6172 Commits

Author SHA1 Message Date
Florian Westphal
735d383117 tcp: change TCP_ECN prefixes to lower case
Suggested by Stephen. Also drop inline keyword and let compiler decide.

gcc 4.7.3 decides to no longer inline tcp_ecn_check_ce, so split it up.
The actual evaluation is not inlined anymore while the ECN_OK test is.

Suggested-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 14:41:22 -04:00
Florian Westphal
d82bd12298 tcp: move TCP_ECN_create_request out of header
After Octavian Purdilas tcp ipv4/ipv6 unification work this helper only
has a single callsite.

While at it, convert name to lowercase, suggested by Stephen.

Suggested-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 14:41:22 -04:00
Li RongQing
41c91996d9 tcp: remove unnecessary assignment.
This variable i is overwritten to 0 by following code

Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 12:31:12 -04:00
Daniel Borkmann
e3118e8359 net: tcp: add DCTCP congestion control algorithm
This work adds the DataCenter TCP (DCTCP) congestion control
algorithm [1], which has been first published at SIGCOMM 2010 [2],
resp. follow-up analysis at SIGMETRICS 2011 [3] (and also, more
recently as an informational IETF draft available at [4]).

DCTCP is an enhancement to the TCP congestion control algorithm for
data center networks. Typical data center workloads are i.e.
i) partition/aggregate (queries; bursty, delay sensitive), ii) short
messages e.g. 50KB-1MB (for coordination and control state; delay
sensitive), and iii) large flows e.g. 1MB-100MB (data update;
throughput sensitive). DCTCP has therefore been designed for such
environments to provide/achieve the following three requirements:

  * High burst tolerance (incast due to partition/aggregate)
  * Low latency (short flows, queries)
  * High throughput (continuous data updates, large file
    transfers) with commodity, shallow buffered switches

The basic idea of its design consists of two fundamentals: i) on the
switch side, packets are being marked when its internal queue
length > threshold K (K is chosen so that a large enough headroom
for marked traffic is still available in the switch queue); ii) the
sender/host side maintains a moving average of the fraction of marked
packets, so each RTT, F is being updated as follows:

 F := X / Y, where X is # of marked ACKs, Y is total # of ACKs
 alpha := (1 - g) * alpha + g * F, where g is a smoothing constant

The resulting alpha (iow: probability that switch queue is congested)
is then being used in order to adaptively decrease the congestion
window W:

 W := (1 - (alpha / 2)) * W

The means for receiving marked packets resp. marking them on switch
side in DCTCP is the use of ECN.

RFC3168 describes a mechanism for using Explicit Congestion Notification
from the switch for early detection of congestion, rather than waiting
for segment loss to occur.

However, this method only detects the presence of congestion, not
the *extent*. In the presence of mild congestion, it reduces the TCP
congestion window too aggressively and unnecessarily affects the
throughput of long flows [4].

DCTCP, as mentioned, enhances Explicit Congestion Notification (ECN)
processing to estimate the fraction of bytes that encounter congestion,
rather than simply detecting that some congestion has occurred. DCTCP
then scales the TCP congestion window based on this estimate [4],
thus it can derive multibit feedback from the information present in
the single-bit sequence of marks in its control law. And thus act in
*proportion* to the extent of congestion, not its *presence*.

Switches therefore set the Congestion Experienced (CE) codepoint in
packets when internal queue lengths exceed threshold K. Resulting,
DCTCP delivers the same or better throughput than normal TCP, while
using 90% less buffer space.

It was found in [2] that DCTCP enables the applications to handle 10x
the current background traffic, without impacting foreground traffic.
Moreover, a 10x increase in foreground traffic did not cause any
timeouts, and thus largely eliminates TCP incast collapse problems.

The algorithm itself has already seen deployments in large production
data centers since then.

We did a long-term stress-test and analysis in a data center, short
summary of our TCP incast tests with iperf compared to cubic:

This test measured DCTCP throughput and latency and compared it with
CUBIC throughput and latency for an incast scenario. In this test, 19
senders sent at maximum rate to a single receiver. The receiver simply
ran iperf -s.

The senders ran iperf -c <receiver> -t 30. All senders started
simultaneously (using local clocks synchronized by ntp).

This test was repeated multiple times. Below shows the results from a
single test. Other tests are similar. (DCTCP results were extremely
consistent, CUBIC results show some variance induced by the TCP timeouts
that CUBIC encountered.)

For this test, we report statistics on the number of TCP timeouts,
flow throughput, and traffic latency.

1) Timeouts (total over all flows, and per flow summaries):

            CUBIC            DCTCP
  Total     3227             25
  Mean       169.842          1.316
  Median     183              1
  Max        207              5
  Min        123              0
  Stddev      28.991          1.600

Timeout data is taken by measuring the net change in netstat -s
"other TCP timeouts" reported. As a result, the timeout measurements
above are not restricted to the test traffic, and we believe that it
is likely that all of the "DCTCP timeouts" are actually timeouts for
non-test traffic. We report them nevertheless. CUBIC will also include
some non-test timeouts, but they are drawfed by bona fide test traffic
timeouts for CUBIC. Clearly DCTCP does an excellent job of preventing
TCP timeouts. DCTCP reduces timeouts by at least two orders of
magnitude and may well have eliminated them in this scenario.

