Some of the kmemleak_*() callbacks in memblock, bootmem, CMA convert a
physical address to a virtual one using __va(). However, such physical
addresses may sometimes be located in highmem and using __va() is
incorrect, leading to inconsistent object tracking in kmemleak.
The following functions have been added to the kmemleak API and they take
a physical address as the object pointer. They only perform the
corresponding action if the address has a lowmem mapping:
kmemleak_alloc_phys
kmemleak_free_part_phys
kmemleak_not_leak_phys
kmemleak_ignore_phys
The affected calling places have been updated to use the new kmemleak
API.
Link: http://lkml.kernel.org/r/1471531432-16503-1-git-send-email-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Vignesh R <vigneshr@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The total reserved memory in a system is accounted but not available for
use use outside mm/memblock.c. By exposing the total reserved memory,
systems can better calculate the size of large hashes.
Link: http://lkml.kernel.org/r/1472476010-4709-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It causes NULL dereference error and failure to get type_a->regions[0]
info if parameter type_b of __next_mem_range_rev() == NULL
Fix this by checking before dereferring and initializing idx_b to 0
The approach is tested by dumping all types of region via
__memblock_dump_all() and __next_mem_range_rev() fixed to UART
separately the result is okay after checking the logs.
Link: http://lkml.kernel.org/r/57A0320D.6070102@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Tested-by: zijun_hu <zijun_hu@htc.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases, memblock is queried by kernel to determine whether a
specified address is RAM or not. For example, the ACPI core needs this
information to determine which attributes to use when mapping ACPI
regions(acpi_os_ioremap). Use of incorrect memory types can result in
faults, data corruption, or other issues.
Removing memory with memblock_enforce_memory_limit() throws away this
information, and so a kernel booted with 'mem=' may suffer from the
issues described above. To avoid this, we need to keep those NOMAP
regions instead of removing all above the limit, which preserves the
information we need while preventing other use of those regions.
This patch adds new infrastructure to retain all NOMAP memblock regions
while removing others, to cater for this.
Link: http://lkml.kernel.org/r/1468475036-5852-2-git-send-email-dennis.chen@arm.com
Signed-off-by: Dennis Chen <dennis.chen@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Kaly Xin <kaly.xin@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
asm-generic headers are generic implementations for architecture
specific code and should not be included by common code. Thus use the
asm/ version of sections.h to get at the linker sections.
Link: http://lkml.kernel.org/r/1468285103-7470-1-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If nr_new is 0 which means there's no region would be added, so just
return to the caller.
Signed-off-by: nimisolo <nimisolo@gmail.com>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Wei Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Comparing an u64 variable to >= 0 returns always true and can therefore
be removed. This issue was detected using the -Wtype-limits gcc flag.
This patch fixes following type-limits warning:
mm/memblock.c: In function `__next_reserved_mem_region':
mm/memblock.c:843:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
if (*idx >= 0 && *idx < type->cnt) {
Link: http://lkml.kernel.org/r/20160510103625.3a7f8f32@g0hl1n.net
Signed-off-by: Richard Leitner <dev@g0hl1n.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_add_region() and memblock_reserve_region() do nothing specific
before the call of memblock_add_range(), only print debug output.
We can do the same in memblock_add() and memblock_reserve() since both
memblock_add_region() and memblock_reserve_region() are not used by
anybody outside of memblock.c and memblock_{add,reserve}() have the same
set of flags and nids.
Since memblock_add_region() and memblock_reserve_region() will be
inlined, there will not be functional changes, but will improve code
readability a little.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel style prefers a single string over split strings when the string is
'user-visible'.
Miscellanea:
- Add a missing newline
- Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We define struct memblock_type *type in the memblock_add_region() and
memblock_reserve_region() functions only for passing it to the
memlock_add_range() and memblock_reserve_range() functions. Let's
remove these variables and will pass a type directly.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment memblock_phys_mem_size() is marked as __init, and so is
discarded after boot. This is different from most of the memblock
functions which are marked __init_memblock, and are only discarded after
boot if memory hotplug is not configured.
