This cache is used when the whole compaction is restarted, not for
multiple invocations of the free scanner during single compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During compaction, update_nr_listpages() has been used to count remaining
non-migrated and free pages after a call to migrage_pages(). The
freepages counting has become unneccessary, and it turns out that
migratepages counting is also unnecessary in most cases.
The only situation when it's needed to count cc->migratepages is when
migrate_pages() returns with a negative error code. Otherwise, the
non-negative return value is the number of pages that were not migrated,
which is exactly the count of remaining pages in the cc->migratepages
list.
Furthermore, any non-zero count is only interesting for the tracepoint of
mm_compaction_migratepages events, because after that all remaining
unmigrated pages are put back and their count is set to 0.
This patch therefore removes update_nr_listpages() completely, and changes
the tracepoint definition so that the manual counting is done only when
the tracepoint is enabled, and only when migrate_pages() returns a
negative error code.
Furthermore, migrate_pages() and the tracepoints won't be called when
there's nothing to migrate. This potentially avoids some wasted cycles
and reduces the volume of uninteresting mm_compaction_migratepages events
where "nr_migrated=0 nr_failed=0". In the stress-highalloc mmtest, this
was about 75% of the events. The mm_compaction_isolate_migratepages event
is better for determining that nothing was isolated for migration, and
this one was just duplicating the info.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction terminates prematurely when need_resched(), see
compact_checklock_irqsave(). This can never trigger, however, if the
cond_resched() in isolate_migratepages_range() always takes care of the
scheduling.
If the cond_resched() actually triggers, then terminate this pageblock
scan for async compaction as well.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to want to manipulate the migration mode for compaction in the
page allocator, and currently compact_control's sync field is only a bool.
Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction
depending on the value of this bool. Convert the bool to enum
migrate_mode and pass the migration mode in directly. Later, we'll want
to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to
avoid unnecessary latency.
This also alters compaction triggered from sysfs, either for the entire
system or for a node, to force MIGRATE_SYNC.
[akpm@linux-foundation.org: fix build]
[iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()]
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each zone has a cached migration scanner pfn for memory compaction so that
subsequent calls to memory compaction can start where the previous call
left off.
Currently, the compaction migration scanner only updates the per-zone
cached pfn when pageblocks were not skipped for async compaction. This
creates a dependency on calling sync compaction to avoid having subsequent
calls to async compaction from scanning an enormous amount of non-MOVABLE
pageblocks each time it is called. On large machines, this could be
potentially very expensive.
This patch adds a per-zone cached migration scanner pfn only for async
compaction. It is updated everytime a pageblock has been scanned in its
entirety and when no pages from it were successfully isolated. The cached
migration scanner pfn for sync compaction is updated only when called for
sync compaction.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Greg reported that he found isolated free pages were returned back to the
VM rather than the compaction freelist. This will cause holes behind the
free scanner and cause it to reallocate additional memory if necessary
later.
He detected the problem at runtime seeing that ext4 metadata pages (esp
the ones read by "sbi->s_group_desc[i] = sb_bread(sb, block)") were
constantly visited by compaction calls of migrate_pages(). These pages
had a non-zero b_count which caused fallback_migrate_page() ->
try_to_release_page() -> try_to_free_buffers() to fail.
Memory compaction works by having a "freeing scanner" scan from one end of
a zone which isolates pages as migration targets while another "migrating
scanner" scans from the other end of the same zone which isolates pages
for migration.
When page migration fails for an isolated page, the target page is
returned to the system rather than the freelist built by the freeing
scanner. This may require the freeing scanner to continue scanning memory
after suitable migration targets have already been returned to the system
needlessly.
This patch returns destination pages to the freeing scanner freelist when
page migration fails. This prevents unnecessary work done by the freeing
scanner but also encourages memory to be as compacted as possible at the
end of the zone.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Greg Thelen <gthelen@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory migration uses a callback defined by the caller to determine how to
allocate destination pages. When migration fails for a source page,
however, it frees the destination page back to the system.
This patch adds a memory migration callback defined by the caller to
determine how to free destination pages. If a caller, such as memory
compaction, builds its own freelist for migration targets, this can reuse
already freed memory instead of scanning additional memory.
