Implement kmap* API for ARC.
This enables
- permanent kernel maps (pkmaps): :kmap() API
- fixmap : kmap_atomic()
We use a very simple/uniform approach for both (unlike some of the other
arches). So fixmap doesn't use the customary compile time address stuff.
The important semantic is sleep'ability (pkmap) vs. not (fixmap) which
the API guarantees.
Note that this patch only enables highmem for subsequent PAE40 support
as there is no real highmem for ARC in pure 32-bit paradigm as explained
below.
ARC has 2:2 address split of the 32-bit address space with lower half
being translated (virtual) while upper half unstranslated
(0x8000_0000 to 0xFFFF_FFFF). kernel itself is linked at base of
unstranslated space (i.e. 0x8000_0000 onwards), which is mapped to say
DDR 0x0 by external Bus Glue logic (outside the core). So kernel can
potentially access 1.75G worth of memory directly w/o need for highmem.
(the top 256M is taken by uncached peripheral space from 0xF000_0000 to
0xFFFF_FFFF)
In PAE40, hardware can address memory beyond 4G (0x1_0000_0000) while
the logical/virtual addresses remain 32-bits. Thus highmem is required
for kernel proper to be able to access these pages for it's own purposes
(user space is agnostic to this anyways).
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Before we plug in highmem support, some of code needs to be ready for it
- copy_user_highpage() needs to be using the kmap_atomic API
- mk_pte() can't assume page_address()
- do_page_fault() can't assume VMALLOC_END is end of kernel vaddr space
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- Move the verbosity knob from .data to .bss by using inverted logic
- No need to readout PD1 descriptor
- clip the non pfn bits of PD0 to avoid clipping inside the loop
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
With prev fixes, all cores now start via common entry point @stext which
already calls EARLY_CPU_SETUP for all cores - so no need to invoke it
again
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MCIP now registers it's own per cpu setup routine (for IPI IRQ request)
using smp_ops.init_irq_cpu().
So no need for platforms to do that. This now completely decouples
platforms from MCIP.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Note this is not part of platform owned static machine_desc,
but more of device owned plat_smp_ops (rather misnamed) which a IPI
provider or some such typically defines.
This will help us seperate out the IPI registration from platform
specific init_cpu_smp() into device specific init_irq_cpu()
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MCIP now registers it's own probe callback with smp_ops.init_early_smp()
which is called by ARC common code, so no need for platforms to do that.
This decouples the platforms and MCIP and helps confine MCIP details
to it's own file.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This adds a platform agnostic early SMP init hook which is called on
Master core before calling setup_processor()
setup_arch()
smp_init_cpus()
smp_ops.init_early_smp()
...
setup_processor()
How this helps:
- Used for one time init of certain SMP centric IP blocks, before
calling setup_processor() which probes various bits of core,
possibly including this block
- Currently platforms need to call this IP block init from their
init routines, which doesn't make sense as this is specific to ARC
core and not platform and otherwise requires copy/paste in all
(and hence a possible point of failure)
e.g. MCIP init is called from 2 platforms currently (axs10x and sim)
which will go away once we have this.
This change only adds the hooks but they are empty for now. Next commit
will populate them and remove the explicit init calls from platforms.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
These are not in use for ARC platforms. Moreover DT mechanims exist to
probe them w/o explicit platform calls.
- clocksource drivers can use CLOCKSOURCE_OF_DECLARE()
- intc IRQCHIP_DECLARE() calls + cascading inside DT allows external
intc to be probed automatically
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The reason this was not done so far was lack of genuine IPI_IRQ for
ARC700, as we don't have a SMP version of core yet (which might change
soon thx to EZChip). Nevertheles to increase the build coverage, we
need to allow CONFIG_SMP for ARC700 and still be able to run it on a
UP platform (nsim or AXS101) with a UP Device Tree (SMP-on-UP)
The build itself requires some define for IPI_IRQ and even a dummy
value is fine since that code won't run anyways.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
For Run-on-reset, non masters need to spin wait. For Halt-on-reset they
can jump to entry point directly.
Also while at it, made reset vector handler as "the" entry point for
kernel including host debugger based boot (which uses the ELF header
entry point)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Enable building all dtb files when CONFIG_OF_ALL_DTBS is enabled. The dtbs
are not really dependent on a platform being enabled or any other kernel
config, so for testing coverage it is convenient to build all of the dtbs.
This builds all dts files in the tree, not just targets listed.
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Use dtb-y and always make variables to build dtbs instead of explicit
dtbs rule. This is in preparation to support building all dtbs.
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
DesignWare MMC Controller's transfer mode should be decided
at runtime instead of compile-time. So we remove this config
option and read dw_mmc's register to select DMA master.
Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
For non halt-on-reset case, all cores start of simultaneously in @stext.
Master core0 proceeds with kernel boot, while other spin-wait on
@wake_flag being set by master once it is ready. So NO hardware assist
is needed for master to "kick" the others.
This patch moves this soft implementation out of mcip.c (as there is no
hardware assist) into common smp.c
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This frees up some bits to hold more high level info such as PAE being
present, w/o increasing the size of already bloated cpuinfo struct
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This is done by improving the laddering logic !