To allow for upcoming code which will need memblock_phys_mem_size() in
the hotplug path, change it from __init to __init_memblock.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already have the for_each_memblock() macro in <linux/memblock.h>
which provides ability to iterate over memblock regions of a known type.
The for_each_memblock() macro allows us to pass the pointer to the
struct memblock_type, instead we need to pass name of the type.
This patch introduces a new macro for_each_memblock_type() which allows
us iterate over memblock regions with the given type when the type is
unknown.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove rgnbase and rgnsize variables from memblock_overlaps_region().
We use these variables only for passing to the memblock_addrs_overlap()
function and that's all. Let's remove them.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make memblock_is_memory() and memblock_is_reserved return bool to
improve readability due to these particular functions only using either
one or zero as their return value.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This introduces the MEMBLOCK_NOMAP attribute and the required plumbing
to make it usable as an indicator that some parts of normal memory
should not be covered by the kernel direct mapping. It is up to the
arch to actually honor the attribute when laying out this mapping,
but the memblock code itself is modified to disregard these regions
for allocations and other general use.
Cc: linux-mm@kvack.org
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
memblock_remove_range() is only used in the mm/memblock.c, so we can make
it static.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit e3239ff92a17 ("memblock: Rename memblock_region to
memblock_type and memblock_property to memblock_region"), all local
variables of the membock_type type were renamed to 'type'. This commit
renames all remaining local variables with the memblock_type type to the
same view.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When parsing SRAT, all memory ranges are added into numa_meminfo. In
numa_init(), before entering numa_cleanup_meminfo(), all possible memory
ranges are in numa_meminfo. And numa_cleanup_meminfo() removes all
ranges over max_pfn or empty.
But, this only works if the nodes are continuous. Let's have a look at
the following example:
We have an SRAT like this:
SRAT: Node 0 PXM 0 [mem 0x00000000-0x5fffffff]
SRAT: Node 0 PXM 0 [mem 0x100000000-0x1ffffffffff]
SRAT: Node 1 PXM 1 [mem 0x20000000000-0x3ffffffffff]
SRAT: Node 4 PXM 2 [mem 0x40000000000-0x5ffffffffff] hotplug
SRAT: Node 5 PXM 3 [mem 0x60000000000-0x7ffffffffff] hotplug
SRAT: Node 2 PXM 4 [mem 0x80000000000-0x9ffffffffff] hotplug
SRAT: Node 3 PXM 5 [mem 0xa0000000000-0xbffffffffff] hotplug
SRAT: Node 6 PXM 6 [mem 0xc0000000000-0xdffffffffff] hotplug
SRAT: Node 7 PXM 7 [mem 0xe0000000000-0xfffffffffff] hotplug
On boot, only node 0,1,2,3 exist.
And the numa_meminfo will look like this:
numa_meminfo.nr_blks = 9
1. on node 0: [0, 60000000]
2. on node 0: [100000000, 20000000000]
3. on node 1: [20000000000, 40000000000]
4. on node 4: [40000000000, 60000000000]
5. on node 5: [60000000000, 80000000000]
6. on node 2: [80000000000, a0000000000]
7. on node 3: [a0000000000, a0800000000]
8. on node 6: [c0000000000, a0800000000]
9. on node 7: [e0000000000, a0800000000]
And numa_cleanup_meminfo() will merge 1 and 2, and remove 8,9 because the
end address is over max_pfn, which is a0800000000. But 4 and 5 are not
removed because their end addresses are less then max_pfn. But in fact,
node 4 and 5 don't exist.
In a word, numa_cleanup_meminfo() is not able to handle holes between nodes.
Since memory ranges in node 4 and 5 are in numa_meminfo, in
numa_register_memblks(), node 4 and 5 will be mistakenly set to online.
If you run lscpu, it will show:
NUMA node0 CPU(s): 0-14,128-142
NUMA node1 CPU(s): 15-29,143-157
NUMA node2 CPU(s):
NUMA node3 CPU(s):
NUMA node4 CPU(s): 62-76,190-204
NUMA node5 CPU(s): 78-92,206-220
In this patch, we use memblock_overlaps_region() to check if ranges in
numa_meminfo overlap with ranges in memory_block. Since memory_block
contains all available memory at boot time, if they overlap, it means the
ranges exist. If not, then remove them from numa_meminfo.