If the caller provides a function to handle freeing of destination pages,
it is called when page migration fails. If the caller passes NULL then
freeing back to the system will be handled as usual. This patch
introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_freepages() is currently somewhat hard to follow thanks to many
looks like it is related to the 'low_pfn' variable, but in fact it is not.
This patch renames the 'high_pfn' variable to a hopefully less confusing name,
and slightly changes its handling without a functional change. A comment made
obsolete by recent changes is also updated.
[akpm@linux-foundation.org: comment fixes, per Minchan]
[iamjoonsoo.kim@lge.com: cleanups]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction freepage scanner implementation in isolate_freepages()
starts by taking the current cc->free_pfn value as the first pfn. In a
for loop, it scans from this first pfn to the end of the pageblock, and
then subtracts pageblock_nr_pages from the first pfn to obtain the first
pfn for the next for loop iteration.
This means that when cc->free_pfn starts at offset X rather than being
aligned on pageblock boundary, the scanner will start at offset X in all
scanned pageblock, ignoring potentially many free pages. Currently this
can happen when
a) zone's end pfn is not pageblock aligned, or
b) through zone->compact_cached_free_pfn with CONFIG_HOLES_IN_ZONE
enabled and a hole spanning the beginning of a pageblock
This patch fixes the problem by aligning the initial pfn in
isolate_freepages() to pageblock boundary. This also permits replacing
the end-of-pageblock alignment within the for loop with a simple
pageblock_nr_pages increment.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Heesub Shin <heesub.shin@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The conditions that control the isolation mode in
isolate_migratepages_range() do not change during the iteration, so
extract them out and only define the value once.
This actually does have an effect, gcc doesn't optimize it itself because
of cc->sync.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is just for clean-up to reduce code size and improve readability.
There is no functional change.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolation_suitable() and migrate_async_suitable() is used to be sure
that this pageblock range is fine to be migragted. It isn't needed to
call it on every page. Current code do well if not suitable, but, don't
do well when suitable.
1) It re-checks isolation_suitable() on each page of a pageblock that was
already estabilished as suitable.
2) It re-checks migrate_async_suitable() on each page of a pageblock that
was not entered through the next_pageblock: label, because
last_pageblock_nr is not otherwise updated.
This patch fixes situation by 1) calling isolation_suitable() only once
per pageblock and 2) always updating last_pageblock_nr to the pageblock
that was just checked.
Additionally, move PageBuddy() check after pageblock unit check, since
pageblock check is the first thing we should do and makes things more
simple.
[vbabka@suse.cz: rephrase commit description]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is odd to drop the spinlock when we scan (SWAP_CLUSTER_MAX - 1) th
pfn page. This may results in below situation while isolating
migratepage.
1. try isolate 0x0 ~ 0x200 pfn pages.
2. When low_pfn is 0x1ff, ((low_pfn+1) % SWAP_CLUSTER_MAX) == 0, so drop
the spinlock.
3. Then, to complete isolating, retry to aquire the lock.
I think that it is better to use SWAP_CLUSTER_MAX th pfn for checking the
criteria about dropping the lock. This has no harm 0x0 pfn, because, at
this time, locked variable would be false.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
suitable_migration_target() checks that pageblock is suitable for
migration target. In isolate_freepages_block(), it is called on every
page and this is inefficient. So make it called once per pageblock.
suitable_migration_target() also checks if page is highorder or not, but
it's criteria for highorder is pageblock order. So calling it once
within pageblock range has no problem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Purpose of compaction is to get a high order page. Currently, if we
find high-order page while searching migration target page, we break it
to order-0 pages and use them as migration target. It is contrary to
purpose of compaction, so disallow high-order page to be used for
migration target.
Additionally, clean-up logic in suitable_migration_target() to simplify
the code. There is no functional changes from this clean-up.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark function as static in compaction.c because it is not used outside
this file.
This eliminates the following warning from mm/compaction.c:
mm/compaction.c:1190:9: warning: no previous prototype for `sysfs_compact_node' [-Wmissing-prototypes
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>