o Now CONFIG_PHYSICAL_START is being replaced with CONFIG_PHYSICAL_ALIGN.
Hardcoding the kernel physical start value creates a problem in relocatable
kernel context due to boot loader limitations. For ex, if somebody
compiles a relocatable kernel to be run from address 4MB, but this kernel
will run from location 1MB as grub loads the kernel at physical address
1MB. Kernel thinks that I am a relocatable kernel and I should run from
the address I have been loaded at. So somebody wanting to run kernel
from 4MB alignment location (for improved performance regions) can't do
that.
o Hence, Eric proposed that probably CONFIG_PHYSICAL_ALIGN will make
more sense in relocatable kernel context. At run time kernel will move
itself to a physical addr location which meets user specified alignment
restrictions.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Defining __PHYSICAL_START and __KERNEL_START in asm-i386/page.h works but
it triggers a full kernel rebuild for the silliest of reasons. This
modifies the users to directly use CONFIG_PHYSICAL_START and linux/config.h
which prevents the full rebuild problem, which makes the code much
more maintainer and hopefully user friendly.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
On x86_64 we have to be careful with calculating the physical
address of kernel symbols. Both because of compiler odditities
and because the symbols live in a different range of the virtual
address space.
Having a defintition of __pa_symbol that works on both x86_64 and
i386 simplifies writing code that works for both x86_64 and
i386 that has these kinds of dependencies.
So this patch adds the trivial i386 __pa_symbol definition.
Added assembly magic similar to RELOC_HIDE as suggested by Andi Kleen.
Just picked it up from x86_64.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
This patch fixes the math emulator, which had not been adjusted
to match the changed struct pt_regs.
AK: extracted from larger patch by Jeremy.
Signed-off-by: Andi Kleen <ak@suse.de>
Use the pcurrent field in the PDA to implement the "current" macro. This ends
up compiling down to a single instruction to get the current task.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Use the cpu_number in the PDA to implement raw_smp_processor_id. This is a
little simpler than using thread_info, though the cpu field in thread_info
cannot be removed since it is used for things other than getting the current
CPU in common code.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
sys_vm86 uses a struct kernel_vm86_regs, which is identical to pt_regs, but
adds an extra space for all the segment registers. Previously this structure
was completely independent, so changes in pt_regs had to be reflected in
kernel_vm86_regs. This changes just embeds pt_regs in kernel_vm86_regs, and
makes the appropriate changes to vm86.c to deal with the new naming.
Also, since %gs is dealt with differently in the kernel, this change adjusts
vm86.c to reflect this.
While making these changes, I also cleaned up some frankly bizarre code which
was added when auditing was added to sys_vm86.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
There are a few places where the change in struct pt_regs and the use of %gs
affect the userspace ABI. These are primarily debugging interfaces where
thread state can be inspected or extracted.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This patch is the meat of the PDA change. This patch makes several related
changes:
1: Most significantly, %gs is now used in the kernel. This means that on
entry, the old value of %gs is saved away, and it is reloaded with
__KERNEL_PDA.
2: entry.S constructs the stack in the shape of struct pt_regs, and this
is passed around the kernel so that the process's saved register
state can be accessed.
Unfortunately struct pt_regs doesn't currently have space for %gs
(or %fs). This patch extends pt_regs to add space for gs (no space
is allocated for %fs, since it won't be used, and it would just
complicate the code in entry.S to work around the space).
3: Because %gs is now saved on the stack like %ds, %es and the integer
registers, there are a number of places where it no longer needs to
be handled specially; namely context switch, and saving/restoring the
register state in a signal context.
4: And since kernel threads run in kernel space and call normal kernel
code, they need to be created with their %gs == __KERNEL_PDA.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
When a CPU is brought up, a PDA and GDT are allocated for it. The GDT's
__KERNEL_PDA entry is pointed to the allocated PDA memory, so that all
references using this segment descriptor will refer to the PDA.
This patch rearranges CPU initialization a bit, so that the GDT/PDA are set up
as early as possible in cpu_init(). Also for secondary CPUs, GDT+PDA are
preallocated and initialized so all the secondary CPU needs to do is set up
the ldt and load %gs. This will be important once smp_processor_id() and
current use the PDA.