2) Throughput (per flow in Mbps):

            CUBIC            DCTCP
  Mean      521.684          521.895
  Median    464              523
  Max       776              527
  Min       403              519
  Stddev    105.891            2.601
  Fairness    0.962            0.999

Throughput data was simply the average throughput for each flow
reported by iperf. By avoiding TCP timeouts, DCTCP is able to
achieve much better per-flow results. In CUBIC, many flows
experience TCP timeouts which makes flow throughput unpredictable and
unfair. DCTCP, on the other hand, provides very clean predictable
throughput without incurring TCP timeouts. Thus, the standard deviation
of CUBIC throughput is dramatically higher than the standard deviation
of DCTCP throughput.

Mean throughput is nearly identical because even though cubic flows
suffer TCP timeouts, other flows will step in and fill the unused
bandwidth. Note that this test is something of a best case scenario
for incast under CUBIC: it allows other flows to fill in for flows
experiencing a timeout. Under situations where the receiver is issuing
requests and then waiting for all flows to complete, flows cannot fill
in for timed out flows and throughput will drop dramatically.

3) Latency (in ms):

            CUBIC            DCTCP
  Mean      4.0088           0.04219
  Median    4.055            0.0395
  Max       4.2              0.085
  Min       3.32             0.028
  Stddev    0.1666           0.01064

Latency for each protocol was computed by running "ping -i 0.2
<receiver>" from a single sender to the receiver during the incast
test. For DCTCP, "ping -Q 0x6 -i 0.2 <receiver>" was used to ensure
that traffic traversed the DCTCP queue and was not dropped when the
queue size was greater than the marking threshold. The summary
statistics above are over all ping metrics measured between the single
sender, receiver pair.

The latency results for this test show a dramatic difference between
CUBIC and DCTCP. CUBIC intentionally overflows the switch buffer
which incurs the maximum queue latency (more buffer memory will lead
to high latency.) DCTCP, on the other hand, deliberately attempts to
keep queue occupancy low. The result is a two orders of magnitude
reduction of latency with DCTCP - even with a switch with relatively
little RAM. Switches with larger amounts of RAM will incur increasing
amounts of latency for CUBIC, but not for DCTCP.

4) Convergence and stability test:

This test measured the time that DCTCP took to fairly redistribute
bandwidth when a new flow commences. It also measured DCTCP's ability
to remain stable at a fair bandwidth distribution. DCTCP is compared
with CUBIC for this test.

At the commencement of this test, a single flow is sending at maximum
rate (near 10 Gbps) to a single receiver. One second after that first
flow commences, a new flow from a distinct server begins sending to
the same receiver as the first flow. After the second flow has sent
data for 10 seconds, the second flow is terminated. The first flow
sends for an additional second. Ideally, the bandwidth would be evenly
shared as soon as the second flow starts, and recover as soon as it
stops.

The results of this test are shown below. Note that the flow bandwidth
for the two flows was measured near the same time, but not
simultaneously.

DCTCP performs nearly perfectly within the measurement limitations
of this test: bandwidth is quickly distributed fairly between the two
flows, remains stable throughout the duration of the test, and
recovers quickly. CUBIC, in contrast, is slow to divide the bandwidth
fairly, and has trouble remaining stable.

  CUBIC                      DCTCP

  Seconds  Flow 1  Flow 2    Seconds  Flow 1  Flow 2
   0       9.93    0          0       9.92    0
   0.5     9.87    0          0.5     9.86    0
   1       8.73    2.25       1       6.46    4.88
   1.5     7.29    2.8        1.5     4.9     4.99
   2       6.96    3.1        2       4.92    4.94
   2.5     6.67    3.34       2.5     4.93    5
   3       6.39    3.57       3       4.92    4.99
   3.5     6.24    3.75       3.5     4.94    4.74
   4       6       3.94       4       5.34    4.71
   4.5     5.88    4.09       4.5     4.99    4.97
   5       5.27    4.98       5       4.83    5.01
   5.5     4.93    5.04       5.5     4.89    4.99
   6       4.9     4.99       6       4.92    5.04
   6.5     4.93    5.1        6.5     4.91    4.97
   7       4.28    5.8        7       4.97    4.97
   7.5     4.62    4.91       7.5     4.99    4.82
   8       5.05    4.45       8       5.16    4.76
   8.5     5.93    4.09       8.5     4.94    4.98
   9       5.73    4.2        9       4.92    5.02
   9.5     5.62    4.32       9.5     4.87    5.03
  10       6.12    3.2       10       4.91    5.01
  10.5     6.91    3.11      10.5     4.87    5.04
  11       8.48    0         11       8.49    4.94
  11.5     9.87    0         11.5     9.9     0

SYN/ACK ECT test:

This test demonstrates the importance of ECT on SYN and SYN-ACK packets
by measuring the connection probability in the presence of competing
flows for a DCTCP connection attempt *without* ECT in the SYN packet.
The test was repeated five times for each number of competing flows.