Before:
if Exception
goto excep_or_pure_k_ret
if !Interrupt(L2)
goto l1_chk
else
INTERRUPT_EPILOGUE 2
l1_chk:
if !Interrupt(L1) (i.e. pure kernel mode)
goto excep_or_pure_k_ret
else
INTERRUPT_EPILOGUE 1
excep_or_pure_k_ret:
EXCEPTION_EPILOGUE
Now:
if !Interrupt(L1 or L2) (i.e. exception or pure kernel mode)
goto excep_or_pure_k_ret
; guaranteed to be an interrupt
if !Interrupt(L2)
goto l1_ret
else
INTERRUPT_EPILOGUE 2
; by virtue of above, no need to chk for L1 active
l1_ret:
INTERRUPT_EPILOGUE 1
excep_or_pure_k_ret:
EXCEPTION_EPILOGUE
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The requirement is to
- Reenable Exceptions (AE cleared)
- Reenable Interrupts (E1/E2 set)
We need to do wiggle these bits into ERSTATUS and call RTIE.
Prev version used the pre-exception STATUS32 as starting point for what
goes into ERSTATUS. This required explicit fixups of U/DE/L bits.
Instead, use the current (in-exception) STATUS32 as starting point.
Being in exception handler U/DE/L can be safely assumed to be correct.
Only AE/E1/E2 need to be fixed.
So the new implementation is slightly better
-Avoids read form memory
-Is 4 bytes smaller for the typical 1 level of intr configuration
-Depicts the semantics more clearly
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Historically this was done by ARC IDE driver, which is long gone.
IRQ core is pretty robust now and already checks if IRQs are enabled
in hard ISRs. Thus no point in checking this in arch code, for every
call of irq enabled.
Further if some driver does do that - let it bring down the system so we
notice/fix this sooner than covering up for sucker
This makes local_irq_enable() - for L1 only case atleast simple enough
so we can inline it.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Implement the TLB flush routine to evict a sepcific Super TLB entry,
vs. moving to a new ASID on every such flush.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
support.
Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
new bit "SZ" in TLB page desciptor to distinguish between them.
Super Page size is configurable in hardware (4K to 16M), but fixed once
RTL builds.
The exact THP size a Linx configuration will support is a function of:
- MMU page size (typical 8K, RTL fixed)
- software page walker address split between PGD:PTE:PFN (typical
11:8:13, but can be changed with 1 line)
So for above default, THP size supported is 8K * 256 = 2M
Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
reduces to 1 level (as PTE is folded into PGD and canonically referred
to as PMD).
Thus thp PMD accessors are implemented in terms of PTE (just like sparc)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
ARC is the only arch with unsigned long type (vs. struct page *).
Historically this was done to avoid the page_address() calls in various
arch hooks which need to get the virtual/logical address of the table.
Some arches alternately define it as pte_t *, and is as efficient as
unsigned long (generated code doesn't change)
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Pull strscpy string copy function implementation from Chris Metcalf.
Chris sent this during the merge window, but I waffled back and forth on
the pull request, which is why it's going in only now.
The new "strscpy()" function is definitely easier to use and more secure
than either strncpy() or strlcpy(), both of which are horrible nasty
interfaces that have serious and irredeemable problems.
strncpy() has a useless return value, and doesn't NUL-terminate an
overlong result. To make matters worse, it pads a short result with
zeroes, which is a performance disaster if you have big buffers.
strlcpy(), by contrast, is a mis-designed "fix" for strlcpy(), lacking
the insane NUL padding, but having a differently broken return value
which returns the original length of the source string. Which means
that it will read characters past the count from the source buffer, and
you have to trust the source to be properly terminated. It also makes
error handling fragile, since the test for overflow is unnecessarily
subtle.
strscpy() avoids both these problems, guaranteeing the NUL termination
(but not excessive padding) if the destination size wasn't zero, and
making the overflow condition very obvious by returning -E2BIG. It also
doesn't read past the size of the source, and can thus be used for
untrusted source data too.
So why did I waffle about this for so long?
Every time we introduce a new-and-improved interface, people start doing
these interminable series of trivial conversion patches.
And every time that happens, somebody does some silly mistake, and the
conversion patch to the improved interface actually makes things worse.
Because the patch is mindnumbing and trivial, nobody has the attention
span to look at it carefully, and it's usually done over large swatches
of source code which means that not every conversion gets tested.
So I'm pulling the strscpy() support because it *is* a better interface.
But I will refuse to pull mindless conversion patches. Use this in
places where it makes sense, but don't do trivial patches to fix things
that aren't actually known to be broken.
* 'strscpy' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile:
tile: use global strscpy() rather than private copy
string: provide strscpy()
Make asm/word-at-a-time.h available on all architectures
This patch makes sure that atomic_{read,set}() are at least
{READ,WRITE}_ONCE().
We already had the 'requirement' that atomic_read() should use
ACCESS_ONCE(), and most archs had this, but a few were lacking.