In all cases, the PDA is set up in head.S, before a CPU starts running C code,
so the PDA is always available.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Cc: James Bottomley <James.Bottomley@SteelEye.com>
Cc: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This patch has the basic definitions of struct i386_pda, and the segment
selector in the GDT.
asm-i386/pda.h is more or less a direct copy of asm-x86_64/pda.h. The most
interesting difference is the use of _proxy_pda, which is used to give gcc a
model for the actual memory operations on the real pda structure. No actual
reference is ever made to _proxy_pda, so it is never defined.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
i386 port of the sLeAZY-fpu feature. Chuck reports that this gives him a +/-
0.4% improvement on his simple benchmark
x86_64 description follows:
Right now the kernel on x86-64 has a 100% lazy fpu behavior: after *every*
context switch a trap is taken for the first FPU use to restore the FPU
context lazily. This is of course great for applications that have very
sporadic or no FPU use (since then you avoid doing the expensive save/restore
all the time). However for very frequent FPU users... you take an extra trap
every context switch.
The patch below adds a simple heuristic to this code: After 5 consecutive
context switches of FPU use, the lazy behavior is disabled and the context
gets restored every context switch. If the app indeed uses the FPU, the trap
is avoided. (the chance of the 6th time slice using FPU after the previous 5
having done so are quite high obviously).
After 256 switches, this is reset and lazy behavior is returned (until there
are 5 consecutive ones again). The reason for this is to give apps that do
longer bursts of FPU use still the lazy behavior back after some time.
Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Clean up the espfix code:
- Introduced PER_CPU() macro to be used from asm
- Introduced GET_DESC_BASE() macro to be used from asm
- Rewrote the fixup code in asm, as calling a C code with the altered %ss
appeared to be unsafe
- No longer altering the stack from a .fixup section
- 16bit per-cpu stack is no longer used, instead the stack segment base
is patched the way so that the high word of the kernel and user %esp
are the same.
- Added the limit-patching for the espfix segment. (Chuck Ebbert)
[jeremy@goop.org: use the x86 scaling addressing mode rather than shifting]
Signed-off-by: Stas Sergeev <stsp@aknet.ru>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Zachary Amsden <zach@vmware.com>
Acked-by: Chuck Ebbert <76306.1226@compuserve.com>
Acked-by: Jan Beulich <jbeulich@novell.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
When a spinlock lockup occurs, arrange for the NMI code to emit an all-cpu
backtrace, so we get to see which CPU is holding the lock, and where.
Cc: Andi Kleen <ak@muc.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Andi Kleen <ak@suse.de>
This patch removes the default_ldt[] array, as it has been unused since
iBCS stopped being supported. This means it is now possible to actually
set an empty LDT segment.
In order to deal with this, the set_ldt_desc/load_LDT pair has been
replaced with a single set_ldt() operation which is responsible for both
setting up the LDT descriptor in the GDT, and reloading the LDT register.
If there are no LDT entries, the LDT register is loaded with a NULL
descriptor.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Acked-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Here is a patch (used by perfmon2) to detect the presence of the Precise Event
Based Sampling (PEBS) feature for i386. The patch also adds the cpu_has_pebs
macro.
- adds X86_FEATURE_PEBS
- adds cpu_has_pebs to test for X86_FEATURE_PEBS
Signed-off-by: stephane eranian <eranian@hpl.hp.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Here is a patch (used by perfmon2) that renames X86_FEATURE_DTES to
X86_FEATURE_DS to match Intel's documentation for the Debug Store save area on
i386. The patch also adds cpu_has_ds.
- rename X86_FEATURE_DTES to X86_FEATURE_DS to match documentation
- adds cpu_has_ds to test for X86_FEATURE_DS
Signed-off-by: stephane eranian <eranian@hpl.hp.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Any code that relies on the volatile would be a bug waiting to happen
anyway.
Don't encourage people to think that putting 'volatile' on data
structures somehow fixes problems. We should always use proper locking
(and other serialization) techniques.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is a resubmission of patches originally created by Ingo Molnar.
The link below is the initial (?) posting of the patch.
http://marc.theaimsgroup.com/?l=linux-kernel&m=115217423929806&w=2
Remove 'volatile' from spinlock_types as it causes GCC to generate bad
code (see link) and locking should be used on kernel data.
Signed-off-by: Art Haas <ahaas@airmail.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CONFIG_LBD and CONFIG_LSF are spread into asm/types.h for no particularly
good reason.