              Competing Flows  1 |    2 |    4 |    8 |   16
                               ------------------------------
Mean Connection Probability    1 | 0.67 | 0.45 | 0.28 |    0
Median Connection Probability  1 | 0.65 | 0.45 | 0.25 |    0

As the number of competing flows moves beyond 1, the connection
probability drops rapidly.

Enabling DCTCP with this patch requires the following steps:

DCTCP must be running both on the sender and receiver side in your
data center, i.e.:

  sysctl -w net.ipv4.tcp_congestion_control=dctcp

Also, ECN functionality must be enabled on all switches in your
data center for DCTCP to work. The default ECN marking threshold (K)
heuristic on the switch for DCTCP is e.g., 20 packets (30KB) at
1Gbps, and 65 packets (~100KB) at 10Gbps (K > 1/7 * C * RTT, [4]).

In above tests, for each switch port, traffic was segregated into two
queues. For any packet with a DSCP of 0x01 - or equivalently a TOS of
0x04 - the packet was placed into the DCTCP queue. All other packets
were placed into the default drop-tail queue. For the DCTCP queue,
RED/ECN marking was enabled, here, with a marking threshold of 75 KB.
More details however, we refer you to the paper [2] under section 3).

There are no code changes required to applications running in user
space. DCTCP has been implemented in full *isolation* of the rest of
the TCP code as its own congestion control module, so that it can run
without a need to expose code to the core of the TCP stack, and thus
nothing changes for non-DCTCP users.

Changes in the CA framework code are minimal, and DCTCP algorithm
operates on mechanisms that are already available in most Silicon.
The gain (dctcp_shift_g) is currently a fixed constant (1/16) from
the paper, but we leave the option that it can be chosen carefully
to a different value by the user.

In case DCTCP is being used and ECN support on peer site is off,
DCTCP falls back after 3WHS to operate in normal TCP Reno mode.

ss {-4,-6} -t -i diag interface:

  ... dctcp wscale:7,7 rto:203 rtt:2.349/0.026 mss:1448 cwnd:2054
  ssthresh:1102 ce_state 0 alpha 15 ab_ecn 0 ab_tot 735584
  send 10129.2Mbps pacing_rate 20254.1Mbps unacked:1822 retrans:0/15
  reordering:101 rcv_space:29200

  ... dctcp-reno wscale:7,7 rto:201 rtt:0.711/1.327 ato:40 mss:1448
  cwnd:10 ssthresh:1102 fallback_mode send 162.9Mbps pacing_rate
  325.5Mbps rcv_rtt:1.5 rcv_space:29200

More information about DCTCP can be found in [1-4].

  [1] http://simula.stanford.edu/~alizade/Site/DCTCP.html
  [2] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
  [3] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
  [4] http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00

Joint work with Florian Westphal and Glenn Judd.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Florian Westphal
9890092e46 net: tcp: more detailed ACK events and events for CE marked packets
DataCenter TCP (DCTCP) determines cwnd growth based on ECN information
and ACK properties, e.g. ACK that updates window is treated differently
than DUPACK.

Also DCTCP needs information whether ACK was delayed ACK. Furthermore,
DCTCP also implements a CE state machine that keeps track of CE markings
of incoming packets.

Therefore, extend the congestion control framework to provide these
event types, so that DCTCP can be properly implemented as a normal
congestion algorithm module outside of the core stack.

Joint work with Daniel Borkmann and Glenn Judd.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Florian Westphal
7354c8c389 net: tcp: split ack slow/fast events from cwnd_event
The congestion control ops "cwnd_event" currently supports
CA_EVENT_FAST_ACK and CA_EVENT_SLOW_ACK events (among others).
Both FAST and SLOW_ACK are only used by Westwood congestion
control algorithm.

This removes both flags from cwnd_event and adds a new
in_ack_event callback for this. The goal is to be able to
provide more detailed information about ACKs, such as whether
ECE flag was set, or whether the ACK resulted in a window
update.

It is required for DataCenter TCP (DCTCP) congestion control
algorithm as it makes a different choice depending on ECE being
set or not.

Joint work with Daniel Borkmann and Glenn Judd.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Daniel Borkmann
30e502a34b net: tcp: add flag for ca to indicate that ECN is required
This patch adds a flag to TCP congestion algorithms that allows
for requesting to mark IPv4/IPv6 sockets with transport as ECN
capable, that is, ECT(0), when required by a congestion algorithm.

It is currently used and needed in DataCenter TCP (DCTCP), as it
requires both peers to assert ECT on all IP packets sent - it
uses ECN feedback (i.e. CE, Congestion Encountered information)
from switches inside the data center to derive feedback to the
end hosts.

Therefore, simply add a new flag to icsk_ca_ops. Note that DCTCP's
algorithm/behaviour slightly diverges from RFC3168, therefore this
is only (!) enabled iff the assigned congestion control ops module
has requested this. By that, we can tightly couple this logic really
only to the provided congestion control ops.