After this patch, lscpu will show:
NUMA node0 CPU(s): 0-14,128-142
NUMA node1 CPU(s): 15-29,143-157
NUMA node4 CPU(s): 62-76,190-204
NUMA node5 CPU(s): 78-92,206-220
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_overlaps_region() checks if the given memblock region
intersects a region in memblock. If so, it returns the index of the
intersected region.
But its only caller is memblock_is_region_reserved(), and it returns 0
if false, non-zero if true.
Both of these should return bool.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memblock_region has flags to indicates the type of this range. For
the overlap case, memblock_add_range() inserts the lower part and leave the
upper part as indicated in the overlapped region.
If the flags of the new range differs from the overlapped region, the
information recorded is not correct.
This patch adds a WARN_ON when the flags of the new range differs from the
overlapped region.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memblock_region has nid to indicates the Node ID of this range. For
the overlap case, memblock_add_range() inserts the lower part and leave
the upper part as indicated in the overlapped region.
If the nid of the new range differs from the overlapped region, the
information recorded is not correct.
This patch adds a WARN_ON when the nid of the new range differs from the
overlapped region.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_bootmem prepares a page for release to the buddy allocator
and assumes that the struct page is initialised. Parallel initialisation
of struct pages defers initialisation and __free_pages_bootmem can be
called for struct pages that cannot yet map struct page to PFN. This
patch passes PFN to __free_pages_bootmem with no other functional change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Struct page initialisation had been identified as one of the reasons why
large machines take a long time to boot. Patches were posted a long time ago
to defer initialisation until they were first used. This was rejected on
the grounds it should not be necessary to hurt the fast paths. This series
reuses much of the work from that time but defers the initialisation of
memory to kswapd so that one thread per node initialises memory local to
that node.
After applying the series and setting the appropriate Kconfig variable I
see this in the boot log on a 64G machine
[ 7.383764] kswapd 0 initialised deferred memory in 188ms
[ 7.404253] kswapd 1 initialised deferred memory in 208ms
[ 7.411044] kswapd 3 initialised deferred memory in 216ms
[ 7.411551] kswapd 2 initialised deferred memory in 216ms
On a 1TB machine, I see
[ 8.406511] kswapd 3 initialised deferred memory in 1116ms
[ 8.428518] kswapd 1 initialised deferred memory in 1140ms
[ 8.435977] kswapd 0 initialised deferred memory in 1148ms
[ 8.437416] kswapd 2 initialised deferred memory in 1148ms
Once booted the machine appears to work as normal. Boot times were measured
from the time shutdown was called until ssh was available again. In the
64G case, the boot time savings are negligible. On the 1TB machine, the
savings were 16 seconds.
Nate Zimmer said:
: On an older 8 TB box with lots and lots of cpus the boot time, as
: measure from grub to login prompt, the boot time improved from 1484
: seconds to exactly 1000 seconds.
Waiman Long said:
: I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From
: grub menu to ssh login, the bootup time was 453s before the patch and 265s
: after the patch - a saving of 188s (42%).
Daniel Blueman said:
: On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing
: stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with
: this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350)
: drops this to 1045s.
This patch (of 13):
As part of initializing struct page's in 2MiB chunks, we noticed that at
the end of free_all_bootmem(), there was nothing which had forced the
reserved/allocated 4KiB pages to be initialized.
This helper function will be used for that expansion.
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Nate Zimmer <nzimmer@sgi.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Try to allocate all boot time kernel data structures from mirrored
memory.
If we run out of mirrored memory print warnings, but fall back to using
non-mirrored memory to make sure that we still boot.
By number of bytes, most of what we allocate at boot time is the page
structures. 64 bytes per 4K page on x86_64 ... or about 1.5% of total
system memory. For workloads where the bulk of memory is allocated to
applications this may represent a useful improvement to system
availability since 1.5% of total memory might be a third of the memory
allocated to the kernel.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some high end Intel Xeon systems report uncorrectable memory errors as a
recoverable machine check. Linux has included code for some time to
process these and just signal the affected processes (or even recover
completely if the error was in a read only page that can be replaced by
reading from disk).