All are now converted to use READ_ONCE().
And, by a symmetry and general paranoia argument, upgrade atomic_set()
to use WRITE_ONCE().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: james.hogan@imgtec.com
Cc: linux-kernel@vger.kernel.org
Cc: oleg@redhat.com
Cc: will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most interrupt flow handlers do not use the irq argument. Those few
which use it can retrieve the irq number from the irq descriptor.
Remove the argument.
Search and replace was done with coccinelle and some extra helper
scripts around it. Thanks to Julia for her help!
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
Pull irq updates from Thomas Gleixner:
"This updated pull request does not contain the last few GIC related
patches which were reported to cause a regression. There is a fix
available, but I let it breed for a couple of days first.
The irq departement provides:
- new infrastructure to support non PCI based MSI interrupts
- a couple of new irq chip drivers
- the usual pile of fixlets and updates to irq chip drivers
- preparatory changes for removal of the irq argument from interrupt
flow handlers
- preparatory changes to remove IRQF_VALID"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (129 commits)
irqchip/imx-gpcv2: IMX GPCv2 driver for wakeup sources
irqchip: Add bcm2836 interrupt controller for Raspberry Pi 2
irqchip: Add documentation for the bcm2836 interrupt controller
irqchip/bcm2835: Add support for being used as a second level controller
irqchip/bcm2835: Refactor handle_IRQ() calls out of MAKE_HWIRQ
PCI: xilinx: Fix typo in function name
irqchip/gic: Ensure gic_cpu_if_up/down() programs correct GIC instance
irqchip/gic: Only allow the primary GIC to set the CPU map
PCI/MSI: pci-xgene-msi: Consolidate chained IRQ handler install/remove
unicore32/irq: Prepare puv3_gpio_handler for irq argument removal
tile/pci_gx: Prepare trio_handle_level_irq for irq argument removal
m68k/irq: Prepare irq handlers for irq argument removal
C6X/megamode-pic: Prepare megamod_irq_cascade for irq argument removal
blackfin: Prepare irq handlers for irq argument removal
arc/irq: Prepare idu_cascade_isr for irq argument removal
sparc/irq: Use access helper irq_data_get_affinity_mask()
sparc/irq: Use helper irq_data_get_irq_handler_data()
parisc/irq: Use access helper irq_data_get_affinity_mask()
mn10300/irq: Use access helper irq_data_get_affinity_mask()
irqchip/i8259: Prepare i8259_irq_dispatch for irq argument removal
...
With all features in place, the ARC HS pct block can now be effectively
allowed to be probed/used
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
* split off pmu info into singleton and per-cpu bits
* setup PMU on all cores
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
In times of ARC 700 performance counters didn't have support of
interrupt an so for ARC we only had support of non-sampling events.
Put simply only "perf stat" was functional.
Now with ARC HS we have support of interrupts in performance counters
which this change introduces support of.
ARC performance counters act in the following way in regard of
interrupts generation.
[1] A counter counts starting from value set in PCT_COUNT register pair
[2] Once counter reaches value set in PCT_INT_CNT interrupt is raised
Basic setup look like this:
[1] PCT_COUNT = 0;
[2] PCT_INT_CNT = __limit_value__;
[3] Enable interrupts for that counter and let it run
[4] Let counter reach its limit
[5] Handle interrupt when it happens
Note that PCT HW block is build in CPU core and so ints interrupt
line (which is basically OR of all counters IRQs) is wired directly to
top-level IRQC. That means do de-assert PCT interrupt it's required to
reset IRQs from all counters that have reached their limit values.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
This generalization prepares for support of overflow interrupts.
Hardware event counters on ARC work that way:
Each counter counts from programmed start value (set in
ARC_REG_PCT_COUNT) to a limit value (set in ARC_REG_PCT_INT_CNT) and
once limit value is reached this timer generates an interrupt.
Even though this hardware implementation allows for more flexibility,
in Linux kernel we decided to mimic behavior of other architectures
this way:
[1] Set limit value as half of counter's max value (to allow counter to
run after reaching it limit, see below for more explanation):
---------->8-----------
arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
---------->8-----------
[2] Set start value as "arc_pmu->max_period - sample_period" and then
count up to the limit
Our event counters don't stop on reaching max value (the one we set in
ARC_REG_PCT_INT_CNT) but continue to count until kernel explicitly
stops each of them.
And setting a limit as half of counter capacity is done to allow
capturing of additional events in between moment when interrupt was
triggered until we're actually processing PMU interrupts. That way
we're trying to be more precise.
For example if we count CPU cycles we keep track of cycles while
running through generic IRQ handling code:
[1] We set counter period as say 100_000 events of type "crun"
[2] Counter reaches that limit and raises its interrupt
[3] Once we get in PMU IRQ handler we read current counter value from
ARC_REG_PCT_SNAP ans see there something like 105_000.
If counters stop on reaching a limit value then we would miss
additional 5000 cycles.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
The number of counters in PCT can never be more than 32 (while
countable conditions could be 100+) for both ARCompact and ARCv2
And while at it update copyright dates.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>