Joint work with Florian Westphal and Glenn Judd.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Florian Westphal
55d8694fa8 net: tcp: assign tcp cong_ops when tcp sk is created
Split assignment and initialization from one into two functions.

This is required by followup patches that add Datacenter TCP
(DCTCP) congestion control algorithm - we need to be able to
determine if the connection is moderated by DCTCP before the
3WHS has finished.

As we walk the available congestion control list during the
assignment, we are always guaranteed to have Reno present as
it's fixed compiled-in. Therefore, since we're doing the
early assignment, we don't have a real use for the Reno alias
tcp_init_congestion_ops anymore and can thus remove it.

Actual usage of the congestion control operations are being
made after the 3WHS has finished, in some cases however we
can access get_info() via diag if implemented, therefore we
need to zero out the private area for those modules.

Joint work with Daniel Borkmann and Glenn Judd.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Rick Jones
825bae5d97 arp: Do not perturb drop profiles with ignored ARP packets
We do not wish to disturb dropwatch or perf drop profiles with an ARP
we will ignore.

Signed-off-by: Rick Jones <rick.jones2@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 17:30:35 -04:00
David S. Miller
f5c7e1a47a Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next
Steffen Klassert says:

====================
pull request (net-next): ipsec-next 2014-09-25

1) Remove useless hash_resize_mutex in xfrm_hash_resize().
   This mutex is used only there, but xfrm_hash_resize()
   can't be called concurrently at all. From Ying Xue.

2) Extend policy hashing to prefixed policies based on
   prefix lenght thresholds. From Christophe Gouault.

3) Make the policy hash table thresholds configurable
   via netlink. From Christophe Gouault.

4) Remove the maximum authentication length for AH.
   This was needed to limit stack usage. We switched
   already to allocate space, so no need to keep the
   limit. From Herbert Xu.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 17:19:15 -04:00
Peter Pan(潘卫平)
155c6e1ad4 tcp: use tcp_flags in tcp_data_queue()
This patch is a cleanup which follows the idea in commit e11ecddf5128 (tcp: use
TCP_SKB_CB(skb)->tcp_flags in input path),
and it may reduce register pressure since skb->cb[] access is fast,
bacause skb is probably in a register.

v2: remove variable th
v3: reword the changelog

Signed-off-by: Weiping Pan <panweiping3@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 16:37:57 -04:00
Eric Dumazet
cd7d8498c9 tcp: change tcp_skb_pcount() location
Our goal is to access no more than one cache line access per skb in
a write or receive queue when doing the various walks.

After recent TCP_SKB_CB() reorganizations, it is almost done.

Last part is tcp_skb_pcount() which currently uses
skb_shinfo(skb)->gso_segs, which is a terrible choice, because it needs
3 cache lines in current kernel (skb->head, skb->end, and
shinfo->gso_segs are all in 3 different cache lines, far from skb->cb)

This very simple patch reuses space currently taken by tcp_tw_isn
only in input path, as tcp_skb_pcount is only needed for skb stored in
write queue.

This considerably speeds up tcp_ack(), granted we avoid shinfo->tx_flags
to get SKBTX_ACK_TSTAMP, which seems possible.

This also speeds up all sack processing in general.

This speeds up tcp_sendmsg() because it no longer has to access/dirty
shinfo.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 16:36:48 -04:00
Eric Dumazet
971f10eca1 tcp: better TCP_SKB_CB layout to reduce cache line misses
TCP maintains lists of skb in write queue, and in receive queues
(in order and out of order queues)

Scanning these lists both in input and output path usually requires
access to skb->next, TCP_SKB_CB(skb)->seq, and TCP_SKB_CB(skb)->end_seq

These fields are currently in two different cache lines, meaning we
waste lot of memory bandwidth when these queues are big and flows
have either packet drops or packet reorders.

We can move TCP_SKB_CB(skb)->header at the end of TCP_SKB_CB, because
this header is not used in fast path. This allows TCP to search much faster
in the skb lists.

Even with regular flows, we save one cache line miss in fast path.

Thanks to Christoph Paasch for noticing we need to cleanup
skb->cb[] (IPCB/IP6CB) before entering IP stack in tx path,
and that I forgot IPCB use in tcp_v4_hnd_req() and tcp_v4_save_options().

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 16:35:43 -04:00
Eric Dumazet
24a2d43d88 ipv4: rename ip_options_echo to __ip_options_echo()
ip_options_echo() assumes struct ip_options is provided in &IPCB(skb)->opt
Lets break this assumption, but provide a helper to not change all call points.

ip_send_unicast_reply() gets a new struct ip_options pointer.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-28 16:35:42 -04:00
Eric Dumazet
f4a775d144 net: introduce __skb_header_release()
While profiling TCP stack, I noticed one useless atomic operation
in tcp_sendmsg(), caused by skb_header_release().

It turns out all current skb_header_release() users have a fresh skb,
that no other user can see, so we can avoid one atomic operation.

Introduce __skb_header_release() to clearly document this.