But we have no recovery path for errors encountered during kernel code
execution. Except for some very specific cases were are unlikely to ever
be able to recover.
Enter memory mirroring. Actually 3rd generation of memory mirroing.
Gen1: All memory is mirrored
Pro: No s/w enabling - h/w just gets good data from other side of the
mirror
Con: Halves effective memory capacity available to OS/applications
Gen2: Partial memory mirror - just mirror memory begind some memory controllers
Pro: Keep more of the capacity
Con: Nightmare to enable. Have to choose between allocating from
mirrored memory for safety vs. NUMA local memory for performance
Gen3: Address range partial memory mirror - some mirror on each memory
controller
Pro: Can tune the amount of mirror and keep NUMA performance
Con: I have to write memory management code to implement
The current plan is just to use mirrored memory for kernel allocations.
This has been broken into two phases:
1) This patch series - find the mirrored memory, use it for boot time
allocations
2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the
unused mirrored memory from mm/memblock.c and only give it out to
select kernel allocations (this is still being scoped because
page_alloc.c is scary).
This patch (of 3):
Add extra "flags" to memblock to allow selection of memory based on
attribute. No functional changes
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_reserve() calls memblock_reserve_region() which prints debugging
information if 'memblock=debug' was passed on the command line. This
patch adds the same behaviour, but for memblock_add function().
[akpm@linux-foundation.org: s/memblock_memory/memblock_add/ in message]
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Emil Medve <Emilian.Medve@freescale.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A small cleanup. Seems in e3239ff9 ("memblock: Rename memblock_region to
memblock_type and memblock_property to memblock_region") this one was
missed.
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a lot of duplication in the rubric around actually setting or
clearing a mem region flag. Create a new helper function to do this and
reduce each of memblock_mark_hotplug() and memblock_clear_hotplug() to a
single line.
This will be useful if someone were to add a new mem region flag - which
I hope to be doing some day soon. But it looks like a plausible cleanup
even without that - so I'd like to get it out of the way now.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Emil Medve <Emilian.Medve@freescale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let memblock skip the hotpluggable memory regions in __next_mem_range(),
it is used to to prevent memblock from allocating hotpluggable memory
for the kernel at early time. The code is the same as __next_mem_range_rev().
Clear hotpluggable flag before releasing free pages to the buddy
allocator. If we don't clear hotpluggable flag in
free_low_memory_core_early(), the memory which marked hotpluggable flag
will not free to buddy allocator. Because __next_mem_range() will skip
them.
free_low_memory_core_early
for_each_free_mem_range
for_each_mem_range
__next_mem_range
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In memblock_find_in_range_node(), we defined ret as int. But it should
be phys_addr_t because it is used to store the return value from
__memblock_find_range_bottom_up().
The bug has not been triggered because when allocating low memory near
the kernel end, the "int ret" won't turn out to be negative. When we
started to allocate memory on other nodes, and the "int ret" could be
minus. Then the kernel will panic.
A simple way to reproduce this: comment out the following code in
numa_init(),
memblock_set_bottom_up(false);
and the kernel won't boot.
Reported-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Tested-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: <stable@vger.kernel.org> [3.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak could ignore memory blocks allocated via memblock_alloc()
leading to false positives during scanning. This patch adds the
corresponding callbacks and removes kmemleak_free_* calls in
mm/nobootmem.c to avoid duplication.
The kmemleak_alloc() in mm/nobootmem.c is kept since
__alloc_memory_core_early() does not use memblock_alloc() directly.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace ((x) >> PAGE_SHIFT) with the pfn macro.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This introduces memblock_alloc_range() which allocates memblock from the
specified range of physical address. I would like to use this function
to specify the location of CMA.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the physmem list to the memblock structure. This list only exists
if HAVE_MEMBLOCK_PHYS_MAP is selected and contains the unmodified
list of physically available memory. It differs from the memblock
memory list as it always contains all memory ranges even if the
memory has been restricted, e.g. by use of the mem= kernel parameter.