Centralising the definition in linux/types.h means that arch maintainers
don't need to bother adding it, as well as fixing the problem with
x86-64 users being asked to make a decision that has absolutely no
effect.
The H8/300 porters seem particularly confused since I'm not aware of any
microcontrollers that need to support 2TB filesystems.
Signed-off-by: Matthew Wilcox <matthew@wil.cx>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* sanitize prototypes, annotate
* usual ntohs->shift
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Change ACPI to use dev_archdata instead of firmware_data
This patch changes ACPI to use the new dev_archdata on i386, x86_64
and ia64 (is there any other arch using ACPI ?) to store it's
acpi_handle.
It also removes the firmware_data field from struct device as this
was the only user.
Only build-tested on x86
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add arch specific dev_archdata to struct device
Adds an arch specific struct dev_arch to struct device. This enables
architecture to add specific fields to every device in the system, like
DMA operation pointers, NUMA node ID, firmware specific data, etc...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@suse.de>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Fix
arch/i386/mach-generic/built-in.o: In function `apicid_to_node':
summit.c:(.text+0x2f): undefined reference to `apicid_2_node'
with CONFIG_GENERICH_ARCH and !CONFIG_SMP
Signed-off-by: Andi Kleen <ak@suse.de>
Timer overrides are normally disabled on Nvidia board because
they are commonly wrong, except on new ones with HPET support.
Unfortunately there are quite some Asus boards around that
don't have HPET, but need a timer override.
We don't know yet how to handle this transparently,
but at least add a command line option to force the timer override
and let them boot.
Cc: len.brown@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
Several more Intel CPUs are now capable using the p4-clockmod cpufreq
driver. As it is of limited use most of the time, print a big bold warning
if a better cpufreq driver might be available.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Dave Jones <davej@redhat.com>
This is preparation for fixing the ordering of the accesses that
got broken by the commit cf4c6a2f27f5db810b69dcb1da7f194489e8ff88 when
factoring out the "common" io apic routing entry accesses.
Move the accessor function (that were only used by io_apic.c) out
of a header file, and use proper memory-mapped accesses rather than
making up our own "volatile" pointers.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Fixes a build problem with CONFIG_M386=y (include file dependencies get
messy).
- Share the implementation between x86 and x86_64
- These are too big to inline anyway.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
Enable ondemand governor and acpi-cpufreq to use IA32_APERF and IA32_MPERF MSR
to get active frequency feedback for the last sampling interval. This will
make ondemand take right frequency decisions when hardware coordination of
frequency is going on.
Without APERF/MPERF, ondemand can take wrong decision at times due
to underlying hardware coordination or TM2.
Example:
* CPU 0 and CPU 1 are hardware cooridnated.
* CPU 1 running at highest frequency.
* CPU 0 was running at highest freq. Now ondemand reduces it to
some intermediate frequency based on utilization.
* Due to underlying hardware coordination with other CPU 1, CPU 0 continues to
run at highest frequency (as long as other CPU is at highest).
* When ondemand samples CPU 0 again next time, without actual frequency
feedback from APERF/MPERF, it will think that previous frequency change
was successful and can go to wrong target frequency. This is because it
thinks that utilization it has got this sampling interval is when running at
intermediate frequency, rather than actual highest frequency.
More information about IA32_APERF IA32_MPERF MSR:
Refer to IA-32 Intel® Architecture Software Developer's Manual at
http://developer.intel.com
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Intel processors starting with the Core Duo support
support processor native C-state using the MWAIT instruction.
Refer: Intel Architecture Software Developer's Manual
http://www.intel.com/design/Pentium4/manuals/253668.htm
Platform firmware exports the support for Native C-state to OS using
ACPI _PDC and _CST methods.
Refer: Intel Processor Vendor-Specific ACPI: Interface Specification
http://www.intel.com/technology/iapc/acpi/downloads/302223.htm
With Processor Native C-state, we use 'MWAIT' instruction on the processor
to enter different C-states (C1, C2, C3). We won't use the special IO
ports to enter C-state and no SMM mode etc required to enter C-state.
Overall this will mean better C-state support.
One major advantage of using MWAIT for all C-states is, with this and
"treat interrupt as break event" feature of MWAIT, we can now get accurate
timing for the time spent in C1, C2, .. states.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
Apparently whoever converted voyager never actually checked that the
patch would compile ...