This gave me a 1.5 % improvement on TCP_RR workload.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 15:40:06 -04:00
Tom Herbert
53e5039896 net: Remove gso_send_check as an offload callback
The send_check logic was only interesting in cases of TCP offload and
UDP UFO where the checksum needed to be initialized to the pseudo
header checksum. Now we've moved that logic into the related
gso_segment functions so gso_send_check is no longer needed.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:22:47 -04:00
Tom Herbert
f71470b37e udp: move logic out of udp[46]_ufo_send_check
In udp[46]_ufo_send_check the UDP checksum initialized to the pseudo
header checksum. We can move this logic into udp[46]_ufo_fragment.
After this change udp[64]_ufo_send_check is a no-op.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:22:46 -04:00
Tom Herbert
d020f8f733 tcp: move logic out of tcp_v[64]_gso_send_check
In tcp_v[46]_gso_send_check the TCP checksum is initialized to the
pseudo header checksum using __tcp_v[46]_send_check. We can move this
logic into new tcp[46]_gso_segment functions to be done when
ip_summed != CHECKSUM_PARTIAL (ip_summed == CHECKSUM_PARTIAL should be
the common case, possibly always true when taking GSO path). After this
change tcp_v[46]_gso_send_check is no-op.

Signed-off-by: Tom Herbert <therbert@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:22:46 -04:00
Eric Dumazet
bd1e75abf4 tcp: add coalescing attempt in tcp_ofo_queue()
In order to make TCP more resilient in presence of reorders, we need
to allow coalescing to happen when skbs from out of order queue are
transferred into receive queue. LRO/GRO can be completely canceled
in some pathological cases, like per packet load balancing on aggregated
links.

I had to move tcp_try_coalesce() up in the file above tcp_ofo_queue()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-23 12:47:38 -04:00
Eric Dumazet
4cdf507d54 icmp: add a global rate limitation
Current ICMP rate limiting uses inetpeer cache, which is an RBL tree
protected by a lock, meaning that hosts can be stuck hard if all cpus
want to check ICMP limits.

When say a DNS or NTP server process is restarted, inetpeer tree grows
quick and machine comes to its knees.

iptables can not help because the bottleneck happens before ICMP
messages are even cooked and sent.

This patch adds a new global limitation, using a token bucket filter,
controlled by two new sysctl :

icmp_msgs_per_sec - INTEGER
    Limit maximal number of ICMP packets sent per second from this host.
    Only messages whose type matches icmp_ratemask are
    controlled by this limit.
    Default: 1000

icmp_msgs_burst - INTEGER
    icmp_msgs_per_sec controls number of ICMP packets sent per second,
    while icmp_msgs_burst controls the burst size of these packets.
    Default: 50

Note that if we really want to send millions of ICMP messages per
second, we might extend idea and infra added in commit 04ca6973f7c1a
("ip: make IP identifiers less predictable") :
add a token bucket in the ip_idents hash and no longer rely on inetpeer.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-23 12:47:38 -04:00
David S. Miller
1f6d80358d Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	arch/mips/net/bpf_jit.c
	drivers/net/can/flexcan.c

Both the flexcan and MIPS bpf_jit conflicts were cases of simple
overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-23 12:09:27 -04:00
Eric Dumazet
a35165ca10 ipv4: do not use this_cpu_ptr() in preemptible context
this_cpu_ptr() in preemptible context is generally bad

Sep 22 05:05:55 br kernel: [   94.608310] BUG: using smp_processor_id()
in
preemptible [00000000] code: ip/2261
Sep 22 05:05:55 br kernel: [   94.608316] caller is
tunnel_dst_set.isra.28+0x20/0x60 [ip_tunnel]
Sep 22 05:05:55 br kernel: [   94.608319] CPU: 3 PID: 2261 Comm: ip Not
tainted
3.17.0-rc5 #82

We can simply use raw_cpu_ptr(), as preemption is safe in these
contexts.

Should fix https://bugzilla.kernel.org/show_bug.cgi?id=84991

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Joe <joe9mail@gmail.com>
Fixes: 9a4aa9af447f ("ipv4: Use percpu Cache route in IP tunnels")
Acked-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-22 18:31:18 -04:00
Eric Dumazet
fcdd1cf4dd tcp: avoid possible arithmetic overflows
icsk_rto is a 32bit field, and icsk_backoff can reach 15 by default,
or more if some sysctl (eg tcp_retries2) are changed.

Better use 64bit to perform icsk_rto << icsk_backoff operations

As Joe Perches suggested, add a helper for this.