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Refactor the memblock code and extend the memblock API to make it
more flexible. With the extended API it is simple to define and
work with additional memory lists.
The static functions memblock_add_region and __memblock_remove are
renamed to memblock_add_range and meblock_remove_range and added to
the memblock API.
The __next_free_mem_range and __next_free_mem_range_rev functions
are replaced with calls to the more generic list walkers
__next_mem_range and __next_mem_range_rev.
To walk an arbitrary memory list two new macros for_each_mem_range
and for_each_mem_range_rev are added. These new macros are used
to define for_each_free_mem_range and for_each_free_mem_range_reverse.
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This is a small cleanup.
Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Apart from setting the limit of memblock, it's also useful to be able
to get the limit to avoid recalculating it every time. Add the function
to do so.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In original bootmem wrapper for memblock, we have limit checking.
Add it to memblock_virt_alloc, to address arm and x86 booting crash.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Reported-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Reported-by: Olof Johansson <olof@lixom.net>
Tested-by: Olof Johansson <olof@lixom.net>
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Strashko, Grygorii" <grygorii.strashko@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In original __alloc_memory_core_early() for bootmem wrapper, we do not
align size silently.
We should not do that, as later free with old size will leave some range
not freed.
It's obvious that code is copied from memblock_base_nid(), and that code
is wrong for the same reason.
Also remove that in memblock_alloc_base.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_allocated_memblock_reserved_regions_info() should work if it is
compiled in. Extended the ifdef around
get_allocated_memblock_memory_regions_info() to include
get_allocated_memblock_reserved_regions_info() as well. Similar changes
in nobootmem.c/free_low_memory_core_early() where the two functions are
called.
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Cc: qiuxishi <qiuxishi@huawei.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: Jiang Liu <liuj97@gmail.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling free_all_bootmem() the free areas under memblock's control
are released to the buddy allocator. Additionally the reserved list is
freed if it was reallocated by memblock. The same should apply for the
memory list.
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check nid parameter and produce warning if it has deprecated
MAX_NUMNODES value. Also re-assign NUMA_NO_NODE value to the nid
parameter in this case.
These will help to identify the wrong API usage (the caller) and make
code simpler.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce memblock memory allocation APIs which allow to support PAE or
LPAE extension on 32 bits archs where the physical memory start address
can be beyond 4GB. In such cases, existing bootmem APIs which operate
on 32 bit addresses won't work and needs memblock layer which operates
on 64 bit addresses.
So we add equivalent APIs so that we can replace usage of bootmem with
memblock interfaces. Architectures already converted to NO_BOOTMEM use
these new memblock interfaces. The architectures which are still not
converted to NO_BOOTMEM continue to function as is because we still
maintain the fal lback option of bootmem back-end supporting these new
interfaces. So no functional change as such.
In long run, once all the architectures moves to NO_BOOTMEM, we can get
rid of bootmem layer completely. This is one step to remove the core
code dependency with bootmem and also gives path for architectures to
move away from bootmem.
The proposed interface will became active if both CONFIG_HAVE_MEMBLOCK
and CONFIG_NO_BOOTMEM are specified by arch. In case
!CONFIG_NO_BOOTMEM, the memblock() wrappers will fallback to the
existing bootmem apis so that arch's not converted to NO_BOOTMEM
continue to work as is.
The meaning of MEMBLOCK_ALLOC_ACCESSIBLE and MEMBLOCK_ALLOC_ANYWHERE
is kept same.
[akpm@linux-foundation.org: s/depricated/deprecated/]
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's recommended to use NUMA_NO_NODE everywhere to select "process any
node" behavior or to indicate that "no node id specified".
Hence, update __next_free_mem_range*() API's to accept both NUMA_NO_NODE
and MAX_NUMNODES, but emit warning once on MAX_NUMNODES, and correct
corresponding API's documentation to describe new behavior. Also,
update other memblock/nobootmem APIs where MAX_NUMNODES is used
dirrectly.
The change was suggested by Tejun Heo.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reorder parameters of memblock_find_in_range_node to be consistent with
other memblock APIs.
The change was suggested by Tejun Heo <tj@kernel.org>.
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>