Remove as much of the pt_regs references as possible and move the
remaining ones into line with what's in x86 generic.
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
The old style (attribute on each structure entry) never really worked.
Move it to an attribute per structure
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Place kernel-doc function comment header immediately before the function that
is being documented.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There's nothing arch-specific about check_signature(), so move it to
<linux/io.h>. Use a cross between the Alpha and i386 implementations as
the generic one.
Signed-off-by: Matthew Wilcox <willy@parisc-linux.org>
Acked-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Implement the epoll_pwait system call, that extend the event wait mechanism
with the same logic ppoll and pselect do. The definition of epoll_pwait
is:
int epoll_pwait(int epfd, struct epoll_event *events, int maxevents,
int timeout, const sigset_t *sigmask, size_t sigsetsize);
The difference between the vanilla epoll_wait and epoll_pwait is that the
latter allows the caller to specify a signal mask to be set while waiting
for events. Hence epoll_pwait will wait until either one monitored event,
or an unmasked signal happen. If sigmask is NULL, the epoll_pwait system
call will act exactly like epoll_wait. For the POSIX definition of
pselect, information is available here:
http://www.opengroup.org/onlinepubs/009695399/functions/select.html
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Which vector an irq is assigned to now varies dynamically and is
not needed outside of io_apic.c. So remove the possibility
of accessing the information outside of io_apic.c and remove
the silly macro that makes looking for users of irq_vector
difficult.
The fact this compiles ensures there aren't any more pieces
of the old CONFIG_PCI_MSI weirdness that I failed to remove.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CONFIG_X86_GENERIC is not exclusively CONFIG_SMP, as mach-default/ could
be compiled also for UP archs. The patch fixes compilation error in
include/asm/mach-summit/mach_apic.h in case CONFIG_X86_GENERIC && !CONFIG_SMP
Signed-off-by: Jiri Kosina <jikos@jikos.cz>
Acked-by: Keith Mannthey <kmannth@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
* master.kernel.org:/pub/scm/linux/kernel/git/davej/configh:
Remove all inclusions of <linux/config.h>
Manually resolved trivial path conflicts due to removed files in
the sound/oss/ subdirectory.
It turns out msi_ops was simply not enough to abstract the architecture
specific details of msi. So I have moved the resposibility of constructing
the struct irq_chip to the architectures, and have two architecture specific
functions arch_setup_msi_irq, and arch_teardown_msi_irq.
For simple architectures those functions can do all of the work. For
architectures with platform dependencies they can call into the appropriate
platform code.
With this msi.c is finally free of assuming you have an apic, and this
actually takes less code.
The helpers for the architecture specific code are declared in the linux/msi.h
to keep them separate from the msi functions used by drivers in linux/pci.h
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg KH <greg@kroah.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements two functions ht_create_irq and ht_destroy_irq for
use by drivers. Several other functions are implemented as helpers for
arch specific irq_chip handlers.
The driver for the card I tested this on isn't yet ready to be merged.
However this code is and hypertransport irqs are in use in a few other
places in the kernel. Not that any of this will get merged before 2.6.19
Because the ipath-ht400 is slightly out of spec this code will need to be
generalized to work there.
I think all of the powerpc uses are for a plain interrupt controller in a
chipset so support for native hypertransport devices is a little less
interesting.
However I think this is a half way decent model on how to separate arch
specific and generic helper code, and I think this is a functional model of
how to get the architecture dependencies out of the msi code.
[akpm@osdl.org: Kconfig fix]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Greg KH <greg@kroah.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes the change in behavior of the irq allocation code when
CONFIG_PCI_MSI is defined. Removing all instances of the assumption that irq
== vector.
create_irq is rewritten to first allocate a free irq and then to assign that
irq a vector.
assign_irq_vector is made static and the AUTO_ASSIGN case which allocates an
vector not bound to an irq is removed.
The ioapic vector methods are removed, and everything now works with irqs.
The definition of NR_IRQS no longer depends on CONFIG_PCI_MSI
[akpm@osdl.org: cleanup]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This removes the hardcoded assumption that irq == vector in the msi
composition code, and it allows the msi message composition to setup logical
mode, or lowest priorirty delivery mode as we do for other apic interrupts,
and with the same selection criteria.
Basically this moves the problem of what is in the msi message into the
architecture irq management code where it belongs. Not in a generic layer
that doesn't have enough information to compose msi messages properly.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>