Yuchung spotted the tcp_v4_err() case.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-22 16:27:10 -04:00
Tom Herbert
4565e9919c gre: Setup and TX path for gre/UDP foo-over-udp encapsulation
Added netlink attrs to configure FOU encapsulation for GRE, netlink
handling of these flags, and properly adjust MTU for encapsulation.
ip_tunnel_encap is called from ip_tunnel_xmit to actually perform FOU
encapsulation.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:32 -04:00
Tom Herbert
473ab820dd ipip: Setup and TX path for ipip/UDP foo-over-udp encapsulation
Add netlink handling for IP tunnel encapsulation parameters and
and adjustment of MTU for encapsulation.  ip_tunnel_encap is called
from ip_tunnel_xmit to actually perform FOU encapsulation.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:32 -04:00
Tom Herbert
5632848653 net: Changes to ip_tunnel to support foo-over-udp encapsulation
This patch changes IP tunnel to support (secondary) encapsulation,
Foo-over-UDP. Changes include:

1) Adding tun_hlen as the tunnel header length, encap_hlen as the
   encapsulation header length, and hlen becomes the grand total
   of these.
2) Added common netlink define to support FOU encapsulation.
3) Routines to perform FOU encapsulation.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:32 -04:00
Tom Herbert
afe93325bc fou: Add GRO support
Implement fou_gro_receive and fou_gro_complete, and populate these
in the correponsing udp_offloads for the socket. Added ipproto to
udp_offloads and pass this from UDP to the fou GRO routine in proto
field of napi_gro_cb structure.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:31 -04:00
Tom Herbert
23461551c0 fou: Support for foo-over-udp RX path
This patch provides a receive path for foo-over-udp. This allows
direct encapsulation of IP protocols over UDP. The bound destination
port is used to map to an IP protocol, and the XFRM framework
(udp_encap_rcv) is used to receive encapsulated packets. Upon
reception, the encapsulation header is logically removed (pointer
to transport header is advanced) and the packet is reinjected into
the receive path with the IP protocol indicated by the mapping.

Netlink is used to configure FOU ports. The configuration information
includes the port number to bind to and the IP protocol corresponding
to that port.

This should support GRE/UDP
(http://tools.ietf.org/html/draft-yong-tsvwg-gre-in-udp-encap-02),
as will as the other IP tunneling protocols (IPIP, SIT).

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:31 -04:00
Tom Herbert
ce3e02867e net: Export inet_offloads and inet6_offloads
Want to be able to use these in foo-over-udp offloads, etc.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:31 -04:00
Eric Dumazet
cb93471acc tcp: do not fake tcp headers in tcp_send_rcvq()
Now we no longer rely on having tcp headers for skbs in receive queue,
tcp repair do not need to build fake ones.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 16:04:13 -04:00
Andy Zhou
6a93cc9052 udp-tunnel: Add a few more UDP tunnel APIs
Added a few more UDP tunnel APIs that can be shared by UDP based
tunnel protocol implementation. The main ones are highlighted below.

setup_udp_tunnel_sock() configures UDP listener socket for
receiving UDP encapsulated packets.

udp_tunnel_xmit_skb() and upd_tunnel6_xmit_skb() transmit skb
using UDP encapsulation.

udp_tunnel_sock_release() closes the UDP tunnel listener socket.

Signed-off-by: Andy Zhou <azhou@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 15:57:15 -04:00
Andy Zhou
fd384412e1 udp_tunnel: Seperate ipv6 functions into its own file.
Add ip6_udp_tunnel.c for ipv6 UDP tunnel functions to avoid ifdefs
in udp_tunnel.c

Signed-off-by: Andy Zhou <azhou@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 15:57:15 -04:00
Herbert Xu
689f1c9de2 ipsec: Remove obsolete MAX_AH_AUTH_LEN
While tracking down the MAX_AH_AUTH_LEN crash in an old kernel
I thought that this limit was rather arbitrary and we should
just get rid of it.

In fact it seems that we've already done all the work needed
to remove it apart from actually removing it.  This limit was
there in order to limit stack usage.  Since we've already
switched over to allocating scratch space using kmalloc, there
is no longer any need to limit the authentication length.

This patch kills all references to it, including the BUG_ONs
that led me here.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2014-09-18 10:54:36 +02:00
Steffen Klassert
f92ee61982 xfrm: Generate blackhole routes only from route lookup functions
Currently we genarate a blackhole route route whenever we have
matching policies but can not resolve the states. Here we assume
that dst_output() is called to kill the balckholed packets.
Unfortunately this assumption is not true in all cases, so
it is possible that these packets leave the system unwanted.

We fix this by generating blackhole routes only from the
route lookup functions, here we can guarantee a call to
dst_output() afterwards.

Fixes: 2774c131b1d ("xfrm: Handle blackhole route creation via afinfo.")
Reported-by: Konstantinos Kolelis <k.kolelis@sirrix.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2014-09-16 10:08:40 +02:00
Eric Dumazet
b3d6cb92fd tcp: do not copy headers in tcp_collapse()
tcp_collapse() wants to shrink skb so that the overhead is minimal.

Now we store tcp flags into TCP_SKB_CB(skb)->tcp_flags, we no longer
need to keep around full headers.
Whole available space is dedicated to the payload.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-15 14:41:08 -04:00
Eric Dumazet
e93a0435f8 tcp: allow segment with FIN in tcp_try_coalesce()
We can allow a segment with FIN to be aggregated,
if we take care to add tcp flags,
and if skb_try_coalesce() takes care of zero sized skbs.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-15 14:41:07 -04:00
Eric Dumazet
e11ecddf51 tcp: use TCP_SKB_CB(skb)->tcp_flags in input path
Input path of TCP do not currently uses TCP_SKB_CB(skb)->tcp_flags,
which is only used in output path.

tcp_recvmsg(), looks at tcp_hdr(skb)->syn for every skb found in receive queue,
and its unfortunate because this bit is located in a cache line right before
the payload.

We can simplify TCP by copying tcp flags into TCP_SKB_CB(skb)->tcp_flags.

This patch does so, and avoids the cache line miss in tcp_recvmsg()

Following patches will
- allow a segment with FIN being coalesced in tcp_try_coalesce()
- simplify tcp_collapse() by not copying the headers.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-15 14:41:07 -04:00
Scott Wood
2d8f7e2c8a udp: Fix inverted NAPI_GRO_CB(skb)->flush test
Commit 2abb7cdc0d ("udp: Add support for doing checksum unnecessary
conversion") caused napi_gro_cb structs with the "flush" field zero to
take the "udp_gro_receive" path rather than the "set flush to 1" path
that they would previously take.  As a result I saw booting from an NFS
root hang shortly after starting userspace, with "server not
responding" messages.

This change to the handling of "flush == 0" packets appears to be
incidental to the goal of adding new code in the case where
skb_gro_checksum_validate_zero_check() returns zero.  Based on that and
the fact that it breaks things, I'm assuming that it is unintentional.

Fixes: 2abb7cdc0d ("udp: Add support for doing checksum unnecessary conversion")
Cc: Tom Herbert <therbert@google.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-12 17:55:41 -04:00
David S. Miller
0aac383353 Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
Pablo Neira Ayuso says:

====================
nf-next pull request

The following patchset contains Netfilter/IPVS updates for your
net-next tree. Regarding nf_tables, most updates focus on consolidating
the NAT infrastructure and adding support for masquerading. More
specifically, they are:

1) use __u8 instead of u_int8_t in arptables header, from
   Mike Frysinger.

2) Add support to match by skb->pkttype to the meta expression, from
   Ana Rey.

3) Add support to match by cpu to the meta expression, also from
   Ana Rey.

4) A smatch warning about IPSET_ATTR_MARKMASK validation, patch from
   Vytas Dauksa.

5) Fix netnet and netportnet hash types the range support for IPv4,
   from Sergey Popovich.

6) Fix missing-field-initializer warnings resolved, from Mark Rustad.

7) Dan Carperter reported possible integer overflows in ipset, from
   Jozsef Kadlecsick.

8) Filter out accounting objects in nfacct by type, so you can
   selectively reset quotas, from Alexey Perevalov.

9) Move specific NAT IPv4 functions to the core so x_tables and
   nf_tables can share the same NAT IPv4 engine.

10) Use the new NAT IPv4 functions from nft_chain_nat_ipv4.

11) Move specific NAT IPv6 functions to the core so x_tables and
    nf_tables can share the same NAT IPv4 engine.

12) Use the new NAT IPv6 functions from nft_chain_nat_ipv6.

13) Refactor code to add nft_delrule(), which can be reused in the
    enhancement of the NFT_MSG_DELTABLE to remove a table and its
    content, from Arturo Borrero.

14) Add a helper function to unregister chain hooks, from
    Arturo Borrero.

15) A cleanup to rename to nft_delrule_by_chain for consistency with
    the new nft_*() functions, also from Arturo.

16) Add support to match devgroup to the meta expression, from Ana Rey.

17) Reduce stack usage for IPVS socket option, from Julian Anastasov.

18) Remove unnecessary textsearch state initialization in xt_string,
    from Bojan Prtvar.

19) Add several helper functions to nf_tables, more work to prepare
    the enhancement of NFT_MSG_DELTABLE, again from Arturo Borrero.

20) Enhance NFT_MSG_DELTABLE to delete a table and its content, from
    Arturo Borrero.

21) Support NAT flags in the nat expression to indicate the flavour,
    eg. random fully, from Arturo.

22) Add missing audit code to ebtables when replacing tables, from
    Nicolas Dichtel.

23) Generalize the IPv4 masquerading code to allow its re-use from
    nf_tables, from Arturo.

24) Generalize the IPv6 masquerading code, also from Arturo.

25) Add the new masq expression to support IPv4/IPv6 masquerading
    from nf_tables, also from Arturo.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-10 12:46:32 -07:00
Tom Herbert
9667e9bb3f ipip: Add gro callbacks to ipip offload
Add inet_gro_receive and inet_gro_complete to ipip_offload to
support GRO.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 21:29:33 -07:00
Eric Dumazet
72bb17b37b ipv4: udp4_gro_complete() is static
net/ipv4/udp_offload.c:339:5: warning: symbol 'udp4_gro_complete' was
not declared. Should it be static?

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Tom Herbert <therbert@google.com>
Fixes: 57c67ff4bd92 ("udp: additional GRO support")
Acked-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 20:10:45 -07:00
Eric Dumazet
8e380f004e ipv4: rcu cleanup in ip_ra_control()
Remove one sparse warning :
net/ipv4/ip_sockglue.c:328:22: warning: incorrect type in assignment (different address spaces)
net/ipv4/ip_sockglue.c:328:22:    expected struct ip_ra_chain [noderef] <asn:4>*next
net/ipv4/ip_sockglue.c:328:22:    got struct ip_ra_chain *[assigned] ra

And replace one rcu_assign_ptr() by RCU_INIT_POINTER() where applicable.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 20:10:44 -07:00
Eric Dumazet
ca777eff51 tcp: remove dst refcount false sharing for prequeue mode
Alexander Duyck reported high false sharing on dst refcount in tcp stack
when prequeue is used. prequeue is the mechanism used when a thread is
blocked in recvmsg()/read() on a TCP socket, using a blocking model
rather than select()/poll()/epoll() non blocking one.

We already try to use RCU in input path as much as possible, but we were
forced to take a refcount on the dst when skb escaped RCU protected
region. When/if the user thread runs on different cpu, dst_release()
will then touch dst refcount again.

Commit 093162553c33 (tcp: force a dst refcount when prequeue packet)
was an example of a race fix.

It turns out the only remaining usage of skb->dst for a packet stored
in a TCP socket prequeue is IP early demux.

We can add a logic to detect when IP early demux is probably going
to use skb->dst. Because we do an optimistic check rather than duplicate
existing logic, we need to guard inet_sk_rx_dst_set() and
inet6_sk_rx_dst_set() from using a NULL dst.

Many thanks to Alexander for providing a nice bug report, git bisection,
and reproducer.

Tested using Alexander script on a 40Gb NIC, 8 RX queues.
Hosts have 24 cores, 48 hyper threads.

echo 0 >/proc/sys/net/ipv4/tcp_autocorking

for i in `seq 0 47`
do
  for j in `seq 0 2`
  do
     netperf -H $DEST -t TCP_STREAM -l 1000 \
             -c -C -T $i,$i -P 0 -- \
             -m 64 -s 64K -D &
  done
done

Before patch : ~6Mpps and ~95% cpu usage on receiver
After patch : ~9Mpps and ~35% cpu usage on receiver.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 16:54:41 -07:00
Vincent Bernat
49a601589c net/ipv4: bind ip_nonlocal_bind to current netns
net.ipv4.ip_nonlocal_bind sysctl was global to all network
namespaces. This patch allows to set a different value for each
network namespace.

Signed-off-by: Vincent Bernat <vincent@bernat.im>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 11:27:09 -07:00
Arturo Borrero
9ba1f726be netfilter: nf_tables: add new nft_masq expression
The nft_masq expression is intended to perform NAT in the masquerade flavour.

We decided to have the masquerade functionality in a separated expression other
than nft_nat.

Signed-off-by: Arturo Borrero Gonzalez <arturo.borrero.glez@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2014-09-09 16:31:30 +02:00
Arturo Borrero
8dd33cc93e netfilter: nf_nat: generalize IPv4 masquerading support for nf_tables
Let's refactor the code so we can reach the masquerade functionality
from outside the xt context (ie. nftables).

The patch includes the addition of an atomic counter to the masquerade
notifier: the stuff to be done by the notifier is the same for xt and
nftables. Therefore, only one notification handler is needed.

This factorization only involves IPv4; a similar patch follows to
handle IPv6.

Signed-off-by: Arturo Borrero Gonzalez <arturo.borrero.glez@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2014-09-09 16:31:29 +02:00
Willem de Bruijn
a7f26b7e1e inet: remove dead inetpeer sequence code
inetpeer sequence numbers are no longer incremented, so no need to
check and flush the tree. The function that increments the sequence
number was already dead code and removed in in "ipv4: remove unused
function" (068a6e18). Remove the code that checks for a change, too.

Verifying that v4_seq and v6_seq are never incremented and thus that
flush_check compares bp->flush_seq to 0 is trivial.

The second part of the change removes flush_check completely even
though bp->flush_seq is exactly !0 once, at initialization. This
change is correct because the time this branch is true is when
bp->root == peer_avl_empty_rcu, in which the branch and
inetpeer_invalidate_tree are a NOOP.

Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-08 16:42:42 -07:00
Tom Herbert
1e701f1698 net: Fix GRE RX to use skb_transport_header for GRE header offset
GRE assumes that the GRE header is at skb_network_header +
ip_hrdlen(skb). It is more general to use skb_transport_header
and this allows the possbility of inserting additional header
between IP and GRE (which is what we will done in Generic UDP
Encapsulation for GRE).

Signed-off-by: Tom Herbert <therbert@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-08 15:23:05 -07:00
David S. Miller
eb84d6b604 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2014-09-07 21:41:53 -07:00
Neal Cardwell
87d943085b tcp: remove obsolete comment about TCP_SKB_CB(skb)->when in tcp_fragment()
The TCP_SKB_CB(skb)->when field no longer exists as of recent change
7faee5c0d514 ("tcp: remove TCP_SKB_CB(skb)->when"). And in any case,
tcp_fragment() is called on already-transmitted packets from the
__tcp_retransmit_skb() call site, so copying timestamps of any kind
in this spot is quite sensible.

Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reported-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-06 12:29:10 -07:00